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Abstract   

Water is crucial in agriculture, domestic use and industrial development. In 
recent years, the demand for groundwater has significantly risen due to 

industrialization, urbanization, population growth and increased agricultural 
activities. This study focuses on the groundwater quality spatial distribution 
and utilizes geostatistical analysis to predict groundwater chemical 

parameters within the Noyyal sub-basin, employing geographic information 
system (GIS) technology. Data transformation methods were applied to 
reduce skewness in several chemical parameters to improve the precision of 

the spatial representation of groundwater chemistry. Comparing the 
calculated concentrations to the established permissible limits showed that 
calcium, bicarbonate and sodium absorption ratio concentrations were 

within acceptable levels. In contrast, parameters such as magnesium, 
sodium, potassium, chlorine, sulfate, fluoride, pH, total hardness, electrical 
conductivity and total dissolved solids exceeded the permissible thresholds. 

The study also identified the most appropriate semi-variogram model for 
each water quality parameter based on the root mean square error (RMSE). 
The Exponential model with log-transformed data was the best fit for Ca, Na, 

K, HCO3, pH, HAR and EC, providing physically meaningful results. For TDS, 
Mg, SO4, F and SAR, the Spherical model with log-transformed data yielded 
the most reliable RMSE values. The Gaussian model produced satisfactory 

results for Cl and Na %. 
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Introduction   

Water is a vital resource for agricultural, domestic and industrial needs. Recently, 
groundwater demand has sharply risen, driven by industrialization, urbanization, 

population growth and expanding agricultural activities (1). In the Noyyal River 
Basin, groundwater recharge mainly occurs through rainfall, infiltration during 
monsoon and non-monsoon periods, seepage from agricultural processes and 

contributions from water bodies such as tanks and reservoirs. However, in 
Coimbatore district, groundwater quality has deteriorated due to over-extraction, 
improper waste disposal and the discharge of untreated industrial effluents into 

water sources (2). This water quality degradation presents significant risks to 
public health and economic development, making assessing and monitoring 
groundwater quality crucial (3). Groundwater is often considered a more 

dependable water source than surface water, particularly during drought 
conditions, making its contamination a serious concern for communities 
dependent on it for their daily water needs (4). 
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 Changes in groundwater quality are influenced by 
various physical and chemical factors, which are further 

affected by human activities in the Noyyal Basin. Industrial 
activities in the region consume large volumes of water and 
release toxic dissolved substances into agricultural land and 

water bodies (5). Introducing pollutants such as heavy 
metals can drastically alter groundwater composition, 
potentially causing health risks for those who rely on this 

water (6). A comprehensive understanding of these quality 
differences is vital for successfully managing and planning 
water resources. 

 Geographic Information Systems (GIS) have become 

invaluable for integrating spatial data and assessing 
groundwater quality, particularly in large and hard-to-reach 
areas (7). GIS provides a platform for visualizing complex 

spatial relationships, helping to identify patterns and trends 
in groundwater data, which is critical for informed decision-
making (8). By combining GIS with geostatistical techniques, 

more comprehensive analyses of groundwater quality 
parameters can be performed, creating spatial distribution 
maps that pinpoint regions at risk of contamination (9). 

 This research constructed groundwater quality 

spatial maps using the Kriging method, a powerful 
geostatistical tool for estimating surface distributions from 
dispersed data points. This technique is especially useful 

when data collection is sparse or uneven, as it employs 
statistical models to predict values at locations without 
direct measurements. Root Mean Square Error (RMSE) was 

used as a standardization tool to assess the accuracy of 
different models for each parameter. Through this 
integrated approach, the research aims to map the spatial 

mapping of groundwater quality in the Noyyal Basin, 
providing a foundation for developing water management 
strategies. The importance of this study lies not only in its 

immediate implications for groundwater quality 
assessment but also in its broader contribution to 

understanding the influences of industrial and agricultural 
activities on water resources. The findings will be valuable 

for policymakers and stakeholders, guiding efforts to 
implement sustainable practices that protect groundwater 
quality for future generations. 

 

Materials and Methods 

Study area description 

The Noyyal sub-basin, a branch of the Cauvery River, spans 
3,510 square km. It begins in the Vellingiri Hills in the 

western region of Tamil Nadu. The Noyyal River is supplied 
by seven primary tributaries, which originate from first- and 
second-order streams in the foothills of the Nilgiris. The 

river flows through Coimbatore, Tiruppur, Karur and Erode, 
eventually merging with the Cauvery River at Kodumudi in 
Erode district. Its flow is typically seasonal, primarily 

occurring during the northeast monsoon. However, some 
river sections maintain a perennial flow due to urban 
sewage discharge from Coimbatore and return flows from 

the Lower Bhavani Project (LBP). The western and upper 
areas of the basin generally receive over 3,000 mm of 
rainfall each year during the southwest monsoon. In 

contrast, the eastern parts receive approximately 600 mm 
of rainfall, mainly during the northeast monsoon. The study 
was conducted in 2023 and the study area is depicted in Fig. 

1. 

Methodology 

ArcGIS 10.1 software is used to analyze the spatial variation 
of the quality of groundwater parameters. The parameters 
examined include Calcium (Ca), Chlorine (Cl), Electrical 

conductivity (EC), Fluoride (F), Potassium (K), Magnesium 
(Mg), Bicarbonate (HCO₃), Total hardness (HAR), Sodium 
(Na), Hydrogen ion concentration (pH), Sodium percentage 

(Na %), Total dissolved solids (TDS) and the Sodium 

 

Fig. 1. Location of the study area. 
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adsorption ratio (SAR). ArcGIS software is employed to map 
the spatial distribution and generate groundwater quality 

surfaces using appropriate kriging techniques. Using kriging 
methods, the geostatistical analysis tool creates histograms 
and surface maps (10). 

 Geostatistical methods are applied to model the 
spatial variation in groundwater chemistry. These methods 
consist of numerical techniques that describe spatial 
characteristics using random models, similar to how time 

series analysis models temporal data (11). Geostatistics 
deals with data that exhibit spatial autocorrelation, 
meaning they follow specific patterns or structures, which 

can be revealed through semi-variogram analysis. The semi-
variogram illustrates the connection between the lag 
distance (the space between measurements) on the x-axis 

and the variance or spatial correlation value on the y-axis. 
From the semi-variogram, one can interpret a studied 
propertys’ degree of spatial correlation (12). The value of 

the semi-variogram increases with distance, indicating 
more substantial spatial autocorrelation at shorter lag 
distances. 

To compute the semi-variogram, the following formula is 

typically employed, as given in Equation 1: 

 

 

 

Where 

γ(h) = semi-variogram value for the lag distance (h), 

n(h) = The total number of paired variables separated by 

lag distance (h) 

Z(x) = value of the variable. 

 Kriging is a geostatistical method used to make 
precise, unbiased predictions of regionalized variables at 

locations where data is unavailable, utilizing the semi-
variograms’ structural characteristics along with the initial 
dataset (1). The standard equation for the kriging method 

is expressed as follows in Equation 2: 

 

 

 

Where  

 = weight associated with each data point i (i =1, 2, 3…, 

n),  

Z(xi) = observed value at point xi,  

Z*(x0) = predicted value at point x0 and n is the number of 
sample points. 

The values of the weights are      estimated by minimizing 

the kriging (error) variance (σ2) given in Equation 3: 

 

 

 

 In Kriging, the unbiased condition is expressed in 
the form of as given in Equation 4. 

 

 

 Equation (4) results in DeMarsilys’ formula, which 

indicates that the total weights should equal 1.The kriging 
system of equations that should be solved areas follows in 
Equation 5-6: 

 

 

 

  

 Where µ is a Lagrange multiplier and γ (xi - xj) is the 

semi-variogram between two points xi and xj. The following 
criteria are used to compare the various variogram models 
and data transformations as given in Equation 7: 

 

 

 

 

where  

RMSE = Root mean square error. 

RMSE is used to compare models, where the model with the 

lowest RMSE is deemed the best fit for the data. 

This study describes the approach for utilizing GIS software 

in the variation in groundwater quality, as illustrated in Fig. 
2. The process involved the following steps: 

a. The initial phase of the geostatistical analysis is 

Exploratory Spatial Data Analysis (ESDA), which is 
conducted with ArcGIS software and performs histograms 
and normality tests. 

b. Spatial interpolation of groundwater quality data using 

ArcGIS, employing ordinary Kriging as the primary method. 
The process began with semi-variogram modelling, which 
helps characterize the spatial relationship between the 

data points by measuring how the variability in 
groundwater quality changes over distance. Following this, 
cross-validation was performed, which tests the models’ 

accuracy by comparing predicted values against observed 
data. Finally, based on the validated model, groundwater 
chemistry maps were developed to illustrate the spatial 

distribution of various groundwater quality parameters. 
This comprehensive approach ensures reliable and 
accurate representations of groundwater quality across the 

study area. 

 

Results and Discussion  

Descriptive statistics 

The interpolation of the data process considers the 

... (Eqn. 1) 

... (Eqn. 2) 

... (Eqn. 4) 

...(Eqn. 5) 

...(Eqn. 6) 

... (Eqn. 7) 

...(Eqn. 3) 
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datasets’ normality. Given the considerable skewness in the 

data, it was normalized through a suitable transformation 
to enhance its validity (13). ArcGIS provides two primary 
types of transformations in Exploratory Spatial Data 

Analysis (ESDA): logarithmic and Box-Cox transformations 
(14). For this study, a logarithmic transformation was 
applied to all water quality parameters to maintain positive 

values. The skewness values for each water quality 
parameter are provided in Table 1, along with other basic 

statistical metrics. 

 After the transformation, parameters such as TDS, 
Ca, Mg, Na %, Na, K, Cl, SO4, HCO3, F, pH, SAR, HAR and EC 

exhibited reduced skewness. The histograms and statistical 
data for potassium ions (used as a representative example 
of other water quality parameters) are shown in Figs. 3 and 
4. As seen in Fig. 3, the potassium ion concentration was not 
generally distributed before transformation. However, after 
applying the logarithmic transformation (Fig. 4), the data 

followed a normal distribution. 

Classification of Groundwater quality  

The spatial distribution of the groundwater quality 

parameters is illustrated in the maps shown in Fig. 5. A 
comparison of the calculated groundwater quality 

concentrations with the permissible limits is provided in 
Table 2. The results reveal that calcium, bicarbonate and 
sodium absorption ratio remain within the permissible limits, 

while parameters such as magnesium, sodium, potassium, 
chlorine, sulfate, fluoride, pH, total hardness, electrical 
conductivity and total dissolved solids exceed the established 

standard limits. 

 The calcium, magnesium, potassium and bicarbonate 

concentrations were higher in the northern, northern and 
southern to western, northeast and east-to-west parts of the 

Noyyal Basin, respectively. Sodium, sulfate and pH levels 
were elevated across the entire basin. At the same time, 
chlorine, fluoride, total hardness, electrical conductivity and 

total dissolved solids were more concentrated in the 
southwest portion of the basin. The average pH value of 8.26 
indicates that the groundwater throughout the basin is 

alkaline, which aligns with the findings reported in (15). 
Salinity has been identified as a significant concern in the 
basin, with electrical conductivity (EC) values ranging from 

Fig. 2. Flow chart of the steps followed for the geostatistical analysis. 

S.No. Water Quality Parameter Number of Data Min Max Mean Std Skewness Kurtosis 
1 TDS 33 71 2976 1144.9 963.69 0.638 1.873 
 TDS* 33 4.2627 7.998 6.588 1.074 -0.44 2.316 

2 Ca 33 8 204 71.455 62.644 1.0189 2.695 
 Ca* 33 2.079 5.318 3.873 0.932 0.0495 2.044 

3 Mg 33 4.86 218.7 76.575 64.244 0.8125 2.319 
 Mg* 33 1.581 5.387 3.897 1.067 -0.5219 2.414 

4 Na % 33 17.576 74.552 41.676 12.674 0.493 3.08 
 Na %* 33 2.8666 4.3115 3.6838 0.3138 -0.337 3.03 

5 Na 33 12 621 214.15 201.13 0.651 1.842 
 Na* 33 2.4849 6.4313 4.777 1.222 -0.2623 1.953 

6 K 33 2 274 30.606 52.013 3.565 16.24 
 K* 33 0.6932 5.613 2.655 1.223 0.2368 2.72 

7 Cl 33 7 1418 419.03 487.94 1.038 2.411 
 Cl* 33 1.9549 7.257 5.1719 1.504 -0.262 2.247 

8 SO4 33 1 504 144.48 152.37 1.071 2.871 
 SO4* 33 0 6.221 4.113 1.718 -1.045 3.505 

9 HCO3 33 3.417 6.6446 5.135 0.7418 0.1775 2.904 
 HCO3* 33 1.229 1.8938 1.6259 0.146 -0.268 3.306 

10 F 33 0.05 2.85 0.8109 0.793 1.1245 3.404 
 F* 33 -2.99 1.0473 0.8405 1.302 -0.405 1.933 

11 pH 33 1357.8 8.7 8.2606 0.237 0.3086 2.354 
 pH* 33 2.054 2.163 2.11 0.028 0.254 2.349 

12 SAR 33 0.728 10.354 3.8235 2.867 0.735 2.36 
 SAR* 33 0.317 2.337 1.0312 0.836 -0.098 1.74 

13 HAR 33 45 1200 493.79 406.53 0.844 2.15 
 HAR* 33 3.806 7.090 5.827 0.94 -0.3167 2.404 

14 EC 33 140 5060 1942.1 1622 0.6631 1.899 
 EC* 33 4.9416 8.529 7.1407 1.033 -0.3867 2.279 

*Transformed using logarithm 

Table 1. Statistical analysis of groundwater hydrochemical parameters 
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Fig. 3. Statistical analysis of potassium-before transformation. 

Fig. 4 Statistical analysis of potassium- before transformation. 

S. 
No 

Groundwater quality 
parameters 

Permissible limit 
(mg/L) 

Conc. in 
groundwater           

(mg/L) 

Mean 
(mg/L) 

Standard 
Deviation 

(mg/L) 
Affected area Remarks 

1 Calcium 200 8 to 20.4 71.45 62.64 Northern part of 
Noyyal basin. 

Within permissible 
limit 

2 Magnesium 100 4.86  to 218.7 76.57 64.24 

Northern and 
Southern to the 

Western part of the 
basin 

Exceeds 
permissible limit 

3 Sodium 20 12 to 621 214.1 201.13 Throughout the basin Exceeds 
permissible limit 

4 Potassium 14 2 to 274 30.60 52.01 North-east part of 
Noyyal basin 

Exceeds 
permissible limit 

5 Chlorine 1000 7 to 1418 419.0 487.94 southwest side of the 
basin 

Exceeds 
permissible limit 

6 Sulphate 400 1 to 504 144.4 152.37 Throughout the basin Exceeds 
permissible limit 

7 Bicarbonate 600 3.417 to 6.6 5.13 0.74 East to west side of 
the basin 

Within permissible 
limit 

8 Fluorine 1.5 0.05 to 2.8 0.81 0.79 Southwest part of the 
basin 

Exceeds 
permissible limit 

9 pH 6.5 to 8.5 7.8 to 8.7 8.26 0.2370 Throughout the basin Exceeds 
permissible limit 

10 
Sodium absorption 

ratio 26 to less than 10 0.728 to 10.35 3.82 2.86 Throughout the basin 
Within permissible 

limit 

11 Total hardness 600 45 to 1200 76.57 64.24 Southwest part of the 
basin 

Exceeds 
permissible limit 

12 Electrical conductivity 2000 µS/cm2 140 to 5060 µS/cm2 1942 1622 Southwest part of the 
basin 

Exceeds 
permissible limit 

13 Total dissolved solids 600 71 to 2976 1144 963.69 Southwest part of the 
basin 

Exceeds 
permissible limit 

Table 2. Comparison of groundwater quality parameters with permissible limit (18, 19, 20) 
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140 to 5060 µS/cm². The movement of salts through 

wastewater recharge contributes to the increased salinity of 
groundwater (16). 

Geostatistical analysis 

Semi-variograms were computed after normalizing the data 
in the Universal Transverse Mercator (UTM) coordinate 

system using ArcGIS Geostatistical Analyst, with ordinary 
Kriging applied for this procedure. The semi-variogram 

model was created by adjusting parameters to fit the 

experimental semi-variogram derived from the data. The 
angle direction and angle tolerance were kept constant to 
ensure consistency across different semi-variogram models. 

The most suitable semi-variogram model was selected 
based on the Root Mean Square Error (RMSE) criterion. The 
experimental semi-variogram, represented by scatter points 

and the omnidirectional semi-variogram model, depicted 

Fig. 5. Spatial distribution of groundwater quality parameters. 

Hydrochemical 
parameters 

Number of 
Data Transformation Model Nugget Partial sill Range Sill Nugget/

sill 
Nugget/ 

sill 

TDS 33 Logarithmic Spherical 0.95 0.41 0.8563 1.36 0.69 Moderate 
Ca 33 Logarithmic Exponential 0.83 0.071 0.554 0.9 0.92 Weak 

Mg 33 Logarithmic Spherical 0.69 0.462 0.095 1.15 0.59 Moderate 

Na % 33 Logarithmic Gaussian 0.03 0.071 0.144 0.11 0.35 Moderate 
Na 33 Logarithmic Exponential 1.20 0.488 0.8487 1.68 0.71 Moderate 
K 33 Logarithmic Exponential 1.24 0.455 0.977 1.69 0.73 Moderate 
Cl 33 Logarithmic Gaussian 1.91 0.575 0.478 2.49 0.76 Weak 

SO4 33 Logarithmic Spherical 2.46 0.884 0.7699 3.34 0.73 Moderate 
HCO3 33 Logarithmic Exponential 0.47 0.136 0.977 0.60 0.77 Weak 

F 33 Logarithmic Spherical 0.81 0.742 0.0942 1.55 0.52 Moderate 
pH 33 Logarithmic Exponential 0.00 4.345 0.1357 4.34 0.00 Strong 

SAR 33 Logarithmic Spherical 0.51 0.147 0.099 0.66 0.78 Weak 
HAR 33 Logarithmic Exponential 0.66 0.345 0.7482 1.0 0.66 Moderate 
EC 33 Logarithmic Exponential 0.83 0.395 0.8715 1.22 0.67 Moderate 

Table 3. Suitable semi-variogram model characteristics for map generation 
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Fig. 6. Semi-variogram of groundwater quality parameters. 
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by the blue line, are shown in Fig. 6. The characteristics of 
the selected semi-variogram models for map generation are 

detailed in Table 3. 

 The results indicate that the optimal semi-variogram 

model, determined by the RMSE criterion, differs for each 
water quality parameter. For parameters like Ca, Na, K, 
HCO₃, pH, HAR and EC, the Exponential model applied to log
-transformed data produced physically reasonable 
concentration maps. For parameters such as TDS, Mg, SO₄, F 

and SAR, the Spherical model with log-transformed data 
was found to be most appropriate. The Gaussian model 
with the ordinary data yielded satisfactory Cl and Na % 

results. 

 The “range” refers to the distance at which the semi-

variogram model begins to level off and this distance varies 
across different hydrochemical parameters. The sill is the 

value at which the model flattens, while the “nugget” 
represents the value where the model intersects the y-axis. 
The difference between the sill and the nugget is called the 

partial sill. The proportion of the nugget to the sill reflects 
the spatial dependency of the quality of groundwater 
parameters. Three categories are used to classify this 

spatial dependence: strong (if the ratio is less than 25 %), 
moderate (if the ratio ranges between 25 % and 75 %) and 
weak (if the ratio exceeds 75 %) (17). pH is classified as 

having strong spatial dependence, while parameters such 

as calcium, chlorine, bicarbonate and sodium absorption 
ratio fall under weak spatial dependence. The remaining 

parameters are classified as moderate. Once the semi-
variogram model was established, the cross-validation tool 
was used to assess the accuracy of groundwater chemistry 

predictions at unsampled locations. Cross-validation 
statistics were then analyzed to determine whether the 
model and its parameters were reasonable and reliable. 

Prediction map of spatial distribution of parameters of 

groundwater  

Using the best model selected through cross-validation, the 

prediction maps for the spatial distribution of chemical 
parameters of groundwater are presented in Fig. 7. These 

maps effectively illustrate the groundwater quality across 
the Noyyal basin. Ordinary Kriging was practical in 
determining the regions’ groundwater quality parameters 

and spatial distribution. The predicted maps indicate that, 
in most areas, hydrogen ion concentration (pH) values 
exceed 8, suggesting a significant alkalinization of the basin. 

This trend is expected to worsen over time. 

 In summary, the relative importance of cations, on 

average, follows the order: Na > Ca > Mg > K, while for 
anions, it is Cl > SO₄ > HCO₃ > CO₃. However, this ranking 

may vary depending on the specific location of the sample, 
as it is influenced by factors such as climate, the underlying 
parent material and human activities. 

Fig. 7. Spatial distribution of groundwater chemical parameter. 
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Conclusion 

A comparison of the calculated concentrations with the 

permissible limits revealed that calcium, bicarbonate and 
sodium absorption ratios fall within acceptable levels, while 

the remaining parameters exceed the allowable thresholds. 
The analysis also shows that the optimal semi-variogram 
model, based on RMSE, varies for each groundwater quality 

parameter. The predicted maps suggest that the alkalinization 
of the entire basin is likely to worsen and the extent of the 
affected areas will increase. In conclusion, the research 

highlights the importance of geospatial methods as essential 
tools for policymakers and planners, aiding in developing 
strategies for efficient groundwater resource management. 
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