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Abstract   

The production of food crops is greatly influenced by maize, which is essential to 

global food security. Genetic variation and selection are key components in maize 

breeding that maximize genetic gain and productivity. The present study, 238 maize 

genotypes were investigated for fourteen quantitative traits to identify diverse and 

desirable genotypes for future breeding and varietal development programs. 

Significant genotypic effects were observed for grain yield and its attributes and 

other agronomic traits, indicating potential for genotype selection. Multivariate PCA 

analysis revealed that the first four PCs (70.1 % of total variation) effectively 

captured the considerable diversity within traits. Key traits such as flowering time, 

plant height, ear height, ear characteristics and grain yield were essential in 

distinguishing between the genotypes analyzed. A recently introduced multi-trait-

ideotype distance index (MGIDI) was used to predict the selection gain and identify 

the effectively performed genotypes by considering multiple traits. The MGIDI 

predicts significant desired genetic gains across all characteristics. Strengths and 

weaknesses of selected genotypes based on MGIDI provided insights into their 

overall suitability and factor contributions. The genotypes G32, G76, G163, G212 and 

G169 were identified as performing better using the MGIDI method, considering 

their strengths and weaknesses for the traits analyzed. MGIDI is a powerful tool that 

can help breeders effectively select the most desirable genotypes in maize.  
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Introduction   

One of the most adaptable rising crops, maize (Zea mays L.), can grow in various 
agro-climatic circumstances. Maize can play an essential role in crop diversification 

as it is a dual-purpose crop that produces kernels and fodder for human 

consumption and livestock feed, respectively (1). Further, it is being exploited for 

bioethanol production. The production of food crops is greatly influenced by maize, 

which is essential to global food security. Over 170 countries contribute to global 

maize production, yielding around 1147.7 million metric tons from an area of 193.7 

million ha, with an average productivity of 5.75 tons per ha (2). 

 Plant breeding targets for the improvement in the genetic makeup of plants, 

resulting in plant types performing better than older versions. Breeding programs 

can be more efficiently operated by considering genetic and phenotypic divergence, 

heritability (narrow sense) and trait association. The kernel yield in maize is the 

outcome of the yield attributes. Although the primary goal of any crop improvement 

programme is to increase the economic yield, yield attributes are also important as 
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they directly or indirectly affect yield. Recent studies revealed the 

importance of key traits, viz., cob length, days to 50 % tasseling, 

number of cobs per plant, cob weight, kernel rows per cob and 

cob girth. With the desired correlation coefficients and positive 

effects on kernel yield (3-4). Breeders can find superior genotypes 

with desirable qualities by analyzing variance in these variables. 

Enhancing efficiency by selecting genotypes based on grain yield 

and agronomic traits is hindered by challenges in effectively 

incorporating multiple trait data without multicollinearity. 

Precise statistical approaches reduce and simplify the 

multivariate data dimensions that operate an efficient selection 

of desirable traits and genotypes for hybrid breeding (5). 

Univariate statistical techniques ignore the correlation among 

the variables and sometimes, the results may not be valid. 

Multivariate methods like principal component analysis, factor 

analysis and multivariate clustering consider the inter-

dependence and relative importance of various traits involved 

and display more meaningful genetic information (6).  

 Principal Component Analysis (PCA) is a data reduction 
technique that retains essential information while reducing 

dimensionality. This facilitates easier visualization and 

interpretation of the data, making it widely used in capturing trait 

diversity in various crops, including maize (7-10). The Smith-Hazel 

(SH) index (11-12), a commonly employed multi-trait selection 

method, seeks to enhance genetic gain for grain yield. However, 

studies (13-18) point out problems such as biased index 

coefficients and multicollinearity, which reduce genetic gains and 

limit their use in plant breeding. The Multi-trait index proposed by 

(13) is based on factor analysis and ideotype-design principles. 

This index integrates multiple traits into a single value, allowing 

for a comprehensive assessment of genotype performance. 

 A multi-trait genotype-ideotype distance index (MGIDI) 

was introduced to select genotypes with desirable mean 

performances, addressing classical index fragility (19). The MGIDI 

can be employed to select the desired genotypes within the 

environment. Few earlier studies (20-24) have reported using the 

MGIDI index for selecting maize inbreds and hybrids based on 

multiple traits. Hence, an effort was made to unravel the 

principal components for determining potential secondary traits 

through indirect selection and (select the superior genotype by 

considering multiple traits using MGIDI. 

 

Materials and Methods 

Climate of the site 

The experiment was conducted in the research field of Main Maize 

Research Station (MMRS), Anand Agricultural University, Godhra, 

from Rabi 2020-21. Geographically, it is situated at 22° 45' North 

latitude and 77° 40' East longitude, with an altitude of 119 meters 

above mean sea level. The soil at the experimental site in Godhra 

was sandy loam containing 80 % sand and 20 % clay, 

characterized by medium to low productivity and responsiveness 

to fertilizers, with a composition of 80 % sand and 20 % clay. It has 

a very low water-holding capacity and the soil depth is 

approximately 2.5 feet. Soil nitrogen availability is 0.043-0.046 % 

(low), medium in phosphorus and high in potash. The climate of 

the Godhra (middle Gujarat) region is semi-arid and tropical. The 

temperature of the experimental location is extreme, such as 6.0 °

C in winter and rising to 44.0 °C during summer. The average 

annual rainfall ranges between 650 and 750 mm over 32 rainy 

days. The meteorological data were recorded at the 

Meteorological Observatory, MMRS, Anand Agricultural 

University, Godhra, during the experimental season of maize. 

Selection of the genotypes 

The experimental materials were procured from the MMRS, 

Anand Agricultural University (AAU), Godhra. The list of 

genotypes is presented in Table 1. A total of 238 yellow kernel 

maize genotypes were used in the study. 

Experimental design and cultural practices 

The 238 genotypes (G) were tested in a randomized complete 

Block Design (RCBD) with three replicates. A border row 

surrounded the experiment to minimize potential damage and 

eliminate border effects. Standard agronomic practices and 

plant protection measures were implemented to ensure 

successful and healthy crop production.  

Data collection and observations 

The observations on fourteen quantitative characters were 

recorded in each row on five randomly selected competitive 

plants (tagged) from each replication. The mean value was 

computed for statistical analysis except for days to 50 % 

tasselling (FT), days to 50 % silking (FS) and days to maturity 

(DM), which were recorded on a row basis. Plant height (PH) and 

Ear height (EH) were measured after reproductive maturity. Cob-

related traits (CPP: Cobs per plant, KRPC: Kernel rows per cob, 

KPR: Kernels per row, CL: Cob length, CG: Cob girth, CW: Cob 

weight, 1000K: 1000 kernel weight, SH: Shelling percent) and 

Kernel yield per plant (KYPP) were recorded at the physiological 

maturity of maize. 

Statistical analysis 

The mean data were primarily subjected to Analysis of Variance 

(ANOVA). The principal component (PC) analysis was employed 

to extract the principal components. The research used an MGIDI 

to select the most optimal genotypes, utilizing data from 

multiple traits (25). This approach integrates various analytical 

techniques, including trait scaling, exploratory factor analysis 

(EFA) and computation of the MGIDI. In the initial step of the 

analysis, each trait underwent scaling to ensure uniformity in 

their ranges (25). The scaling equation employed was the 

following in Equation 1 

 

 In this context, φoj and ηoj denote the minimum and 

maximum original values for the jth trait, respectively, while φnj 

and ηnj represent the rescaled minimum and maximum values 

for the jth trait. The original value for the jth trait of the ith genotype 

is indicated by θij. The rescaled values, φnj and ηnj, were chosen 

based on the desired improvements for each trait: for traits with 

positive gains (KYPP, 1000K, KPR, SH, KRPC, CL, CG, CW), φnj = 0 

and ηnj =100 were assigned, while for traits with negative gains 

(FT, FS and DM), φnj =100 and ηnj = 0 were used, as recommended 

by (25). After scaling the traits, Factor Analysis (FA) was 

performed to reduce the data dimensions and uncover the 

underlying relationships among the characteristics. The FA 

model utilized for this analysis was as follows in Equation 2. 

(Eqn. 1) rXij = 
(ηnj - ϕnj) 

(ηoj - ϕnj) 

(θnj - ηnj) + ηnj 
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  F = Z (ATR-1)T                                                                                  (Eqn. 2) 

 Where F is a g × f matrix containing the factorial scores, Z 

is a g × p matrix representing the rescaled means, A is a p × f 

matrix of canonical loadings and R is a p × p correlation matrix 

between the measured traits. Here, g, f and p represent the 

number of genotypes, the factors retained and the measured 

characteristics. Afterwards, an ideal genotype (ideotype) was 

created by assigning the highest rescaled value (100) to all the 

analyzed traits. The MGIDI was then computed as the Euclidean 

distance between the genotype scores and the ideotype using 

the following formula as described in Equation 3: 

                                                

 

 

Table 1. List of maize genotypes (G) used in the investigation  

No. Genotype No. Genotype No. Genotype No. Genotype   
1 CML-269 62 IL-14-61 122 IL-17-04 183 IL-17-78 
2 CML-296 63 IL-14-62 123 IL-17-05 184 IL-17-79 
4 CML-307 64 IL-14-63 124 IL-17-06 185 IL-17-80 
5 CML-482 65 IL-14-64 125 IL-17-09 186 IL-17-81 
6 CM-111 66 IL-14-67 126 IL-17-10 187 IGI-19-01 
7 CM-135 67 IL-14-68 127 IL-17-12 188 IGI-19-02 
8 CM-140 68 IL-14-75 129 IL-17-14 189 IGI-19-03 
9 CM-212-2 69 IL-14-77 130 IL-17-15 190 IGI-19-04 

10 CM- 500-1 70 IL-14-78 131 IL-17-17 190 IGI-19-04 
11 CM-500-2 71 IL-14-80 132 IL-17-19 191 IGI-19-05 
12 GYL-1 72 IL-14-81 133 IL-17-20 192 IGI-19-06 
13 GYL-2 73 IL-14-85 134 IL-17-21 193 IGI-19-07 
14 GYL-4 74 IL-14-86 135 IL-17-22 194 IGI-19-08 
15 GYL-5 75 IL-12-06 136 IL-17-24 195 IGI-19-09 
16 GYL-6 76 IL-12-11 137 IL-17-25 196 IGI-19-10 
17 GYL-7 77 IL-12-12 138 IL-17-26 197 IGI-19-11 
18 GYL-8 78 IL-12-16 139 IL-17-27 198 IGI-19-12 
19 GYL-9 79 IL-12-17 140 IL-17-28 199 IGI-19-13 
20 GYL-10 80 IL-12-19 141 IL-17-29 200 IGI-19-14 
21 GYL-11 81 IL-12-23 142 IL-17-30 201 IGI-19-15 
22 IGI-19-54 82 IL-12-26 143 IL-17-31 202 IGI-19-16 
23 IT-INA-011-2 83 IL-12-29 144 IL-17-32 203 IGI-19-17 
24 HKI 3-4-8-5 ER 84 IL-12-38 145 IL-17-33 204 IGI-19-18 
25 HKI -163 85 IL-12-40 146 IL-17-34 205 IGI-19-19 
26 HKI-193-1 86 IL-12-51 147 IL-17-37 206 IGI-19-20 
27 PFSR-S3-5 87 IL-12-52 148 IL-17-38 207 IGI-19-21 
28 VL-78 88 IL-12-58 149 IL-17-39 208 IGI-19-22 
29 H-07R-04-3 89 IL-12-86 150 IL-17-41 209 IGI-19-23 
30 LM-5 90 IL-12-95 151 IL-17-43 210 IGI-19-24 
31 H-07-R-01-3 91 IL-12-97 152 IL-17-44 211 IGI-19-25 
32 NAI-105-5 92 IL-12-101 153 IL-17-45 212 IGI-19-26 
33 LTP 1-1 93 IL-12-109 154 IL-17-46 213 IGI-19-27 
34 LM13-2 94 IL-12-123 155 IL-17-47 214 IGI-19-28 
35 IL-14-10 95 IL-12-129 156 IL-17-48 215 IGI-19-29 
36 CM500 96 IL-12-135 157 IL-17-49 216 IGI-19-30 
37 H07R-9-3 97 IL-15-01 158 IL-17-50 217 IGI-19-31 
38 H07-49-3 98 IL-15-02 159 IL-17-51 218 IGI-19-32 
39 H07R-4-2 99 IL-15-03 160 IL-17-52 219 IGI-19-33 
40 H07R-4-3 100 IL-15-13 161 IL-17-53 220 IGI-19-34 
41 LM-3 101 IL-15-19 162 IL-17-54 221 IGI-19-35 
42 IL-14-01 102 IL-15-20 163 IL-17-55 222 IGI-19-36 
43 IL-14-03 103 IL-15-21 164 IL-17-56 223 IGI-19-37 
44 IL-14-11 104 IL-15-23 165 IL-17-57 224 IGI-19-38 
45 IL-14-15 105 IL-15-24 166 IL-17-58 225 IGI-19-39 
46 IL-14-23 106 IL-15-25 167 IL-17-59 226 IGI-19-40 
47 IL-14-24 107 IL-15-26 168 IL-17-60 227 IGI-19-41 
48 IL-14-26 108 IL-15-27 169 IL-17-61 228 IGI-19-42 
49 IL-14-34 109 IL-15-28 170 IL-17-62 229 IGI-19-43 
50 IL-14-35 110 IL-15-29 171 IL-17-63 230 IGI-19-44 
51 IL-14-38 111 IL-15-30 172 IL-17-64 231 IGI-19-45 
52 IL-14-39 112 IL-15-31 173 IL-17-66 232 IGI-19-46 
53 IL-14-40 113 IL-15-34 174 IL-17-67 233 IGI-19-47 
54 IL-14-47 114 IL-15-35 175 IL-17-68 234 IGI-19-48 
55 IL-14-48 115 IGI-19-53 176 IL-17-69 235 IGI-19-49 
56 IL-14-51 116 IL-15-38 177 IL-17-70 236 IGI-19-50 
57 IL-14-52 117 IL-15-39 178 IL-17-71 237 IGI-19-51 
58 IL-14-53 118 IL-15-41 179 IL-17-72 238 IGI-19-52 
59 IL-14-56 119 IL-17-01 180 IL-17-73     
60 IL-14-57 120 IL-17-02 181 IL-17-76     
61 IL-14-59 121 IL-17-03 182 IL-17-77     

  (Eqn. 3) 
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 In this context, γij  represents the score assigned to the ith 

genotype for the jth factor, where t refers to the total number of 

genotypes and f indicates the number of factors considered. The 

score corresponding to the jth trait for the ideal genotype is 

denoted as γj. 

 The MGIDI was calculated by measuring the Euclidean 

distance between the genotype scores and those of the ideal 

genotype. This index quantifies how closely each genotype 

matches the ideal across multiple traits. The genotype with the 

lowest MGIDI is considered the closest to the ideal genotype, 

indicating that it best matches the desired values across all 

measured traits. In the selection process, all fourteen traits were 

considered, with a selection intensity of 5 %. 

 Furthermore, the strengths and weaknesses of each 

genotype were evaluated by calculating the proportion of the 

MGIDI index attributed to each factor. This was done by 

determining how much of the MGIDI score for each genotype (ith 

row) was explained by each factor (jth factor), as estimated using 

the following method in Equation 4 (25): 

 

 

  

 Here, Dij represents the distance between the ith genotype 

(row) and the MGIDI for the jth factor. A lower contribution from a 

factor indicates that the traits associated with that factor closely 

resemble those of the ideal genotype. 

 The selection differentials were calculated using the 

MGIDI values, with a selection intensity of about 5%. The 

selection differential, expressed as a percentage of the 

population mean (DS %), was then determined for each trait 

using the following formula in Equation 5. 

                                                 

 

   

 Where Xs represents the average performance value of 
the selected genotypes and X0  refers to the mean performance of 

the overall (original) population. 

Statistical software  

All statistical analyses were performed using R Studio, running R 

version 4.1.2 software (26). Base package "stats" was used to 

extract principal components. The "metan" R package was 

explored within the R Studio environment for MGIDI calculation 

(27). Additionally, the "ggplot2" package v3.3.3 (28) was utilized 

for data visualization. 

 

Results  

Computation of variance components 

The variance components were estimated using the restricted 

maximum likelihood (REML) approach alongside Best Linear 

Unbiased Prediction (BLUP) within a mixed-effects model. 

Genotype was modelled as a random effect, while replication 

was treated as a fixed effect. The results of the likelihood ratio 

tests indicated that genotype effects were statistically significant 

for all traits, with significance levels of p < 0.05.  

Principal component analysis  

The PCA results retained four out of fourteen PCs after varimax 

rotation with Kaiser normalization, which accumulated 70.1 % 

variance in the total variance in the dataset (Table 2). These first 

four PCs had the eigenvalue>1 (29) and were considered for the 

result interpretation. The first PC explained the highest 

proportion of variance, i.e., 32.5% and included the three 

important traits viz., days to maturity, days to 50 % silking and 

days to 50 % tasselling, suggesting their strong correlation and 

potential contribution to the variability captured by this 

component. Cob dimensions (cob length, cob girth, cob weight, 

1000 kernel weight and shelling per cent) were grouped into the 

second PC which explained 17.11 % variance of total variation. 

The third and fourth PC accounted 11.6 % and 08.8 % variance of 

total variability respectively. Plant height, ear height, kernel rows 

per cob and kernels per row were grouped into PC3 while cobs 

per plant and kernel yield per plant were retained into the PC4. 

Recent studies support the relevance of PCA in understanding 

trait associations and variability in maize crops. (30) utilized PCA 

to identify key traits influencing maize kernel yield and 

highlighted the importance of traits such days to 50 % tasselling 

and days to 50 % silking which aligns with our PCA results. 

Similarly, (31) showed that flowering time, plant height, ears 

traits and yield were the most discriminatory traits emphasizing 

the utility of PCA in trait characterization and breeding programs. 

Multi-trait genotype selection using the MGIDI index 

Loadings and factor delineation 

Factor analysis is a statistical measure employed to uncover 
patterns and relationships among a set of variables. To enhance 

interpretability and data simplicity, the fourteen traits under 

analysis were grouped into four factors, referred to as FA. The 

factor loadings and communalities derived from this analysis are 

shown in Table 3. The communalities of the variables ranged 

from 0.31 for the shelling (%) and Kernel row per cob to 0.99 for 

(Eqn. 4) 

Traits PC1 PC2 PC3 PC4 

Days to 50% tasseling 0.981 -0.112 -0.086 0.006 

Days to 50% silking 0.982 -0.112 -0.088 0.000 

Days to maturity 0.978 -0.107 -0.087 -0.011 

Plant height -0.055 0.017 0.870 0.090 

Ear height -0.055 0.064 0.858 0.006 

Cobs per plant 0.055 -0.100 0.112 0.918 

Kernel rows per cob -0.006 0.070 0.531 0.151 

Kernels per row -0.247 0.386 0.597 0.030 

Cob length -0.008 0.775 0.164 -0.014 

Cob girth -0.166 0.585 0.411 0.115 

Cob weight -0.284 0.754 0.284 0.147 

1000 kernel weight 0.107 0.715 -0.081 -0.002 

Shelling per cent -0.191 0.520 -0.001 0.044 

Kernel yield per plant -0.085 0.455 0.207 0.764 

Eigen value 4.548 2.396 1.629 1.237 

Proportion of variance 
explained 

0.325 0.171 0.116 0.088 

Cumulative proportion 
of Variance (%) 

32.5 49.6 61.2 70.1 

Table 2. Principal for fourteen quantitative traits showing first four PCs, 
eigen values and proportion of variance explained 

(Eqn. 5) ΔSI% = 
(Xs - Xo) 

Xo 
x 100 
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trait Days to 50 % silking. Similar value of communality for SH 

was reported by (23). FA1 predominantly represents cob traits 

crucial for maize kernel yield, including cob girth (CG), length 

(CL), weight (CW), 1000 kernel weight (1000K) and shelling 

percentage (SH), evidenced by their strong negative loadings                              

(-0.77, -0.59, -0.75, -0.71 and -0.52, respectively). FA2 primarily 

represents agro-morphological traits, including days to 50 % 

tasselling (FT), silking (FS) and maturity (DM), evidenced by their 

strong negative loadings (-0.98). FA3 predominantly represents 

developmental and yield attributes, including plant height (PH), 

ear height (EH), kernel row per cob (KRPC) and kernel per row 

(KPR), as indicated by their strong negative loadings (-0.87, -0.86, 

-0.53 and -0.6, respectively). FA4 primarily represents kernel yield 

per plant (KYPP) and cobs per plant (CPP), with positive loadings 

ranging from 0.76 to 0.92.  

Predicted selection gains 

The MGIDI index was utilized to assess all measured traits 

comprehensively. The process involved normalizing the traits 

using BLUP to estimate the mean performance of each 

genotype, followed by conducting factor analysis and calculating 

the genetic distance between the genotypes and the ideal 

genotype. The predicted genetic gains for the relevant traits 

based on the MGIDI index are displayed in Table 4. The broad-

sense heritability values observed in this study showed 

substantial variation, ranging from 0.27 for days to maturity to 

over 0.6 for traits such as cob weight, 1000-kernel weight, plant 

height, ear height, kernel rows per cob, kernels per row, cobs per 

plant and kernel yield per plant.  

 MGIDI-based findings within the FA1 framework indicate a 

73.1% increase in cob weight followed by an 8.42 % elevation in 1000 

kernel weight. Ear length is expected to extend by 6.42 %, enhancing 

yield potential. Additionally, a marginal gain of 0.948 % in shelling 

(%) is projected, contributing to economic yield enhancement. Days 

to tasselling, days to 50 % silking and days to maturity exhibited a 

marginal decline of -0.515, -0.486 and -0.19, respectively, indicative of 

relatively stable performance in this trait within the context of FA2. 

Within FA3, an anticipated expansion of 26.1 % in kernel per row 

followed by an increase of 16.9 % in ear height. 

 Furthermore, the trait of plant height, crucial for overall 

crop stability, is expected to rise by 9.88 %. Moreover, a 

significant gain of 5.77 % was observed for kernel row per cob, a 

key influencer of yield. The highest genetic gain within FA4 was 

observed in kernel yield per plant, with an impressive increase of 

87.7 %. This was closely followed by a substantial gain of 23.7 % 

for cobs per plant, crucial for enhancing grain yield per plant. Few 

attempts have been made in maize to select desired genotypes 

using MGIDI compared to other indices and similar results of high 

genetic gain in maize using MGIDI  have been reported (32). 

Selected genotypes  

Assuming a controlled selection intensity of 5%, various 

genotypes were screened using MGIDI. Fig. 1. visually illustrates 

genotype rankings based on their MGIDI index values, with 

specific genotypes close to the red cutting point, indicating 

excellent phenotypes. Genotypes 76, 212, 163, 101, 195, 169, 115, 

233, 194, 79, 32 and 104 emerged as distinguished performers. 

VAR FA1 FA2 FA3 FA4 Communality Uniqueness 

FT -0.11 -0.98 -0.09 -0.01 0.98 0.02 

FS -0.11 -0.98 -0.09 0 0.99 0.01 

DM -0.11 -0.98 -0.09 0.01 0.97 0.03 

PH -0.02 -0.05 -0.87 0.09 0.77 0.23 

EH -0.06 -0.05 -0.86 0.01 0.74 0.26 

CPP 0.1 0.05 -0.11 0.92 0.87 0.13 

KRPC -0.07 -0.01 -0.53 0.15 0.31 0.69 

KPR -0.39 -0.25 -0.6 0.03 0.57 0.43 

CG -0.77 -0.01 -0.16 -0.01 0.63 0.37 

CL -0.59 -0.17 -0.41 0.12 0.55 0.45 

CW -0.75 -0.28 -0.28 0.15 0.75 0.25 

1000K -0.71 0.11 0.08 0 0.53 0.47 

SH -0.52 -0.19 0 0.04 0.31 0.69 

KYPP -0.46 -0.08 -0.21 0.76 0.84 0.16 

Communality Mean 0.700771 

Table 3. The factorial loadings and communalities resulting from factor analysis 

VAR Factor Xo Xs SD SD(%) h2 SG SG(%) Sense Goal 

CG FA1 10.9 11.4 0.528 4.86 0.39 0.206 1.9 increase 100 

CL FA1 14.2 15.9 1.65 11.6 0.55 0.914 6.42 increase 100 

CW FA1 55.68 97.6 42.6 77.5 0.94 40.2 73.1 increase 100 

1000K FA1 218.3 241 23.2 10.6 0.79 18.4 8.42 increase 100 

SH FA1 70.4 72.1 1.7 2.41 0.39 0.667 0.948 increase 100 

FT FA2 75.9 74.8 -1.05 -1.38 0.37 -0.391 -0.515 decrease 100 

FS FA2 78.00 77.00 -1.03 -1.32 0.37 -0.379 -0.486 decrease 100 

DM FA2 105 104 -0.745 -0.708 0.27 -0.2 -0.19 decrease 100 

PH FA3 151 167 16 10.6 0.93 14.9 9.88 increase 100 

EH FA3 76.5 90.1 13.6 17.8 0.95 13 16.9 increase 100 

KRPC FA3 12.8 13.8 0.944 7.35 0.79 0.741 5.77 increase 100 

KPR FA3 22.5 29.1 6.54 29 0.9 5.89 26.1 increase 100 

CPP FA4 1.33 1.65 0.319 24 0.99 0.316 23.7 increase 100 

KYPP FA4 67.1 128 61.1 91.2 0.96 58.8 87.7 increase 100 

Table 4. Predicted selection gain using MGIDI index 
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Moreover, the MGIDI offers crucial insights into the strengths and 

weaknesses of various genotypes, providing a helpful framework 

for identifying their advantages and limitations within the 

complex landscape of multiple traits (25). 

Strength and weakness 

The radar plot (Fig. 2) illustrates the delineation of genotype 

attributes, segmenting MGIDI contributors into four key 

categories. The analysis of strengths and weaknesses indicated 

that FA1 significantly influenced the MGIDI for all selected 

genotypes, suggesting relatively poorer performance in key 

attributes like cob girth, length, weight, 1000 kernel weight and 

shelling percentage. Genotypes G32, G212, G163 and G195 

demonstrated strengths associated with FA2, particularly in 

flowering characteristics such as days to maturity, days to 50% 

silking and 50% tasselling. Notably, these traits exhibited negative 

gains, indicating potential for improvement in these genotypes. 

FA3 had a relatively lower impact on genotypes G104, G76, G212, 

G163, G101, G195, G115 and G79, indicating their strong 

performance in traits associated with FA3, highlighting their 

suitability for traits viz., ear height, plant height, kernel row per 

cob and kernel per row. FA4 significantly impacted genotypes 

G32, G104, G76, G212, G169, G233 and G194, particularly 

influencing traits related to cobs per plant and kernel yield per 

plant. These genotypes exhibited notable responses to FA4, 

indicating their potential for enhancing overall yield and 

productivity traits in maize cultivation. A comprehensive 

evaluation of multiple traits ranked genotypes G32, G76, G163, 

G212 and G169 as the top performers among the selected 

genotypes. Recently, (20) used this index to identify the desired 

hybrids in maize through their strength and weakness view. 

 

Discussion 

Selection in plant breeding is a fundamental process where 
breeders choose plants with desirable traits to serve as parents 

for the next generation. This process aims to enhance yield, 

disease resistance, drought tolerance and quality. This process 

necessitates genetic diversity and heritable traits in the 

population. Maintaining genetic diversity ensures long-term 

progress and avoids inbreeding depression. Highly heritability 

traits respond better to selection as the genetic variance is higher 

than environmental variance. The selection based on a single 

Fig. 1. Maize genotypes ranking based on MGIDI index with highlighted top performers in red. 

Fig. 2. Comprehensive assessment of selected genotypes, highlighting their 
strengths and weaknesses weighed by MGIDI. 
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trait may reduce the selection gain; therefore, selection by 

considering multiple traits may enhance the genetic gains and 

success of the breeding programme. The present study 

investigated 238 maize genotypes based on fourteen 

quantitative characteristics and we found significant differences 

in the genotype performance of all evaluated traits. This opens 

the scope for genotype selection.  

Principal component analysis 

Principal Component Analysis (PCA) is a statistical technique 

used to reduce the dimensionality of data while preserving most 

of the variability present in the data set. Each principal 

component (PC) is a linear combination of the original variables 

and the loadings represent the weights assigned to each variable 

in that linear combination. Interpreting the loadings involves 

understanding how strongly each original variable contributes to 

a particular principal component. High loadings (either positive 

or negative) indicate strong correlations between the original 

variables and the principal component. Variables that exhibit 

high loadings on a specific principal component are deemed 

significant in elucidating the variation represented by that 

component. PCA was conducted to classify the genotypes based 

on the most distinguishing traits. Key traits such as flowering 

time, plant and ear height, ear characteristics and grain yield 

were essential in distinguishing between the genotypes analyzed 

and four PCs effectively captured the considerable amount of 

diversity within traits.  

Multi-trait genotype selection using the MGIDI Iindex 

The multivariate techniques are widely used for genotypes and 

trait selections in plant breeding. We have employed the recently 

developed MGIDI index to select the high-performance 

genotypes in maize. This process includes exploratory factor 

analysis and then computation of the MGIDI. The exploratory 

factor analysis explained fourteen traits into four factors. An 

average communality of 0.70 suggests that the factors (FA) can 

account for a significant portion of the variance associated with 

each variable. This communality reflects the shared 

characteristics or traits among different genotypes, while the 

average uniqueness represents the specific features or traits 

unique to each genotype. High communalities in FA1, FA2, FA3 

and FA4 highlight the interconnectedness of the characteristics, 

emphasizing their shared dependence on underlying factors. 

Negative loadings in FA1, FA2 and FA3 indicate an inverse 

relationship between the respective FA traits, suggesting that 

underlying variables decrease as FA scores increase. A positive 

correlation between these variables and FA4 demonstrates that 

as the scores for FA4 increase, both kernel yield per plant (KYPP) 

and cobs per plant (CPP) also rise. These findings provide 

valuable insights into the complex architecture of plant traits, 

informing potential trait groupings and interrelationships. The 

MGIDI predicts significant genetic gains across all characteristics, 

including kernel yield per plant, cob weight, kernel per row, cobs 

per plant and ear height. With its enhanced consistency 

alongside other genotype ranking methods, such as the SH index 

(13-15), the MGIDI is poised to find broader applications in future 

breeding programs for genotype screening.  

 In the strength and weakness plot, more significant 

influence factors are positioned proximal to the centre, while 

lesser contributors align towards the periphery. This aids in 

identifying suitable parentage for hybridization initiatives. The 

radar plot for each chosen genotype outlines the MGIDI 

contributors, showcasing the trait influence hierarchy. This 

assists in aligning traits with the ideotype, as evidenced by 

factors nearer the plot's periphery. Through a thorough 

assessment of multiple traits, genotype ranking identified G32, 

G76, G163, G212 and G169 as the highest performers among the 

selected genotypes, indicating their potential for enhancing 

traits related to overall yield and productivity in maize 

cultivation. The utilization of the MGIDI index in plant crop 

research is anticipated to experience rapid growth. (22,23,33) 

employed this index to identify the best maize genotypes 

through their strength and weaknesses in stress conditions. The 

integration of grain yield with other target attributes facilitated 

genotype ranking, highlighting the significance of assessing 

multiple traits collectively. This approach, supported by (34), 

emphasizes evaluating genotypes based on their capacity to 

harmonize various traits, offering a more comprehensive 

measure of their suitability in screening or breeding programs. 

 

Conclusion 

In conclusion, this study pinpointed the maize genotypes with 

superior agronomic traits through a comprehensive multi-trait 

selection model. Key factors like flowering time, plant height, ear 

height and grain yield emerged as critical in differentiating the 

genotypes, with the first four principal components capturing 

significant variation in the trait studied. The use of the MGIDI 

method provided a nuanced evaluation of genotype strengths 

and weaknesses, guiding the selection of top-performing 

genotypes such as G32, G76, G163, G212 and G169. This 

approach enhances the accuracy of genotype selection and 

offers breeders a more informed and data-driven method for 

improving maize breeding programs. 
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