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Abstract   

Crop yield prediction is becoming increasingly crucial due to global food security 

concerns, as highlighted by recent reports from the World Health Organization. 

Accurate early predictions can mitigate famine risks by estimating food supply, 

which is essential for 820 million people facing hunger globally. Rice is the primary 

staple food consumed worldwide; therefore, global rice yield and rice area are 

monitored using emerging technologies such as remote sensing (RS) and machine 

learning (ML). These technologies provide valuable tools for enhancing rice yield 

predictions. RS includes critical information on crop health, soil conditions and 

weather patterns. In contrast, ML algorithms analyze these datasets to identify 

patterns and relationships that affect yield. Integrating these technologies offers 

promising improvements in yield forecasting accuracy, with applications showing 

successful yield predictions 1-3 months before harvest. Various ML techniques, 

including Random Forest, Support Vector Machines and deep learning models such 

as LSTM (Long-Short Term Memory), have been employed, often in combination 

with RS data. However, these models face challenges, such as data quality, 

managing high-dimensional RS data and accounting for spatial and temporal 

variability. Despite these challenges, integrating RS and ML has significant potential 

for advancing precision agriculture and achieving sustainable food production. This 

study explores the advancements, practical applications and challenges associated 

with using RS and ML for rice yield prediction, emphasizing the importance of these 

technologies in addressing global food security and promoting sustainable 

agricultural practices.  
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Introduction   

Oryza sativa, commonly known as the cultivated rice plant, is a yearly grass 

belonging to the Gramineae family. This plant yields rice, a consumable grain rich in 

starch. Half the global population, particularly in East and Southeast Asia, relies 

exclusively on rice as their primary food source. Developing countries account for 95 % 

of the total rice production, with China and India contributing nearly half of the 

world's (1). Crop yield prediction is becoming increasingly important due to 

growing concerns about food security, as shown by recent reports from the World 

Health Organization (2). Early crop yield predictions are crucial in reducing famine 

by estimating the available food supply for the growing global population (3). This is 

particularly important because hunger is a significant issue worldwide and 

increasing crop yield is a viable solution to address this problem and world health 
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organization (WHO) reported that there is still an inadequate 

food supply for approximately 820 million people globally (1). 

The United Nations Sustainable Development Goals aim to end 

hunger, achieve food security and promote sustainable 

agriculture by 2030 (4). Therefore, crop yield prediction is 

essential for providing critical information that can help develop 

practical solutions to achieve these goals and end hunger. 

 According to FAO 2022, China is the leading producer of 

rice, with a peak production of 208.49 mt, followed by India, 

Bangladesh, Indonesia and Africa closely behind, with rice 

production levels of 196.25 mt, 57.19 mt, 54.75 mt and 39.88 mt 

respectively (3). On the other hand, Australia recorded the 

highest rice yield at 11.05 tons per hectare. Egypt came second, 

with a yield 8.97 tons per hectare, followed by Peru, United 

States, Morocco, Greece and China, which had yields of 6.64, 

5.66, 8.33, 8.28, 7.77, 7.46 and 7.08 tons per hectare, respectively 

which was represent as shown in Fig. 1. Additionally, based on 

the global rice production and yield map, a trend chart spanning 

1961-2022 for Asia is presented in Fig. 2. In India, rice is a 

fundamental staple food crop, crucial in the nation's food and 

livelihood security system. It also contributes significantly to the 

country's foreign exchange earnings through exports. Over the 

past 66 years, India has witnessed a remarkable increase in rice 

production, with output growing fivefold and yield per hectare 

quadrupling. The cultivated area for kharif crops reached 41315 

km2, while rabi crops covered 38,360 km2 (5). The total rice 

cultivation area is approximately 45152 km2 (4). Rice production 

in India for kharif crops totalled 11145800 metric tons, with rabi 

crops yielding 12357 mt. The overall rice production in India 

amounts to 12381500 metric tons. 

Fig. 1. (A) Rice production (Tons )2022. [Source: Food and Agriculture Organization of the United Nations processed by our world data. (B) Rice yield                              
(t/ha)" [dataset]. Food and Agriculture Organization of the United Nations [original data].  

Fig. 2. (A) Trend of rice production (t) (1961-2022). [Source: Food and agriculture organization of the United Nations-processed by our world data. (B) Trend of 
Rice yield (t/ha) (1961-2022). Food and Agriculture organization of the United Nation [original data].  
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 Furthermore, rice productivity in India for kharif crops 

was 2,698 kg/ha, while rabi crops achieved 3,221 kg/ha. The total 

rice productivity in India stands at 2,742 kg/ha. This remarkable 

increase in agricultural output can be attributed to the adoption 

sophisticated and efficient farming technologies. This study 

aims to consolidate fundamental principles in assessing rice 

yields using remote sensing (RS) and geospatial methodologies, 

uncover research limitations and suggest future research 

directions. Fig. 3 presents a diagrammatic overview of the 

concepts explored in this study. 

 Additionally, this review examines the obstacles and 

constraints of current RS-based yield estimation and ML 

approaches. One of the primary challenges is the complexity and 

redundancy of high-dimensional hyperspectral (HS) signals, 

which can affect the performance of ML models (6). The effects 

of spectral variabilities in HS imaging further complicate the 

analysis, limiting the ability of conventional ML tools to handle 

complex practical problems. Interestingly, while ML techniques 

have shown promise in various RS applications, there are 

contradictions in their effectiveness. For instance, in geothermal 

exploration, ML methods have demonstrated high accuracy (92-

95 %) in predicting geothermal potential using surface 

manifestations. However, when applied to different sites with 

varying characteristics, the accuracy drops to 72-76 % (7). This 

highlights the challenge of developing ML models that 

generalize well across geographical contexts. This highlights the 

necessity for enhanced spatial and temporal resolution in 

satellite imagery. 

Remote sensing of paddy (Rice) area  

Advanced remote sensing techniques have proven effective for 

identifying and mapping rice-growing areas. Sensors leverage 

the unique spectral signatures of various surfaces in rice paddies 

to extract essential information about vegetation health and 

growth stages, which are key factors in predicting final crop 

yield. The accuracy of yield predictions is influenced by the type 

of sensor employed and its spatial and temporal resolution 

capabilities. This is particularly significant given the diverse 

nature of paddy ecosystems, which vary in size, management 

practices and environmental conditions. Remote sensing 

techniques offer valuable tools for assessing vegetation health 

and productivity. One key measure derived from these 

techniques is the Leaf Area Index (LAI), which quantifies the total 

leaf surface area relative to a specific ground area. LAI is a crucial 

indicator of crop yield and is frequently incorporated into yield 

forecasting models. Two important indices that can be 

calculated using remote sensing data are the Normalized 

Difference Vegetation Index (NDVI) and the Fraction of 

Photosynthetically Active Radiation (FPAR) (8). These indices 

provide insights into various aspects of vegetation health and 

productivity: NDVI evaluates the contrast between near-infrared 

light (reflected by healthy vegetation) and red light (absorbed by 

plants). It helps gauge vegetation health, greenness and vitality, 

offering a comprehensive view of plant condition. 

 FPAR indicates the proportion of incoming solar 

radiation that is utilized in photosynthesis. It provides insights 

into how efficiently the vegetation canopy converts light into 

energy for growth. By analyzing these remote sensing-derived 

indices alongside LAI, researchers and agronomists can better 

understand crop health, potential yield and overall ecosystem 

productivity (9). This information is invaluable for agricultural 

management, environmental monitoring and climate change 

studies. Lastly, accurate rice area mapping is crucial as yield is an 

area-dependent quantity. Current trends in mapping rice areas 

include modern technologies such as deep learning, sensor 

fusion, machine learning and traditional pixel-based methods. 

Remote sensing techniques offer significant advantages over 

conventional agriculture yield estimation methods. 

Contemporary approaches provide more accurate, timely and 

cost-effective crop monitoring and yield prediction solutions. 

There are several key advantages to utilizing remote sensing 

technologies, such as large-scale coverage, temporal analysis 

and integration of multiple data sources that provide more 

comprehensive, accurate and timely information, enabling 

improved agricultural management decision-making and 

Fig. 3. Remote sensing-based rice yield estimation. 
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contributing to sustainable farming practices. Machine learning 

and deep learning algorithms have demonstrated superior 

accuracy in yield prediction compared to conventional 

approaches. For instance, a study using LSTM (Long-Short Term 

Memory) achieved high-performance metrics with 0.989 recall, 

0.979 precision and 0.984 F1 score for rice yield estimation (10). 

These advanced models can capture complex non-linear 

relationships between various factors affecting crop yields. 

These advanced techniques offer improved accuracy, spatial 

coverage, timeliness and the ability to integrate diverse data 

sources, making them powerful tools for enhancing rice yield 

estimation and supporting sustainable agricultural practices. 

The life cycle of rice 

Rice (Oryza sativa L.) undergoes several distinct growth stages 

throughout its lifecycle, each with unique characteristics and 

requirements. The main phases of rice development include 

seedling, vegetative and reproductive stages Fig. 4 (6). The life 

cycle of rice typically spans 100 to 210 days, with most cultivars 

falling between 110 and 150 days (11). In temperate climates, the 

average duration from sowing to harvest is 130 to 150 days. The 

rice plant's development can be divided into three main phases: 

vegetative, reproductive and ripening, which are influenced by 

temperature and day length (12). The vegetative stage involves 

leaf formation and tillering for plant development. During this 

phase, the plant is particularly susceptible to environmental 

stresses, including drought and salinity (13, 14). The 

reproductive stage, which includes panicle initiation, booting 

and flowering, is critical for determining the number of spikelets 

per branch and overall yield potential (15). The ripening or grain-

filling stage ensues when the plant allocates resources to grain 

development. Grain-filling constitutes a critical stage for rice 

yield and quality formation, with nitrogen playing a significant 

role in this process. Nitrogen applications have been 

demonstrated to prolong the duration of grain filling for both 

superior and inferior grains in rice (16). Optimal temperature 

ranges are crucial for each stage of plant growth and any 

temperature fluctuations outside these ranges can substantially 

decrease crop yields, potentially resulting in complete crop loss. 

Reduced sunlight exposure or insufficient solar radiation can 

negatively impact crop production. Moreover, inadequate and 

excessive precipitation, often associated with extreme weather 

events, can also lead to diminished crop yields (17). 

Machine learning (ML) for rice 

On the other hand, Machine learning (ML) has been used in 

agriculture for several years (18). A primary focus of machine 

learning is to produce models automatically. A model is a 

pattern, plan, representation, or description designed to show 

the working of a system or concept, such as rules to determine 

mathematical operations and obtain specific results, a function 

mapping sets of formulae to formulae, or patterns (models) that 

can be used to generate things or parts of a thing from data (19). 

This (ML), a subfield of artificial intelligence (AI) dedicated to 

learning, is a practical method that can effectively predict crop 

yield based on various features. By analyzing datasets and 

uncover hidden knowledge, machine learning can identify 

patterns and relationships.  

 Several examples of soil characteristics frequently 
incorporated into machine learning models include 

macronutrient and micronutrient content, pH levels and 

moisture content (20). For instance, root-zone soil moisture and 

soil wetness have been identified as significant factors in oil 

palm yield prediction (21). Regarding meteorological factors, 

weather data plays a crucial role in these models, with 

parameters such as rainfall frequency, temperature, cloud cover, 

number of precipitation days and wind speed being particularly 

influential. Some studies have even explored the impact of 

lagged weather data, or "look-back periods," on model 

performance for soil temperature estimation (22). In crop yield 

and variety, machine learning techniques have been 

successfully applied to classify various crop types and varieties, 

demonstrating high accuracy in distinguishing different plant 

species. For example, a study using 3D LIDAR sensors and 

supervised learning achieved over 98 % accuracy in identifying 

six other plant species commonly found in nurseries (23). In 

another study, a multiclass classification model was developed 

to identify seven varieties of dry beans using machine learning 

algorithms. The CatBoost algorithm achieved the highest overall 

mean accuracy of 93.8 % in these classified bean varieties (24). 

ML models can be either descriptive or predictive, depending on 

the research problem and research questions (19). 

 Machine Learning (ML) has emerged as a powerful tool in 

rice production, offering significant improvements across 

various cultivation and post-harvest processes. ML algorithms 

are being applied to analyze data from sensors and IoT devices, 

transforming traditional rice farming into smart or precision 

agriculture (25). In rice production, ML is utilized for multiple 

purposes, including smart irrigation, yield estimation, growth 

monitoring, disease detection, quality assessment and sample 

classification (26). For instance, ML models can predict crop 

yields by evaluating structural characteristics, meteorological 

data and climatic factors (27). The region of Vietnam 

demonstrated significant improvements in rice yield forecasting 

using a framework that employed higher-order spatial 

independent component analysis and a combination of 

principal component analysis and ML. This approach improved 

subregional rice yield forecasting models by an average of 20 % 

up to 60 % compared to traditional methods, generating 

predictions 1-2 months ahead of harvest with an average error of 

only 5 % (28). 

 Other studies conducted in Michigan's non-irrigated 

corn, soybean and winter wheat crops showed that advanced 

deep learning techniques, particularly XGBoost, consistently 

outperformed other methods in crop yield estimation accuracy. 

Fig. 4. Agronomic growth stages of rice  (Oryza Sativa) are divided into three 
primary phases: vegetative, reproductive and ripening. Each contains distinct 
sub-phases that characterize specific developmental processes within each 
stage. 
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These models achieved remarkable precision, predicting yields 

with only a 7.5 % margin of error an entire month before harvest 

(29). This capability is crucial for addressing the growing food 

demand and preventing starvation (30). ML techniques are also 

employed in soil analysis, irrigation control and farm equipment 

automation, contributing to more efficient and sustainable rice 

cultivation practices (25). 

 Interestingly, while ML shows excellent promise in rice 

farming, its effectiveness heavily depends on the quality of data 

collected from sensors (14). This highlights the importance of 

integrating ML with technologies like Big Data and the Internet of 

Things (IoT) for optimal results. Additionally, adopting ML 

technologies in agriculture faces data quality issues, 

infrastructure limitations and high implementation costs, 

particularly for small-scale farmers in developing regions (31). 

ML is pivotal in revolutionizing rice production by enabling data-

driven decision-making, optimizing resource use and enhancing 

overall productivity. Integrating ML with other technologies like 

IoT and autonomous farming equipment is paving the way for 

more advanced predictive models and the widespread use of 

smart farming systems in rice cultivation. The IoTML-SIS 

(Internet of Things Machine Learning enabled smart irrigation 

system) utilizes various IoT-based sensors to collect data on soil 

moisture, humidity, temperature and light conditions in the 

farmland. This data is then transmitted to a cloud server for 

processing and decision-making. The system employs an 

artificial algae algorithm (AAA) in conjunction with a least 

squares-support vector machine (LS-SVM) model to classify 

when irrigation is necessary. By optimizing the LS-SVM 

parameters using the AAA, the system achieves a high 

classification efficiency, with a maximum accuracy of 0.975 (32). 

However, addressing challenges related to data quality, 

accessibility and ethical concerns will be crucial for the equitable 

and sustainable adoption of ML in rice farming across different 

scales and regions. 

Integrating remote sensing and machine learning (ML) for rice 

Integrating remote sensing and machine learning (ML) is a 

growing field of study that aims to enhance the analysis and 

interpretation of data collected from various sensors to 

monitor and understand Earth systems, which consist of 

atmosphere, Hydrosphere, Geosphere, Biosphere, Cryosphere 

and Anthroposphere (33). This integration leverages the 

strengths of ML algorithms in handling the high-dimensional 

data characteristic of remote sensing applications, such as 

land use/land cover (LULC) classification, environmental 

monitoring and water quality assessment (34,35). Integrating 

remote sensing and ML is a dynamic and evolving field with 

significant promise for advancing environmental research and 

sustainable management practices.  

 Remote sensing and ML techniques are increasingly 

integrated to enhance rice monitoring and management. 

Satellite imagery combined with UAV data can provide large-

scale and precision agricultural monitoring of rice crops, as 

shown in Fig. 5 (36). ML algorithms like support vector machines 

(SVM) and neural networks have demonstrated superior 

performance in estimating key rice parameters such as (LAI) 

from fused satellite and UAV data (21). Fusing these data sources 

has improved the inversion accuracy of the Leaf Area Index (LAI) 

for damaged rice, with R2 increasing by approximately 0.3 and 

RMSE decreasing by about 0.1 (21). 

 These integrated approaches enable more accurate 
predictions of rice yield and optimal nitrogen management. For 

example, a variational autoencoder (VAE) model using soil, 

remote sensing, climate and farming practice data accurately 

predicted rice yield, with an average yield increase of 4.32 % 

when applied in practice (37). The VAEs are powerful generative 

models that encode input data into a latent space and then 

decode it to reconstruct the original input. The VAE model 

consists of an encoder network that maps input data to a latent 

representation and a decoder network that reconstructs the 

input from the latent space (38). The key feature of VAEs is using 

variational inference to learn a probabilistic encoding of the input 

data. The encoder produces a distribution over latent variables, 

typically modelled as a Gaussian, from which latent codes are 

sampled. This stochastic encoding allows VAEs to generate 

diverse outputs and capture uncertainty in the data (39).  

Fig. 5. Integrating remote sensing and machine learning.  
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 Integrating Big Data, ML and IoT technologies transforms 

traditional rice farming practices into smart or precision 

agriculture (14). This integration enables various applications 

such as smart irrigation, yield estimation, growth monitoring, 

disease detection and quality assessment (14). However, 

challenges remain in building sufficiently labelled datasets for 

training ML models using satellite imagery, particularly when 

utilizing all available Sentinel-2 bands ranging from visible light 

to short-wave infrared (40). Despite limited field sampling, these 

approaches provide high-accuracy mapping of rice paddy 

distribution, growth stages and crop health. The pheno-deep 

method, which couples phenological methods with deep 

learning, has shown promising results in achieving high 

mapping accuracy without the need for extensive field samples 

as these technologies continue to evolve, they are expected to 

play a crucial role in optimizing rice production and supporting 

sustainable agricultural practices. 

 

Materials and Methods 

Search Strategies 

The current review offers a comprehensive examination of 

international studies on rice yield prediction, focusing on various 

aspects. It investigates the application of Machine Learning and 

Remote Sensing technologies in these fields, highlighting recent 

advancements, practical uses and advantages and 

disadvantages of these technologies in rice cultivation. An 

extensive search through academic databases, including Google 

Scholar, Scopus, ResearchGate and Web of Science, was 

conducted for relevant literature published between 1981 and 

2024, as shown in Fig. 6. Approximately 150 articles were 

collected and subsequently filtered. From this collection, 

approximately 111 articles were utilized. 

 This process resulted in the collection of 150 

publications from multiple countries, as shown in Fig. 7. 

Among these publications, seventy-six were focused on the 

latest advancements in rice yield prediction, utilizing Machine 

Learning or Remote Sensing technologies. 

 Publications demonstrated the efficient use of ML and/or 

RS in aspects of rice cultivation, such as crop identification, yield 

prediction and acreage evaluation. A comprehensive search 

strategy was employed to gather relevant publications across 

multiple databases, incorporating specific keywords such as 

'rice yield' and 'rice crop. Various tasks can be accomplished 

using machine learning and remote sensing, such as rice 

classification and yield prediction. To identify relevant literature 

on remote sensing and machine learning in rice cultivation, 

keywords like 'Remote Sensing', 'Yield Prediction' and 'Rice Yield' 

were used. The word count analysis of the review indicates that 

the most frequently used terms were "Remote Sensing" (21 %), 

"Yield Prediction" (17 %), "Rice Yield" (16 %) and "Machine 

Learning" (15 %). In contrast, less frequently used terms included 

"Sensing Data" (7 %), "ML Algorithm" (5 %) and "Support Vector," 

which was not mentioned (0 %). The results were analyzed in a 

word count analysis presented in Fig. 8 of this review, focusing on 

ML-based remote sensing applications for managing rice crops. 

These keywords helped obtain a wide range of research papers 

from multiple databases, with recent articles providing access to 

older publications for a deeper understanding of the field. 

 

 

Fig. 6. Article papers collected 1981-24. 

Fig. 7. Publications collected from different parts of the country. 
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Literature Review 

Rice yield prediction using optical remote sensing: Optical 

remote sensing uses visible, near-infrared (NIR) and short-wave 

infrared sensors to images of the earth surface features by 

detecting solar radiation reflected from ground targets. This 

technology enables the identification of vegetation features 

through their unique spectral signatures by using optical remote 

sensing to find the unique spectral signature of vegetation. This 

spectral signature is crucial in agriculture because it provides 

valuable information about crop health, soil conditions and 

overall farm management. These signatures, obtained through 

hyperspectral and multispectral remote sensing technologies, 

enable the extraction of detailed information about vegetation 

and soil properties (41). Spectral signatures are significant for 

precision agriculture applications, as they allow for the detection 

of plant diseases, insect pests and invasive species, as well as the 

crop yield estimation and classification of crop distributions (41). 

 The reflection is low in both the blue and red regions of 

the spectrum due to the absorption by chlorophyll for 

photosynthesis. In the near-infrared (NIR) region, the reflection is 

much higher than that in the visible band due to the cellular 

structure in the leaves. Hence, the vegetation can be identified 

by the high NIR but generally low visibility reflectance. Based on 

the type of sensor and data collected, optical remote sensing is 

classified into several types: Multispectral, Hyperspectral, 

Panchromatic, Thermal Infrared and Very high-resolution 

sensing. Each system offers unique capabilities tailored to 

specific applications, as shown in Table 1. Researchers have 

devoted considerable efforts to predicting rice yield using optical 

remote sensing images. Optical remote sensing data, often 

susceptible to cloud cover, can be limited during certain 

seasons, necessitating alternative data such as microwave 

remote sensing (42). However, when available, optical data, 

including various forms of the Normalized Difference Vegetation 

Index (NDVI), have been successfully integrated into crop 

simulation models like Rice-SRS, which is based on the ORYZA1 

model, to provide accurate yield estimations with minimal error 

(42, 43). 

 By examining specific spectral bands of these images, 

pre-harvest yield estimation becomes possible due to the 

responsiveness of these bands to vegetation conditions. For 

instance, plants absorb energy in the spectral range of 0.45-0.70 

µm and reflect it in the 0.70-0.90 µm range. Employing these 

spectral ranges, various vegetation indices have been utilized, 

including NDVI (Normalized Difference Vegetation Index), RVI 

(Ratio vegetation index), DVI (Difference vegetation index), IPVI 

(Infrared percentage vegetation index), SAVI (Soil-Adjusted 

Vegetation Index), VCI (Vegetation Condition Index), VHI 

(Vegetation health index), TCI (Temperature condition index) 

and GNDVI (Green Normalized Difference Vegetation Index), to 

estimate yield which is fully shown in Table 2 before harvesting. 

Interestingly, while optical remote sensing is a powerful tool for 

yield prediction, it has challenges. The presence of clouds can 

significantly reduce the availability of quality optical data, which 

is crucial for accurate yield estimation (44). However, the 

limitations posed by cloud cover and the complexity of remote 

sensing data necessitate advanced processing techniques to 

ensure the accuracy and reliability of yield predictions (42, 44, 

45). The continued development of models and strategies to 

overcome these challenges is essential for enhancing the 

predictability of rice yields using optical remote sensing data. 

Visualization parameter for optical remote sensing: Remote 

sensing technologies effectively capture various physical 

changes associated with rice growth. Paddy rice is a distinct crop 

variety that requires abundant water throughout its lifecycle, 

except for the maturation phase. The study area selected for this 

research was Thiruvarur district of Tamil Nadu. The major 

agricultural crop was rice, grown throughout the three seasons 

in a year. Due to the continuous cultivation of rice in this area, 

TCC(True Colour Composite) represents an image in the visible 

spectrum that closely resembles what the human eye would see 

in real-world life, which is created by Red (R), Green (G) and Blue 

(B) bands of a satellite image to their respective colour in the 

RGB channel (46). FCC (False Colour Composite) display an 

image using a non-visible portion of the electromagnetic 

spectrum, often replacing visible bands with infrared or near-

infrared bands. This FCC consisted of three channels, namely 

NIR, Red and Green. NDVI (Normalized Difference Vegetation 

Index) consists of two leading spectral bands: red and near-

infrared (NIR). NDVI was utilized to identify paddy growth 

patterns, as illustrated in Fig. 9. During the early growth stages, 

rice plants have limited canopy coverage, causing the spectral 

Fig. 8. Keywords or phrases or main words count observed in the references. 
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 Table 1. Types of optical remote sensing with satellite products, resolutions and applications in rice yield estimation  

Type Satellite Spatial resolution Spectral bands Temporal 
resolution 

Application in rice yield 
estimation 

Product source 

Multispectral 
Landsat-8/9 (OLI/

TIRS) 
30 m (VIS-NIR), 15 m 

(PAN) 11 bands 16 days 
Monitoring crop health 

(NDVI), evapotranspiration 
and land-use classification 

USGS Earth 
Explorer 

  Sentinel-2A/B 10 m, 20 m, 60 m 13 bands 5 days 
Assessing crop phenology, 

vegetation indices (e.g., NDVI, 
EVI) 

Copernicus Open 
Access Hub 

  MODIS (Terra/
Aqua) 

250 m - 1 km 36 bands 1-2 days 
Large-scale monitoring of 
rice-growing regions and 

drought analysis 
NASA LP DAAC 

Hyperspectral PRISMA (Italy) 30 m 239 bands 29 days 

Detecting crop stress, 
nitrogen content and soil 
conditions for rice yield 

optimization 

ASI (Italian 
Space Agency) 

  Hyperion (EO-1) 30 m 220 bands 16 days 
Identifying water stress and 

estimating biochemical 
parameters 

NASA Earth 
Observing 

System 

Panchromatic WorldView-3 0.31 m 1 band <1 day 
High-resolution monitoring 
of rice field boundaries and 

crop layout 

Maxar 
Technologies 

  GeoEye-1 0.41 m 1 band 3 days 
Precision agriculture: 

Identifying irrigation patterns 
and field-level management 

Maxar 
Technologies 

Thermal Infrared Landsat-8/9 (TIRS) 100 m (resampled to 30 
m) 

2 bands 16 days 
Estimating 

evapotranspiration (ET) to 
predict crop water demand 

USGS Earth 
Explorer 

  MODIS (Terra/
Aqua) 

1 km 3 bands 1-2 days 
Monitoring surface 

temperature and drought 
stress in rice fields 

NASA LP DAAC 

  ASTER 90 m 5 bands On-demand 
Detecting heat stress in crops 

and assessing water stress 
levels 

NASA Earth 
Data 

Very high 
resolution 

WorldView-2/3 0.31 m (PAN), 1.24 m 
(MS) 

8 bands <1 day 
Monitoring rice crop growth 
and yield prediction at field 

scale 

Maxar 
technologies 

  Pleiades-1A/1B 0.5 m 5 bands 2 days 
Change detection and 

disaster impact assessment 
on rice fields 

Airbus 
defence and 

space 

Index Full Form Formula Purpose 

NDVI Normalized difference vegetation (NIR - Red) / (NIR + Red) Detects live green vegetation. 

RVI Ratio vegetation index NIR / Red 
Highlights vegetation by using a simple ratio 

between NIR and Red bands. 

DVI Difference vegetation index NIR - Red 
Measures vegetation density by directly 

subtracting reflectance values. 

IPVI Infrared percentage vegetation index (NDVI + 1) / 2 
Scales NDVI to a 0-1 range for easier 

interpretation. 

SAVI Soil-adjusted vegetation index (NIR - Red) / (NIR + Red + L) * (1 + L) 
Reduces soil brightness effects for areas with 

sparse vegetation. 

VCI Vegetation condition index 
(NDVI - NDVI_min) / (NDVI_max - 

NDVI_min) * 100 
Monitors drought by comparing current NDVI with 

historical extremes. 

VHI Vegetation health index α * VCI + (1 - α) * TCI 
Combines VCI and TCI to assess overall vegetation 

health. 

TCI Temperature condition index (T_max - T) / (T_max - T_min) * 100 
Identifies vegetation stress caused by temperature 

anomalies. 

GNDVI 
Green normalized difference 

vegetation index (NIR - Green) / (NIR + Green) 
More sensitive to chlorophyll concentration than 

NDVI. 

Table 2. Various vegetation indices used to estimate the yield of rice 
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response to be dominated by underlying soil and water. As the 

rice develops, the leaves and stems increasingly influence the 

signal until reaching a saturation point, typically occurring 

during the booting phase when photosynthetic activity peaks. 

The optimal periods for assessing rice yield through remote 

sensing are during the emergence of the yellowing panicle and 

when leaves begin to senesce and head (47). Throughout their 

growth cycle, rice plants and their surroundings exhibit varying 

spectral responses, providing valuable opportunities for precise 

area mapping and crop yield prediction using multitemporal 

remote sensing techniques. When employing single-date 

imagery, the optimal time for data acquisition is during the 

booting stage. For multi-date sensing approaches, the most 

accurate estimations can be achieved by capturing images 

during the early vegetative and reproductive stages. Rice plants 

and their environment display distinct spectral signatures 

throughout their developmental stages, offering significant 

potential for accurate area mapping and yield forecasting using 

multi-temporal remote sensing methods. 

Rice yield prediction using microwave remote sensing : 

Microwave remote sensing (MRS) presents several advantages. 

One is its ability to capture images even in adverse weather 

conditions, such as heavy rain, snow, cloud cover and strong 

solar irradiance. This makes the imagery obtained from 

microwave sensors an excellent source for mapping rice regions, 

as rice cultivation frequently occurs during the rainy season, 

characterized by persistent cloud cover. Although the sensor has 

a solid capacity to capture images without sunlight in almost all-

weather conditions, high revisit capabilities were not achieved 

until the launch of the Copernicus Sentinel-1A-satellites in 2014. 

Carrying C-band SAR sensors that operate at a high-frequency 

equivalent to a wavelength of 5.5 cm for observation, these 

satellites have enabled monitoring crops with shorter growth 

durations. Accordingly, many agricultural studies have 

employed Sentinel-1A data for agricultural land mapping, yield 

estimation and crop growth monitoring (48, 49). The Sentinel-1A 

satellite operates in the interferometric wide (IW) mode for land 

observation, utilizing VV and VH dual polarizations. In this 

context, V and H represent the vertical and horizontal 

polarizations, respectively, while the first and second characters 

pertain to the transmitted and received polarizations. 

Interestingly, while MRS techniques are adequate, the 

synergistic use of microwave and optical remote sensing data 

has yielded promising results for crop parameter assessment 

and condition monitoring at a regional level (50). MRS is a robust 

method for rice yield prediction, offering reliable estimates even 

under adverse weather conditions. The integration of MRS with 

crop simulation models enhances the accuracy of yield 

predictions (43). While the combined use of optical and 

microwave data can be beneficial, the extent of improvement 

varies depending on the specific application and data 

availability Table 3. Interestingly, active microwave sensors like 

Synthetic Aperture Radar (SAR) can provide higher spatial 

resolution (e.g., 10 m for Sentinel-1A) but may have lower 

temporal resolution (51). This creates an opportunity for 

synergistic use of passive and active microwave and optical data 

to enhance spatial and temporal resolutions. Overall, the 

advancements in MRS technology and its application in 

agriculture promise to improve food security through accurate 

and timely yield forecasts (52). 

Rice yield prediction using machine learning algorithms : 
Machine learning (ML) algorithms have been increasingly 

applied to predict rice yields. The literature indicates that various 

ML techniques and features predict agricultural yields, with 

temperature, rainfall and soil types being common predictors 

(53, 54). In particular, Artificial neural networks (ANN), Support 

vector machines (SVM), linear regression and Long-short term 

memory (LSTM) networks are commonly utilized (53, 55). 

However, challenges in ML rice yield prediction include selecting 

appropriate input variables, handling missing data and 

capturing non-linear relationships between variables (53). 

Interestingly, while some studies have achieved high accuracy 

Fig. 9. Sentinel-2 True colour composite (TCC), False colour composite (FCC) and normalized difference vegetation index (NDVI) image in 2023. For Sentinel-2 
imagery, different band combinations are used for various representations. The true colour composite (TCC), which mimics natural vision, uses B4 (Red), B3 
(Green) and B2 (Blue). The false colour composite (FCC), helpful in highlighting vegetation, combines B8 (NIR), B4 (Red) and B3 (Green), making healthy vegeta-
tion appear bright red. The normalized difference vegetation index (NDVI), calculated using B8 (NIR) and B4 (Red), provides a measure of vegetation health with 
higher values showing healthier vegetation.  
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rates, such as 96.72 % using a classification-based interactive 

model and           99.82 % with a novel decision support system, 

others have reported lower accuracy, like 72 % with the Decision 

Tree Regressor (56, 57, 58). These discrepancies may arise from 

differences in the datasets, regional focus, or specific ML 

algorithms applied. 

 Additionally, the lack of transferability of some models 

across different crops and locations is noted, highlighting the 

need for modular and reusable workflows (59). The choice of 

algorithm, data quality and regional specificity can influence the 

effectiveness of these algorithms. Further research is warranted 

to refine these models for broader application and to address 

challenges such as model interpretability and scalability (60). 

Techniques that include feature selection, regularization and 

data preprocessing are recommended to address these 

challenges. Furthermore, research indicates that prediction 

accuracy primarily depends on the features considered. 

Rice yield prediction using common machine learning 
algorithms: Machine learning (ML) algorithms are increasingly 

employed in agricultural contexts to predict crop yields, 

including rice. The literature shows that Random Forest (RF) is a 

frequently utilized algorithm for this purpose (54, 61), as shown 

in Table 4. RF is known for its ability to handle classification and 

regression tasks, making it suitable for crop yield prediction 

(CYP) (62). Support Vector Machine (SVM) is also mentioned as a 

significant tool in predicting rice yield, often in combination with 

RF for enhanced accuracy (63). Other algorithms such as 

Decision Trees, Naive Bayes, k-nearest Neighbour (k-NN) and 

various deep learning techniques like Deep Neural Networks 

(DNN) and Convolutional Neural Networks (CNN) are also 

applied in the field of agricultural yield prediction (55, 63). 

Interestingly, while RF is commonly cited, there are instances 

where other algorithms are more effective in specific contexts. 

For example, a study in Nigeria identified the Decision Tree 

Regressor as the most accurate model for predicting crop yields 

within their dataset (58). 

Integration of Remote Sensing and Machine Learning for Rice 

Yield Prediction: Integrating remote sensing (RS) and machine 

learning (ML) for rice yield prediction is a multidisciplinary 

approach that leverages both technologies' strengths to 

enhance the accuracy of agricultural forecasts, represented in 

Table 3. For example, a Nepal study developed a rapid rice yield 

estimation workflow by combining remote sensing-derived NDVI 

with meteorological variables like rainfall, soil moisture and 

evapotranspiration (64). This approach, using stacked tree-

based regression models, achieved 92 % accuracy in yield 

estimation. 

Low-altitude remote sensing imaging for rice yield estimation : 

Low-altitude remote sensing imaging has emerged as a 

promising technique for estimating rice yield with high accuracy 

and spatial resolution. Multiple studies have demonstrated the 

effectiveness of this approach using various platforms and 

sensors. Studies have shown the efficacy of low-altitude remote 

sensing systems in monitoring rice crop conditions and 

predicting yield in Table 5. One investigation employing a 

spectroradiometer-based approach achieved a yield estimation 

error of 12.78 kg/10 acres and a protein content estimation error 

of 0.149 % (65). In a separate study, researchers successfully 

quantified nitrogen levels in a rice canopy using an IMEC 

hyperspectral snapshot camera with 25 bands (600-1000 nm) 

mounted on a low-altitude platform (66). Interestingly, different 

studies have explored various spectral indices and modelling 

techniques for yield estimation. While some research focused on 

the importance of ultraviolet and short-wave infrared regions 

(67), others found success using normalized difference 

vegetation index (NDVI) derived from multispectral imagery (68). 

The choice of platform also varied, with studies employing 

unmanned aerial vehicles (UAVs) (69), radio-controlled 

unmanned helicopters (69) and other low-altitude systems. Low-

altitude remote sensing imaging has proven to be a valuable 

tool for rice yield estimation, offering high spatial and temporal 

resolution. Integrating spectral information, vegetation indices 

and crop growth models has shown promising results in 

accurately predicting rice yield across different environmental 

conditions and management practices. This technology 

provides a rapid, non-destructive approach for site-specific rice 

nutrient management and yield forecasting. 

High-altitude remote sensing imaging for rice yield 
estimation : Remote sensing techniques have significant 

potential for estimating rice yields across large areas. Multiple 

studies have demonstrated the effectiveness of various remote 

sensing platforms and methods. High-altitude remote sensing, 

particularly satellite-based imaging, offers regional and national-

scale crop monitoring advantages. Satellite data can be 

Table 3. Microwave remote sensing satellite datasets for rice yield predict 

Satellite / Sensor Frequency Band Spatial Resolution 
Temporal 

Resolution 
Application Agency 

Sentinel-1A (SAR) C-band (5.405 GHz) 10 m 6-12 days 
Crop classification, growth 

monitoring, yield 
prediction 

ESA (European Space 
Agency) 

RADARSAT-2 C-band (5.405 GHz) 8-100 m 24 days 
Rice area mapping, soil 

moisture, crop yield 
estimation 

Canadian Space Agency 

RISAT-1 (SAR) C-band (5.35 GHz) 3-50 m 25 days Crop discrimination, soil 
moisture retrieval 

ISRO (Indian Space Research 
Organization) 

ALOS PALSAR-2 L-band (1.27 GHz) 10-100 m 14 days 
Rice growth stage 

monitoring, biomass 
estimation 

JAXA (Japan Aerospace 
Exploration Agency) 

SMAP (Soil Moisture 
Active Passive) 

L-band (1.41 GHz) 36 km 2-3 days 
Soil moisture retrieval, 

yield estimation in large 
areas 

NASA (National Aeronautics 
and Space Administration) 

TerraSAR-X X-band (9.65 GHz) 1-40 m 11 days 
High-resolution crop 

monitoring, yield 
prediction 

DLR (German Aerospace 
Centre) 

COSMO-SkyMed X-band (9.6 GHz) 1-100 m On-demand Crop classification, yield 
estimation 

ASI (Italian Space Agency) 
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 Table 4. Different machine learning algorithms and remote sensing data are used for rice yield prediction 

Source Study Area Dataset used Methods used Results 

(95) 
Location of Qian Gorlos in Jilin 

province of China Sentinel -2 
ML (Regression Models) 

Random Forest, Support 
vector machine. 

The model achieved a higher accuracy 
with an R2 of 0.87, RMSE of 0.33 and REP 

of -1.1, significantly outperforming the 
model that considered the study area as a 

whole. 

(96) 
Murray and Murrumbidgee 

Valleys in New South Wales, 
Australia 

Sentinel-1 and Sentinel-2 

Phenological and time-series 
data were derived from 

remote sensing and weather 
datasets to analyze drivers of 

rice yield variability and 
develop yield forecast 

models 

with models achieving an RMSE of 1.6 t/
ha and Lin's concordance correlation 

coefficient of 0.67 30 days after flowering 
at the field level 

(97) 

Jiangxi is positioned in the 
southern part of the middle 

segment of the Yangtze River 
in south China. 

Moderate Resolution Imaging 
Spectroradiometer (MODIS) 

has a resolution of 250m and a 
16-day interval. Landsat 5 TM 

and Landsat 8 OLI 

  

Standardized Precipitation 
Index (SPI) decision-tree 

algorithm was utilized for 
rice plantation mapping and 

yield estimation was 
conducted using MODIS data 

from 2000 to 2020. 

remote sensing-based rice yield model 
using the NDVI (normalized difference 

vegetation index) to estimate rice 
production, with a specific model formula 

YD = 4.899 × 10^(-6) × NDVI^2 + 2.891 × 
NDVI + 98511.218 

(98) 
Tongxiang County in Zhejiang 

Province, southeast China Sentinel -1A 

rice green leaf area index 
(LAI) estimation using four 

machine learning regression 
models (SVM, k-NN, RF, 

GBDT) 

The most accurate rice green leaf area 
index (LAI) estimates with the Gradient 
Boosting Decision Tree (GBDT) model, 

achieving an R² of 0.82 and RMSE of 0.68 
m²/m². The growing season, recording an 

R² of 0.68 and RMSE of 0.98 m²/m² with 
the k-Nearest Neighbour (k-NN) model 

(99) 
the study region is situated in 

western Taiwan. Sentinel-2 A, B 

Three machine learning 
models, namely random 

forest (RF), support vector 
machine (SVM) and artificial 
neural networks (ANN), were 

employed to predict rice 
crop yields. 

SVM demonstrated superior performance 
compared to RF and ANN in predicting 

rice yields, with RMSPE and MAPE values 
below 5.5 % and 4.7 % for the 2019 

second crop and 2020 first crop, 
respectively. Conversely, RF and ANN 

exhibited higher RMSPE and MAPE values 
for both crops, with 9.4 % and 7.1 % for 
the 2019 first crop and 11.0 % and 9.4 % 
for the 2020 second crop, respectively. 

(100) 

Situated in the central region 
of Rio Grande do Sul, 

Brazil, 

  

Remote Piloted Aircraft 
Systems (RPAS) equipped with 

a Sequoia® camera on a 
Phantom 4® Pro platform to 

acquire multispectral images 
for monitoring agronomic 

parameters 

The Multi-Layer Perceptron 
(MLP) algorithm devised 

predictive models for the N 
area and grain yield. 

Performance assessment 
was conducted through 

training and testing phases. 

MLP demonstrated superior performance 
in predicting N-area with a strong 

correlation between predicted and 
observed values (0.82 and 0.71) and a 

lower mean absolute error (MAE) of 9.47. 
It also performed exceptionally well in 

grain yield models across all stages. 

(87) 

The six regions of Bangladesh 
are Sunamganj, Maulvibazar, 
Sylhet, Habiganj, Kishoreganj 

and Netrokona. 

  

Sentinel-2 

Parametric (simple and 
multiple) and nonparametric 

(artificial neural network, 
ANN) regression analyses 

were employed to develop 
and validate the crop yield 

prediction models. 

Identify strong correlations, 
such as NDVI-RGVI, NDWI-MSI 

and RGVI-LAI.  

The artificial neural network (ANN) 
models, particularly those using NDVI, 
exhibited higher accuracy for boro rice 
yield predictions, with R² values of 0.84 

and 0.91 for simple and multiple 
regression approaches, respectively. 

The parametric and nonparametric 
regression analysis results revealed 

considerable agreement with the ground 
reference yield data, as evidenced by the 
R² values, which ranged from 0.44 to 0.91 

for various vegetation indices and 
approaches. 

(101) 

In the Jiangsu Province, China 
is positioned within the Middle 

and Lower Reaches of the 
Yangtze River. 

Sentinel-1, Sentinel-2 

meta-learning ensemble 
regression (MLER) framework 

for accurate rice yield 
prediction at field and 

county levels. 

 (RF, XGBoost, SVR) and Long 
Short-Term Memory (LSTM)

to predict rice yield. 

The MLER algorithm accurately predicted 
rice yield for Xinghua and Suining, 

outperforming individual models (RF, 
XGBoost, SVR) and LSTM with an R^2 of 

0.89 and RMSE of 0.54 t/ha. The 
algorithm's performance was consistent 
across Jiangsu Province, with leave-one-

year-out assessments showing R^2 
ranging from 0.42 to 0.67 and RMSE from 

0.23 to 1.22 t/ha. 

(102) 

Tiruchirapalli, Thanjavur, 
Tiruvarur, Nagapattinam, 
Ariyalur and Perambalur, 

Ramanathapuram, Sivaganga 
and Pudukottai districts 

Sentinel-1A SAR. 
  

Integrated remote sensing 
products with the 

ORYZA2000 crop growth 
model to estimate rice yield/

Estimated LAI 

Mapped over 1.07 million hectares of rice 
fields with high accuracy, ranging from 

90.3 % to 94.2 % and Kappa values 
between 0.81 and 0.88. Achieved yield 

simulation accuracies of 86-91 % at the 
district level and 82-97 % at the block 

level using SAR products and the ORYZA 
crop growth model. 
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(103) 

The states are Andhra 
Pradesh, Assam, Bihar, 

Chhattisgarh, Karnataka, 
Haryana, Jharkhand, Madhya 

Pradesh, Odisha, Punjab, 
Telangana, Tamil Nadu, Uttar 

Pradesh and West Bengal. 

Radarsat-2, RISAT-1, Sentinel-1 

District-level rice crop 
yield was estimated 
using three different 
procedures: i) Agro-

meteorological 
regression models, ii) 

Crop Simulation Models 
and iii) Remote sensing 

index (VCI) based 
empirical models. 

The Root Mean Square Error (RMSE) percentage 
ranged from 2.3 to 4.3 for area estimation, 0.84 

to 1.35 for production estimation and 0.24 to 
0.27 for yield estimation. The coefficient of 

determination (R2) ranged from 0.62 to 0.92 for 
area, 0.75 to 0.91 for production and 0.5 to 0.83 

for yield estimation. 

(104) 
The rice-growing areas, 18 

states in India MODIS Leaf Area Index (LAI) 
Gradient Boosted 

Regression (GBR) models 
  

observation 2003 to 2015 (r=0.85 & MAE=0.15t/
ha), correlations up to r=0.93, out of sample 

validation for the year 2016 and 2017showed 
result with r=0.86 and r=0.77. 

(105) The study location is Katsina 
State in northern Nigeria 

No satellite data 

Logistic Regression, 
Artificial Neural Network, 
Random Forest, Random 

Trees and Naïve Bayes 
algorithms 

Random Forest (RF) and Random Trees (RT) 
demonstrated superior performance in yield 

prediction, with an actual positive rate of 1. At 
the same time, Naive Bayes (NB) had a rate of 
0.19 and Neural Network (ANN) and Logistic 

Regression (LR) achieved a rate of 0.75. 
RF, RT and NB achieved an ROC Area value of 1, 

indicating a higher capability to predict rice 
yield accurately than ANN and LR. NB had the 
highest prediction accuracy of 91.7, while RF 

and RT demonstrated a perfect accuracy of 100 
in predicting rice yield. 

(106) 
study area is the Sahibganj 
district of Jharkhand state 

(India) 

Sentinel-2B multi-spectral 
sensor (MSI) data and 2 
Sentinel-1A (SAR) data 

The Random Forest 
classifier  

  

The estimated paddy acreage was 68.3 to 77.8 
thousand hectares and the predicted yield was 

1.60 t/ha. (Simple Linear regression and  
Random Forest) 

(107) 
Chhattisgarh, three central 
districts representing three 

agroclimatic zones 
No satellite data used 

Stepwise multiple linear 
regression (SMLR), 

artificial neural network 
(ANN), least absolute 

shrinkage and selection 
operator (LASSO), elastic 

net (ELNET) and ridge 
regression 

  

The ANN model exhibited excellent 
performance in Raipur and Surguja districts, 
with high R² calibration (1) and validation (1) 
scores, as well as low RMSE values (0.002 and 

0.003, respectively). In contrast, the ELNET and 
LASSO models performed better in the Bastar 

district, with R² calibration (90 and 93) and 
validation (0.48 and 0.568) scores. The 

ensemble models demonstrated improved 
performance compared to individual models, 
with random forest (RF) outperforming in the 
Bastar district, achieving R² values of 0.85 and 

0.81 for calibration and validation, respectively. 

(108)  China No satellite data used 

Support Vector 
Regression (SVR) models 

were developed for 
different rice growth 

stages and combinations 
of these stages to predict 

optimal yields.  

The yield prediction models use RMSE, which 
measures the differences between predicted 

and observed values. The RMSE values for 
various stages of rice production varied, with 
values such as 126.8 kgh m², 96.4 kgh m² and 

109.4 kgh m² reported for the tillering, heading 
and milk stages of middle-season rice, 

respectively.  

(97) Maha Sarakham, north-
eastern Thailand, 

No satellite 

XGBoost, an ensemble 
machine-learning 

algorithm 
  

The study yields promising results with low root 
mean square error (RMS) values for rice and 

wheat prediction; the root mean square error 
(RMS) values for rice and wheat prediction using 

xgboost are as follows: Rice 0.02538, Wheat 
0.02198. Random Forest, another ensemble 

learning technique, also performs well in 
predicting crop yield with low RMS values: Rice 

0.01942, Wheat 0.01680. 

(109) Study area of Kerala No satellite data used 

algorithms like Decision 
Tree, Random Forest, 
Linear Regression, K-

nearest neighbour (KNN), 
xgboost and Support 

Vector Regression. 

The accuracy of the KNN regression model for 
the rice dataset was reported to be 98.77 %, 

outperforming other regression models used in 
the study and results highlight the potential of 
KNN regression as a reliable method for yield 

prediction in agriculture. 

(110) 
Study area Larkana district in 

Sindh province, Pakistan, Landsat 7 ETM 

relationship between 
reported rice crop yield 
and NDVI/RVI values at 

the peak 

indicating a high potential for estimating rice 
yield using Landsat ETM+ data = positive and 

strong relationship ((R^2 = 0.875) and root 
mean square error (RMSE) of 80.726.  

(111) Estimate rice yield in Nepal MODIS 

Popular tree-based 
regressor models like 
XGBoost were applied 

and a customized stack-
ensemble model was 
proposed, combining 
XGBoost, LightGBM, 
Gradient Boost and 

random forest models. 

The initial benchmark linear regression model 
using only NDVI had an average RMSE of 685.17 

and MAE of 633.83 for all districts. Other ML 
models performed slightly better. The proposed 
stack-ensemble model incorporating NDVI and 

five auxiliary variables reduced the average 
RMSE to 328.06 and MAE to 317.21, achieving an 

average 92 % accuracy in yield estimation. 
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integrated with crop growth models to estimate rice yields 

spatially. For example, a study in the Cauvery Delta of India used 

Sentinel-1A SAR data with three yield estimation methods - 

spectral indices regression, a semi-physical approach and 

integration with the DSSAT crop model (70). The spectral indices 

regression and DSSAT integration approaches performed well, 

with R2 > 0.80 and NRMSE < 10 % compared to ground 

measurements. While high-altitude remote sensing is valuable, 

some studies have found low-altitude platforms like unmanned 

aerial vehicles (UAVs) to provide higher spatial and temporal 

resolution data. In one study, UAV-based hyperspectral imaging 

at critical growth stages allowed for pixel-scale yield estimation 

with R2 of 0.74 and RMSE of 248.97 kg/ha (71). This highlights the 

complementary roles that different remote sensing platforms 

can play. The high-altitude remote sensing, especially with crop 

models, shows promise for large-scale rice yield estimation. 

However, integrating data from multiple platforms and 

resolutions may provide the most comprehensive yield 

predictions. Future work should focus on refining models, 

incorporating dynamic environmental factors and leveraging 

machine learning approaches to improve accuracy. 

Rice deep learning in crop-image yield calculation: Deep 
learning approaches have shown significant promise in 

estimating rice crop yields using image data. Convolutional 

neural networks (CNNs) applied to RGB images of rice canopies 

at harvest have demonstrated the ability to predict 68-70 % yield 

variation with relative root mean square errors around 0.22 (72). 

This low-cost, rapid approach can provide valuable insights for 

assessing productivity interventions and identifying 

improvement areas. The deep learning models show robustness 

across different imaging conditions. Models maintain predictive 

power even with images taken at angles up to 30° from vertical, in 

diverse lighting and at reduced resolutions down to 3.2 cm/pixel 

(48). This suggests the potential for scaling the approach using 

unmanned aerial vehicles. 

 Additionally, some studies have found that images taken 

during the ripening stage, weeks before harvest, can forecast 

final yields. Deep learning applied to crop imagery offers a 

promising rice yield estimation and forecasting tool. Various 

architectures have been explored, including hybrid models 

combining CNNs with recurrent networks like LSTM, as shown in 

Table 4. While performance varies, these approaches 

outperform traditional vegetation index-based methods, 

especially at later growth stages. The ability to provide rapid, low

-cost yield estimates at field and pixel scales could significantly 

benefit crop management, food security planning and 

agricultural policy decisions. 

Data Preprocessing and Feature Extraction 

Data cleaning and normalization: Data preprocessing and 

feature extraction are critical steps in developing predictive 

models for rice yield prediction. Data cleaning and normalization 

ensured that the dataset was free from errors and 

inconsistencies and that the data were scaled to a uniform range 

for better comparability and performance of machine learning 

algorithms (73, 74). Normalization techniques such as min-max 

scaling and Z-score significantly impact model performance and 

feature importance, influencing both predictive accuracy and 

feature selection. The choice of normalization method can affect 

model performance to varying degrees depending on the 

dataset and algorithm used. For instance, in radiomics, the z-

Score method generally performed best, with an average gain of 

+0.012 in AUC (Area Under the Curve ) compared to no 

normalization and up to +0.051 on some datasets (75). While (Z-

score) normalization techniques generally help reduce bias 

towards features with larger magnitudes, their impact on model 

performance can vary significantly. Experimenting with different 

normalization methods and evaluating their effects on model 

performance and feature selection for each problem and 

dataset is advisable. 

Feature selection and engineering: Feature selection and 

engineering involve identifying the most relevant variables that 

contribute to the rice yield prediction and may include 

techniques such as the artificial bee colony (ABC) algorithm for 

feature selection (76). 

Handling missing data: Managing missing data is a common 

challenge in data preprocessing and various imputation 

methods are employed to address this issue. For instance, 

Bayesian Principal Component Analysis (BPCA) has been 

identified as an effective method for imputation in the context of 

the VASA dataset (77). These methods could be adapted for rice 

yield prediction, considering the importance of accurate data 

imputation in predictive modelling. The data preprocessing, 

including data cleaning, normalization, feature selection and 

managing missing data, is essential for building robust 

predictive models for rice yield prediction. 

Factors Influencing Prediction Accuracy 

Quality and quantity of remote sensing data : The quality and 

Table 4. Different machine learning algorithms and remote sensing data are used for rice yield prediction 

Crop Varieties Literature Year Task 
Network Framework and 

Algorithms Result 

Rice  (90) 2023 
Predict the yield of 

rice CNN RMSPE: 14 % 

 Rice (91)  2022 
Predict the yield of 

rice 3D-CNN, 2D-CNN RMSE: 8.8 % 

Rice crop-yield calculation based on High
-altitude remote sensing           

Rice  (92) 2022 
Predict the yield of 

rice SVM, RF, ANN MAPE: 3.5 % 

Rice deep learning in crop-image yield 
calculation           

Rice  (93) 2021 
Calculate Rice Seed 
Setting Rate (RSSR) YOLOv4 MAPE: 99.43 % 

Rice  (94) 2024 
Predict the yield of 

rice CNN-LSTM-Attention 
R² of 0.76, RMSE of 519.07 
kg/ha and MAPE of 4.67 %, 
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quantity of remote sensing data, particularly spatial and 

temporal resolution, are critical factors in agricultural 

applications such as rice yield prediction. The high spatial 

resolution allows for detailed crop conditions at a fine scale, 

while high temporal resolution ensures frequent monitoring to 

capture changes over time (78). The importance of multispectral 

and hyperspectral data lies in their ability to provide a wealth of 

spectral information, which is essential for accurately estimating 

crop yields. With their high spectral resolution, hyperspectral 

sensors can detect subtle differences in crop vigour and stress, 

indicating yield potential (79). However, there are challenges 

associated with remote sensing data. For instance, cloud cover 

and low temporal resolution can limit the availability of satellite 

images, affecting the estimation process (78). Cloud cover poses 

a significant challenge in remote sensing, particularly for urban 

land cover (ULC) monitoring and flood mapping. Researchers 

have developed methods combining optical and synthetic 

aperture radar (SAR) data to address this issue. One innovative 

approach is the weighted cloud dictionary learning method 

(WCDL) for fusing optical and SAR data in cloud-prone areas. 

This method incorporates a cloud probability weighting model 

and pixel-wise cloud dictionary learning to mitigate cloud 

interference. Experiments show that the WCDL method 

improves overall accuracy by more than 6 % compared to single 

SAR data and 20 % compared to optical data alone (80). Another 

technique, the global-local fusion-based cloud removal (GLF-CR) 

algorithm, leverages SAR information to guide the relationship 

among optical windows and transfer complementary 

information to generate reliable texture details in cloudy areas 

(81). Studies have developed optimization models and 

intelligent systems incorporating additional data, such as energy 

balance equations, to address these issues and enhance yield 

predictions (78). Furthermore, integrating spatial and spectral 

resolutions has improved crop mapping accuracy in 

heterogeneous areas (82). 

Model Training and Validation 

Importance of cross-validation and testing: Cross-validation 

and testing are critical components in developing predictive 

models for rice yield. These processes are essential for assessing 

the generalizability and robustness of the models to unseen 

data, thereby ensuring the reliability of yield predictions (83). 

While cross-validation is a standard practice in model 

evaluation, its impact on interpreting machine learning models, 

particularly in the context of temporal agricultural data, has 

been highlighted. The choice of cross-validation strategy can 

significantly affect the interpretation of the model and its 

performance on held-out data, emphasizing the need for 

domain-specific best practices in the application of cross-

validation (83). Moreover, the studies reveal that while deep 

learning models, such as LSTM and GRU (Gated Recurrent Unit), 

show promise in handling complex spatiotemporal data, their 

performance does not necessarily improve with increased 

model complexity and simpler models can be equally effective 

for small-sample data. This suggests that the benefits of 

complex models must be weighed against their computational 

costs and convergence rates. Cross-validation and testing are 

indispensable for validating rice yield prediction models. The 

findings from the literature underscore the importance of 

selecting appropriate cross-validation strategies to ensure 

accurate model interpretation and performance (83). 

Additionally, the complexity of the model should be carefully 

considered, as simpler models may offer sufficient predictive 

power with lower computational demands (84). These insights 

are crucial for advancing the field of rice yield prediction and 

supporting decision-making in agriculture. 

Techniques for model tuning and optimization: The literature 
offers various techniques for optimizing and tuning models to 

predict rice yield. Hybrid deep learning models employ shared 

layers of classification and regression models along with 

statistical analyses like PCC, SHAP and RFECV for feature 

selection  (85). This approach yields better results than other 

deep learning models, with an RMSE of 344.56 and an R-squared 

of 0.64. However, some studies suggest that regression-based 

models can outperform ANN models in certain situations. For 

instance, the importance of meteorological factors like Bright 

sunshine hours showcases the high accuracy of stepwise 

multiple linear regression models with an R-squared up to 0.95. 

(86) propose the SCA-WRELM method, which incorporates min-

max data normalization and optimal parameter tuning via the 

Sine Cosine Algorithm for improved predictive results. 

The literature suggests that deep learning and traditional 

statistical models have their merits in rice yield prediction, with 

the choice of model depending on specific conditions and data 

characteristics. Hybrid models and ensemble methods are 

particularly effective, with feature selection and hyperparameter 

tuning playing crucial roles in optimizing model performance. 

Integrating machine learning techniques with meteorological 

and satellite data is also highlighted as a promising direction for 

enhancing the accuracy of yield predictions. 

Practical Implementation Issues 

Scalability and computational requirements: The practical 

implementation of ML models for rice yield prediction using 

remote sensing data presents several challenges, particularly 

regarding scalability and computational requirements. 

Scalability is a critical issue, as the models must manage large 

volumes of data and potentially be applied across diverse 

geographical regions with varying environmental conditions. 

Computational requirements are also significant, as advanced 

ML algorithms and high-dimensional remote sensing data 

processing demand substantial computational resources. 

Challenges and future directions: We face several constraints 

when discussing RS and ML techniques for predicting rice yields. 

One of the main challenges is the quality and processing of data 

required for accurate predictions. Integrating remote sensing 

and meteorological data with ML models requires careful 

attention to data quality issues, selecting suitable ML models 

and understanding the complex, non-linear relationships 

between historical crop yield and various factors (87). 

Furthermore, it was found that relying solely on remote sensing-

derived Normalized Difference Vegetation Index (NDVI) is 

insufficient for accurate yield estimation and incorporating 

meteorological variables such as rainfall, soil moisture and 

evapotranspiration is essential (87). Another challenge is the 

high dimensionality of remote sensing data, which makes 

training models infeasible using raw pixels. Methods such as 

feature selection and dimensionality reduction, such as principal 

component analysis (PCA), address this issue (45). However, 
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these techniques may discard potentially informative spectral 

bands. In addition, the spatial and temporal variability of 

subregional environmental and climatic factors can affect the 

models' output, requiring tailored approaches for different 

regions (88). While remote sensing and ML offer promising 

approaches for predicting rice yields, they are constrained by 

data quality and processing challenges, suitable ML models and 

the requirement to account for spatial and temporal variability.  

 Integration into future agricultural systems is another 

complex aspect. While ML models offer improved accuracy in 

yield prediction, their adoption requires compatibility with 

current farming practices and decision-making processes (57, 

87). Moreover, the integration process must consider the distinct 

physio-geographical settings of different districts, which can 

affect the accuracy of yield estimations (87). IoT and Big Data 

technologies can facilitate this integration by enabling the 

efficient collection and processing of data, but they also 

introduce additional layers of complexity (89). The practical 

implementation of ML models for rice yield prediction using 

remote sensing data involves addressing scalability and 

computational challenges and ensuring seamless integration 

into existing agricultural systems. The success of such models 

depends on their ability to operate efficiently across various 

scales and to be incorporated into the agricultural workflow 

without disrupting established practice. Addressing these 

constraints is essential for improving the accuracy of yield 

predictions and ensuring their practical applicability for food 

security and agricultural decision-making. 

 

Conclusion   

This paper provides a comprehensive review of the application 

of RS and ML techniques to predict rice yields, focusing on 

addressing food security challenges. RS offers insights on crop 

health through optical and microwave imagery, while ML uses 

this data to make more accurate predictions. Optical RS 

effectively predicts yields before harvest using vegetation 

indices sensitive to plant health. At the same time, microwave 

RS is applicable in all weather conditions and it is particularly 

valuable during the rainy seasons, which are common in rice 

cultivation. Various ML algorithms, including Artificial Neural 

Networks (ANN), Support Vector Machines (SVM) and Random 

Forest (RF), are used to predict rice yields, processing high-

dimensional data to identify key patterns for accurate 

forecasts. The integration of RS and ML improves predictive 

accuracy by utilizing high-resolution spatial and temporal 

data. Methods such as feature selection and data 

normalization enhance model performance and hybrid 

models show promise in optimizing predictions. 

 Data quality and processing challenges, scalability, 

computational requirements and environmental adaptability 

must be addressed to successfully implement precision 

agriculture and decision-support technologies. These 

technologies offer numerous benefits for precision agriculture, 

including improved crop yield prediction, optimized resource 

management and enhanced environmental sustainability. 

Processing large amounts of data from various sensors and 

platforms allows for more accurate decision-making and 

targeted interventions in farming practices. This can lead to 

increased productivity, reduced environmental impact and 

improved food security, aligning with broader policy goals for 

sustainable agriculture and food production. Future research 

should focus on improving data integration by incorporating 

meteorological data and using advanced data assimilation 

techniques to enhance predictions. Continued development of 

hybrid models that balance accuracy with computational 

efficiency is necessary. It is crucial to ensure that predictive 

models can be scaled across diverse regions and integrated 

seamlessly into existing agricultural systems for widespread 

adoption. Integrating IoT and Big Data technologies can 

facilitate efficient data collection and processing, which is 

essential for enhancing these models' real-time applicability. 

 In conclusion, the combination of remote sensing and 

machine learning presents a potent means of advancing rice 

yield predictions, thereby contributing to improved food 

security. These methodologies offer trustworthy, expandable 

and applicable intelligence for agricultural decision-making by 

tackling current challenges and capitalizing on technological 

breakthroughs. Future research and development in this area 

are essential to attaining the Sustainable Development Goals, 

which aim to eradicate hunger and foster sustainable 

agriculture by the year 2030. 
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