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Abstract   

Despite their vital roles in carbon sequestration, biodiversity conservation 
and coastal protection, mangrove ecosystems have historically faced 
degradation from pollution, deforestation and human activity. Mangrove 
restoration faces several challenges, including deforestation due to 
unsustainable logging for timber and fuelwood, as well as habitat loss from 
coastal development projects such as ports and resorts. The expansion of 
aquaculture, particularly shrimp farming, has led to the large-scale 
conversion of mangrove areas into degraded or unproductive land. Huge 
restoration projects have been started all over the world to deal with these 
issues. Geospatial technologies such as GIS (Geographic Information 
System), GPS (Global Positioning System), remote sensing and satellite 
imagery have made it easier to find suitable sites for restoration, which was 
a challenging task in the past. These technologies also enable the 
acquisition of large amounts of data. Topography, soil quality, land use and 
biodiversity are some of the factors that influence the process of identifying 
possible restoration sites. Although obstacles like ecosystem complexity, 
lack of data and methodological constraints still exist, developments in 
machine learning and radar remote sensing provide promising paths to 
obtaining vital information. Conservation efforts are being bolstered by 
data integration and predictive modeling-driven evidence-based 
rehabilitation strategies. This review examines the cutting-edge geospatial 
technologies and their critical role in surmounting obstacles and promoting 
the rehabilitation and re-establishment of mangrove habitats. 
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Introduction   

Mangroves and their importance 

Mangroves are significant ecosystems that have several benefits, including 
preserving biodiversity, safeguarding the shore, sequestering carbon contributing 

to the global carbon cycle (Fig. 1) and providing essential goods and services to 

coastal communities which are also essential for maintaining the stability of the 

coast and halting erosion (1). Economically, mangroves support fisheries, 

aquaculture and coastal livelihoods by serving as nurseries for commercially 

important fish species and providing raw materials such as timber and honey. 

Ecologically, they act as natural barriers against storm surges and coastal 

erosion, protect biodiversity by hosting unique and endangered species and 

improve water quality by filtering pollutants. Culturally, many coastal 

communities regard mangroves as integral to their heritage and traditions, using 
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them for medicinal purposes, spiritual practices and 

sustenance. Moreover, mangroves are among the planet’s 

most efficient ecosystems for carbon sequestration, capturing 

and storing large amounts of carbon in their biomass and soils, 

making them indispensable in the fight against climate 

change. According to Alongi (2), Mangrove forests are tropical 

forests with substantial ecological and commercial value. As 

they can sequester carbon and enhance coastline stability, 

they are crucial for sustainable development and climate 

change adaptation (3). Non-native mangroves, such as 

Rhizophora mangle, have been found to facilitate carbon 

storage, carbon burial in sediment and the accretion of coastal 

ecosystems, highlighting their importance in mitigating 

climate change (4).  

Constraints and development in mangrove re-establishment 

Mangrove ecosystems have historically suffered greatly from 

human activities like deforestation, coastal development and 

the growth of aquaculture. These important habitats were 

frequently cleared for infrastructure and agriculture prior to 

the 20th century because they were thought to be barriers to 

development (5). However as scientific knowledge increased, 

mangroves' critical roles in carbon sequestration, biodiversity 

conservation and coastal protection became apparent in the 

late 20th century (6). Mangrove restoration has become a top 

priority globally thanks to global initiatives led by agencies 

like the FAO and UNEP, as well as local movements and 

community involvement (7). 

 In the twenty-first century, physical disturbances and 

human activities like deforestation and heavy metal 

poisoning pose a serious threat to mangrove habitats, 

despite technological advancements and conservation 

efforts (8). On the other hand, mangrove monitoring and 

management have been transformed by technological 

advancements like LiDAR and satellite photography, which 

allow for precise tracking of changes in extent, health and 

biodiversity (9). Mangrove ecosystems have been protected 

by laws and regulations enacted by governments and 

international organizations and integrated coastal 

management strategies work to strike a balance between 

conservation and societal needs (10).  

 The objective of this review is to explore the novel 

contributions of geospatial technologies in overcoming the 

challenges associated with mangrove restoration and 

conservation. It emphasizes how advancements in tools such 

as Geographic Information Systems (GIS), Global Positioning 

Systems (GPS), remote sensing and satellite imagery have 

revolutionized the identification of suitable restoration sites, 

which has traditionally been a complex and resource-

intensive task. By integrating data on topography, soil quality, 

land use and biodiversity, these technologies facilitate 

evidence-based strategies for effective mangrove 

rehabilitation.  

Geospatial technique’s role in mangrove re-establishment 

areas identification 

Geospatial techniques are vital for identifying suitable areas for 

mangrove reestablishment. Integrating historical data and 

expert consultation aids in site selection, while participatory 

mapping and field surveys provide valuable insights (11). 

Integrating diverse datasets, such as climate, topography, soil 

characteristics, hydrology and land use patterns, significantly 

enhances the accuracy and efficiency of mangrove restoration 

efforts by providing a holistic understanding of ecosystem 

dynamics. For instance, combining climate data with 

hydrological models enables the identification of areas with 

suitable tidal regimes, essential for mangrove growth and 

regeneration. Similarly, integrating topographical information 

Fig. 1. The efficiency of (L-R) mangrove forests, salt marshes and seagrass beds as reservoirs for carbon. More carbon dioxide is taken up from the atmosphere 
(green arrows) than is re-released (black arrows), while a substantial amount is stored in soils (red arrows) for hundreds to thousands of years if left undisturbed.  
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with soil salinity and pH data helps pinpoint locations with 

optimal substrate conditions for mangrove saplings. 

  

 A notable example of successful dataset integration is 

the restoration project in the Mekong Delta, Vietnam, where 

geospatial analysis combined satellite imagery with climate 

and hydrological data to identify degraded mangrove zones 

and prioritize them for replantation. This approach improved 

the success rate of replantation efforts by aligning 

interventions with natural tidal patterns.  

 Remote sensing, GIS and GPS technologies enable 

accurate mapping and monitoring of mangrove ecosystems, 

supported by high-resolution imaging (12). Global remote 

sensing datasets facilitate efficient data collection and 

processing, reducing survey time and resource requirements 

(13). Interdisciplinary approaches, such as Multi-Criteria 

Decision Making, enhance restoration efforts by producing 

suitability maps (14). Multi-Criteria Decision Making (MCDM) 

refers to a set of analytical techniques and methodologies used 

to evaluate and prioritize options based on multiple, often 

conflicting criteria. It integrates diverse datasets-such as 

ecological, socio-economic and environmental parameters-to 

identify and rank potential restoration sites based on their 

suitability and alignment with restoration goals. Geospatial 

techniques enable efficient restoration site selection, progress 

monitoring and evaluation of ecosystem services, fostering 

greater conservation efforts in mangrove rehabilitation (15).  

Required data sets 

Abd-El Monsef (16) gave a multidisciplinary approach to 
environment, geography, climate and socioeconomic status 

to be incorporated into this strategy for locating possible 

locations for mangrove reestablishment. Shrestha (14) 

demonstrated the utilization of multi-sensor data, including 

satellite data, can also assist in the identification and 

forecasting of possible biophysical suitable regions within a 

tropical mangrove ecosystem. Some of the required data 

sets are summarized in Table 1. 

 

Data sets and resolution 

Having extensive coverage and historical records, satellite 

data is useful for long-term, large-scale mangrove 

monitoring. Conversely, drones are suited for small-area 

monitoring since they provide greater resolution and 

temporal resolution (17). High spatial and spectral resolution 

is made possible by aerial multispectral sensors, including 

the Compact Airborne Spectrographic Imager, which enables 

precise and thorough evaluation of mangrove areas. Xia (18) 

provided more evidence that mapping mangrove species was 

successful when using a combination of remote-sensing 

datasets, such as Sentinel-2 and Gaofen-3. Many forms of 

datasets useful for the specified purpose are available, of 

which some are listed in Table 2. 

Preprocessing 

In remote sensing, preprocessing is essential since it can 

greatly enhance the usefulness and quality of the data. Zheng 

(19) emphasized the significance of this stage by putting forth 

an adaptive spatial preprocessing technique that improves 

edges and smoothens noise in remote sensing images at the 

same time. Sowmya (20) divided the processing of remote 

sensing images into four steps, the first being preprocessing, 

which fixes geometric, atmospheric and radiometric 

aberrations. This can increase the precision of automatic 

feature recognition processing. 

Indices for mangrove area mapping 

Numerous studies have contrasted various mangrove 

mapping indices and the greatest accuracy was discovered by 

Kongwongjan (21) when THEOS spectral bands and indices like 

NDVI, SR and SAVI were combined. Muhsoni (22) found that the 

most accurate methods for mapping mangrove density using 

Data Type Format Data Sources Data Access Relevance to Restoration 

Land Use and Land Cover 
Raster data, 
vector data 

Satellite imagery (Landsat, 
Sentinel), aerial 

photography 

USGS EarthExplorer, ESA 
Copernicus Open Access 

Hub, ISRO Homepage, 
Bhuvan Portal 

Identifies degraded lands and suitable 
zones for mangrove replantation while 

avoiding land-use conflicts. 

Soil Type and Quality 
Vector data, 
raster data 

Soil maps, satellite/aerial 
imagery, soil samples 

ISRIC SoilGrids, FAO Soil 
Portal, ICAR Website, Impact 

Observatory 

Ensures site conditions support 
mangrove growth by analyzing soil 

salinity, pH and organic matter. 

Topography and Elevation Raster data 
Satellite imagery (SRTM, 

ASTER), aerial 
photogrammetry 

USGS EarthExplorer, AWS 
Public Dataset Program, 
Survey of India Website, 

Impact Observatory 

Identifies low-lying coastal areas suited 
for intertidal mangroves and evaluates 

flood and erosion risks. 

Temperature and 
Precipitation 

Gridded data, 
time series 

Climate station data, 
satellite imagery 

NOAA NCDC, WorldClim, IMD 
Website 

Assesses climate suitability and predicts 
the impact of climate change on 

restoration areas. 

Tidal Data Time series 
Tide gauges, satellite 

altimetry 

NOAA Tides & Currents, 
EMODnet Physics, NCCR 

Website 

Ensures appropriate tidal regimes for 
nutrient exchange and site drainage. 

River Discharges Time series 
Stream gauges, hydrologic 

modeling 

USGS NWIS, EMODnet 
Hydrography, CWC Website, 

India Water Portal 

Evaluates sediment supply and 
freshwater availability critical for 

mangrove establishment. 

Ocean Currents and Salinity 
Vector data, 
gridded data 

Satellite altimetry, ARGO 
floats 

NOAA ERDDAP, IOOS Glider 
DAC, NIO Website, IMD 

Website 

Assesses nutrient transport and salinity 
levels essential for site suitability. 

Biodiversity Assessment 
Vector data, 
raster data 

Field surveys, aerial/
satellite imagery 

GBIF, Map of Life, MoEFCC 
Website, Climate Data Guide 

Identifies key species for replantation 
and highlights potential to create 
habitats for endangered species. 

Source: Zheng (19) and Ellison (6)  

Table 1. Data types, its format and accessibility 



GOWDA  ET AL  4     

https://plantsciencetoday.online 

Sentinel-2 imagery were NDVI with exponential regression, RVI 

(Ratio Vegetation indices) with exponential approach and NDVI 

with polynomial approach. Kasawani (23) suggested the use of 

soil-line-based vegetation indices, such as SAVI. The 

Generalized Composite Mangrove Index (GCMI), unveiled by 

Xue (24), performed better than previous indices in 

differentiating mangroves from other land covers. Principal 

polar spectral (PPS) indices were employed to distinguish 

between mangrove species, with encouraging outcomes (25). 

Table 3 provides various related indies for mapping mangroves 

and their Data requirements. 

Image analysis technique 

It has been discovered that pixel-based classification models, 
like support vector machines and maximum likelihood 

classification, work well for classifying individual pixels 

according to their spectral properties. Many of such analysis 

techniques have been compared in Table 4 with their 

accuracy. When compared to the Support Vector Machine 

method, the Maximum Likelihood Classification technique 

yielded noticeably higher user, producer and overall 

accuracies (26). It has been demonstrated that object-based 

classification models, which classify nearby pixels as objects, 

increase mapping accuracy for mangroves (27). In a 

comparison of four supervised classification algorithms for 

tracking changes in mangrove cover, Random Forest (RF) was 

found to perform the best (28).  

Geospatial modelling 

To comprehend and work with spatial data, geospatial 

modeling-a fundamental aspect of GIS-must use statistical 

techniques and spatial algorithms (29). The creation of a 

Statistical Analysis Module (SAM) that operates inside the GIS 

operating environment (30) further improves this integration 

and enables the finding of hidden patterns (31). Imbalanced 

data and prediction errors are two issues (32) that geospatial 

modeling must deal with, but with the advent of cloud 

computing and high-resolution statistical data, it has 

changed dramatically. For efficient management and 

workflow facilitation, GIS modeling is essential, especially in 

decision-making. Here are a few Geospatial models: 

Habitat suitability models 

• Statistical models: Hu (33) mapped the restoration 

potential of mangrove forests in China using the Maximum 

Entropy (MaxEnt) model and the Genetic Algorithm for Rule-

set Prediction (GARP), with the MaxEnt model outperforming 

GARP. Suhardiman (34) mapped site suitability for 14 

Table 2. Satellite sensors used for mangrove mapping 

Satellite Sensor Resolution Accuracy Metrics Data Source 

OPTICAL         
Landsat 8 OLI 30 m Overall accuracy is 92%, Kappa 0.91 for species mapping USGS EarthExplorer 

Sentinel-2 MSI 10-60 m Overall accuracy is 85%, Kappa 0.82 for extent mapping 
ESA Copernicus Open 

Access Hub 
PlanetScope PlanetScope 3-5 m Overall accuracy is 88%, Kappa 0.86 for habitat mapping Planet Explorer 

Pleiades PHR 0.5-2 m Overall accuracy is 82%, Kappa 0.78 for species classification Airbus Defense & Space 
Quickbird QuickBird 0.6-2.4 m Overall accuracy is 84%, Kappa 0.81 for extent mapping Maxar 

IKONOS PAN, Multi 0.8-4 m Overall accuracy is 79%, Kappa 0.75 for habitat mapping Maxar 
WorldView-2 WV110 0.5-2 m Overall accuracy 86%, Kappa 0.83 for species mapping Maxar 

S A R         
RADARSAT-2 SAR 1-100 m Overall accuracy 83%, Kappa 0.81 for mangrove classification MDA Geospatial Services 

ALSO PALSAR PALSAR 10-100 m Kappa 0.89 for mangrove classification JAXA 
UAVSAR L-band SAR 1-5 m Overall accuracy is 86%, Kappa 0.84 for species mapping NASA/JPL UAVSAR 

LIDAR         
GEDI Lidar 25 m spots R^2 = 0.61 vs field biomass data NASA Earthdata 

ICESat-2 Lidar 10 m spots RMSE 11.2m vs airborne lidar NSIDC 

Index Formula Outcomes Uses 

NDVI 
NDVI = NIR – RED 
               NIR+ RED 

Mapped mangrove 
extended with 83% 

accuracy using NDVI 
threshold analysis of 

Landsat imagery. 

Measures vegetation health and 
density, monitor crop growth, 
assesses drought conditions 

and maps deforestation. 

Soil adjusted vegetation 
index (SAVI) 

SAVI =  (1+L) * NIR -RED 
                         NIR+RED+L 

  
Where L is a soil adjustment factor. 

Integrated SAVI and other 
indices from hyperspectral 

data to map 5 mangrove 
species with 83% overall 

accuracy. 

Minimize soil brightness 
influences on vegetation 

indices, useful in areas with 
high soil exposure. 

Ratio vegetation index 
(RVI) 

RVI = NIR / RED 

Used RVI for mangrove 
species discrimination 
achieving classification 
accuracy classification 
accuracy of up to 94%. 

Estimate biomass, distinguish 
vegetation from the soil and 

monitor vegetation vigor and 
density. 

Generalized composite 
mangrove index (GCMI) 

η * (1-0.25 )* (NIR -0.25) 
NIR 

= 2 .(NIR2 - RED2) + 1.5 . NIR + 0.5 .RED 
                           NIR+RED+0.5 

Derived GCMI to estimate 
mangrove sub canopy 
inundation levels with 

RMSE - 0.12m. 

Map and monitor mangrove 
ecosystems and discriminate 

mangroves from other 
vegetation types. 

Principal Polar spectral 
(PPS) 

It involves calculating the first derivative of the 
reflectance spectrum and identifying its principal 

components. 

Captured spectra 
difference between 5 

mangrove. 

Identify vegetation stress and 
estimate biophysical. 

Table 3. Various indices and their accuracy levels 
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mangrove species in the Indonesian Mahakam delta using a 

geostatistical approach that combined salinity, tidal 

inundation, clay and sand variables. For Kandelia obovata 

trees in northern Taiwan, Shih (35) created spatial habitat 

suitability index (HSI) models that included salinity of the 

water, soil sorting coefficient and frequency of flooding as 

important environmental variables whose output is shown in 

Fig. 2. 

• Machine Learning models: Liu (36) employed machine 

learning ensembles to map mangrove extent at high 

resolutions, with Liu specifically focusing on West Africa and 

Ambarwari reviewing the use of machine learning methods in 

mapping and monitoring mangroves. Maung (37) 

demonstrated the application of cutting-edge technology in 

this field by evaluating natural mangrove recovery in 

Myanmar using an artificial neural network. 

 

 

Species Distribution Models (SDMs) 

• Correlative models: Twilley (38) enhanced this by adapting 

an ecological model to simulate restoration trajectories, 

providing a practical tool for restoration project design. 

However, Rovai (39) cautioned that single-species plantings 

in restoration sites may compromise secondary succession, 

emphasizing the need for careful site selection and 

management using a correlative model. 

• Mechanistic models: Hu (33) and Worthington (15) both 

Table 4. Image analysis techniques in mangroves 

Technique Accuracy Training Data Needs Uses Software 

Pixel-based 
classification 

Overall accuracy of 89.5% for land cover 
classification using SVM. Kappa coefficient: 0.88 

Representative 
samples from each 

class 

Land cover mapping, 
change detection ENVI, ERDAS Imagine 

Deep learning 
Overall accuracy of 91.4% for land cover 

classification using CNN 
Large diverse training 

set 
Object detection, scene 

understanding TensorFlow, Keras 

Textural analysis 
Overall accuracy of 83.7% for land use 

classification using GLCM textural features. A 
Kappa coefficient of 0.81 was reported. 

Representative 
textural samples Habitat mapping, geology 

ENVI, ORFEO 
Toolbox 

Spectral mixture 
analysis R2 of 0.91 for estimation of mineral abundances 

Pure spectral 
endmembers 

Mineral mapping, soil 
characterization ENVI, RStoolbox 

Object-based image 
analysis 

The overall accuracy of 85.3% for land cover 
classification using an object-based approach. 

Kappa coefficient of 0.82. 

Representative 
segmented objects 

Urban mapping, precision 
agriculture 

eCognition, ERDAS 
Imagine 

Random Forest 
Overall accuracy: 87.3%, Kappa coefficient: 0.84 
for land cover classification using random forest 

with hyperspectral data 

Representative 
training samples 

Land cover mapping, forest 
mapping 

ENVI, ERDAS 
Imagine, sci-kit-learn 

Support Vector 
Machine 

Overall accuracy of 89.5% for land cover mapping 
using SVM. Kappa coefficient of 0.88. Class-specific 

accuracies ranging from 82-96%. 

Representative 
training samples 

Land cover mapping, land 
use classification 

ENVI, SAGA GIS, scikit
-learn 

Maximum 
Likelihood 

An overall accuracy of 82.1% was reported for land 
cover mapping using maximum likelihood 

classification. Kappa coefficient of 0.79. Class-
specific accuracies from 75-91%. 

Representative 
training statistics 

Land cover mapping, 
geology 

ENVI, ERDAS 
Imagine, QGIS 

Data fusion 
Overall accuracy improvement of 5-10% compared 

to single sensor classification. Fusion increased 
Kappa coefficient by 0.1-0.2. 

Aligned training data 
Multi-sensor integration, 

comprehensiveness ERDAS Imagine, ENVI 

NB: High overall accuracy and Kappa coefficients are essential for ensuring reliable mangrove identification across varied landscapes. R² values from spectral 
analysis can help assess environmental variables like soil salinity or water content crucial for mangrove growth. 

Fig. 2. The improved HSI map of the model prediction. A high value indicates the mangrove areas, while a low value indicates areas of mudflats and tidal creeks (35). 
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used mechanistic models to identify potential restoration 

sites for mangrove afforestation. Hu employed species 

distribution models to assess mangrove suitability in China, 

while Worthington developed a global typology of mangroves 

to calculate the potential benefits of restoration.  

Remote Sensing and GIS-based models 

• Land cover change models: Kura (40) employed land cover 

change models to forecast future changes in mangrove areas; 

Kura focuses on southern Ethiopia, while Etemadi focuses on 

Iran. Rising sea levels are expected to cause a loss of 

mangrove area to open water, according to Etemadi’s study 

in Iran and an increase in agroforestry and agricultural land at 

the expense of natural vegetation, according to Kura’s study 

in Ethiopia. Both studies emphasize that to address these 

changes, precise mitigation and adaptation strategies are 

required. In the SRB, Ethiopia, Entahabu (41) used Land 

Change Modeler (LCM) (Fig. 3) to model and predict changes 

in land use and land cover from 1990 to 2048. He discovered 

that in 2028 and 2048, bar land, built-up land and cultivated 

land will increase at the expense of water bodies, forests, 

shrubs and plantation land. 

• Spatial analysis models: Syahid (42) used an analytical 

hierarchy process to determine the importance of various 

parameters in predicting suitable areas for mangrove 

planting in Southeast Asia. By combining expert judgment 

with analytical methods, such as putting weights from expert 

assessments and criterion preferences into a mathematical 

model called the Best Worst Method (Fig 4), a relatively new 

Multi Criteria Decision Making technique, the study was able 

to identify potential locations for mangrove plantations in 

southern Iran (43).  

Hydrodynamic models 

Numerous studies have shown how important it is to take 

hydrodynamic and hydrological parameters into account 

when restoring mangroves. The necessity to restore natural 

hydrological regimes is emphasized by Pérez-Ceballos (44) 

particularly arguing for the identification of hydrological flow 

pathways. Van Loon (45) demonstrated how to use a 

hydrological classification based on the length of inundation 

and a hydrological classification based on observed water 

levels over at least 30 days during a lunar tidal cycle. 

Understanding and controlling the natural processes and 

environmental features of mangroves is crucial, as stressed 

by Mazda (46) which is especially true in light of the changing 

hydrological and sedimentary circumstances.  

Factors to consider when choosing a geospatial technique 

for mangrove plantation Identification 

The specific objectives of the research should guide the 

application of a model to identify potential mangrove 

restoration locations. For instance, a model like the MaxEnt 

model, which can accurately predict future mangrove 

distributions, would be suitable if the goal is to rank the 

restoration sites in order of priority (33). However, it’s imperative 

to consider the underlying causes of damage and deterioration 

and to develop a decision tree to guide the restoration process 

(47). Pôças (48) presented a methodological framework that is 

necessary to assess the suitability of spatial data sets for 

ecological and environmental applications while taking user 

needs and quality indicators into account. The selection of a 

model for mangrove restoration should be based on the specific 

objectives of the study and the availability of data (38).  

Limitations of geospatial techniques 

The intricacy of mangrove ecosystems poses difficulties in 

precisely identifying appropriate plantation regions, requiring a 

thorough examination of geographic data (49). Obstacles like 

tidal variations and atmospheric pollution can still make precise 

species discrimination difficult (50). Given the ever-changing 

nature of mangrove forests and their significance in mitigating 

and adapting to climate change, this is at most important (51). 

Fig. 3. The gains and losses of LULC types identified of SRB in 1990 (A), 2002 (B) and 2018 (C) with each keyword indicating different lulc classes (41). 
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However, obstacles like cloud cover, sensor limitations and 

budgetary constraints might make it more difficult to obtain 

high-quality data, particularly in isolated or inaccessible areas. 

Innovative techniques for data collecting and analysis are 

required to overcome these issues, such as the use of machine 

learning algorithms and the integration of various imaging types 

(52). Furthermore, the use of Synthetic Aperture Radar (SAR) has 

been shown to provide cloud-free observations, making it a 

valuable tool for mapping and monitoring mangrove 

ecosystems (53). The choice of mangrove rehabilitation should 

be based on conservation, landscaping, sustainable production 

and coastal protection and should consider factors such as site 

degradation, site selection and source of seedlings (54). 

Notwithstanding these drawbacks, mangrove habitats have 

been successfully mapped and monitored using remote sensing, 

yielding important data for management and conservation (55). 

 

Future prospects 

Recent advancements in remote sensing, such as 

hyperspectral data and radar imagery recommended by 

Prasad (56), along with Synthetic Aperture Radar (SAR) 

systems noted by Thakur (49), are revolutionizing mangrove 

management. Drones and UAVs (Unmanned Aerial Vehicle), 

also emphasized by Prasad (56), offer cost-effective solutions 

for precise small-area analysis. Integrating machine learning 

algorithms for classification and predictive modeling, 

enhances mapping accuracy (57). Furthermore, leveraging 

geospatial big data analytics and cloud computing enables 

effective large-scale processing for comprehensive 

ecosystem monitoring. Kumar (58) envisions automated 

workflows and mobile apps to streamline mangrove 

monitoring, supporting informed decision-making. These 

advancements collectively improve mangrove mapping 

precision, deepen understanding of ecosystem dynamics and 

facilitate efficient restoration site identification. 

 

Conclusion   

Important functions like carbon sequestration, biodiversity 

preservation and coastal protection are provided by mangrove 

ecosystems. Nonetheless, over time, human activity has caused 

them to deteriorate. Recognizing their significance, extensive 

restoration projects have been started all over the world. Finding 

appropriate locations is difficult but essential. Mangrove 

mapping and monitoring have been revolutionized by 

geospatial techniques such as GIS, remote sensing and satellite 

imagery, which allow for the efficient collection of data over vast 

areas. In conclusion, Geospatial technologies revolutionize 

mangrove restoration ecology, enabling efficient habitat 

assessments and changing predictions. Challenges persist due 

to ecosystem complexity, but innovations like machine learning 

offer solutions. To enhance mangrove restoration efforts, 

stakeholders should integrate machine learning with geospatial 

techniques to improve predictive modeling for site selection, 

monitoring and planning. Community involvement should be 

prioritized through participatory mapping, education and 

livelihood-aligned incentives to foster long-term stewardship. 

Employing Multi-Criteria Decision Making (MCDM) frameworks 

can balance ecological, economic and social considerations, 

ensuring optimal site selection. Investments in high-resolution 

satellite imagery and UAV data acquisition will improve the 

precision of mapping and monitoring. Additionally, training 

programs and knowledge-sharing platforms can build local 

capacity and facilitate the adoption of advanced tools. 

Quantifying the economic benefits of mangroves, such as 

carbon sequestration and coastal protection, can strengthen 

funding and support policy. Governments should implement 

supportive policies, allocate dedicated funding and link 

restoration to global climate goals and carbon credit schemes. 

Lastly, incorporating climate change adaptation measures and 

using geospatial technologies for progress tracking will ensure 

the resilience and sustainability of mangrove restoration 

projects. Success depends on a harmonious blend of techno-

social philosophies, continuous methodological improvements 

and robust policies, aiming to reinstate ecosystem structures for 

nature and society’s long-term enrichment. 
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