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Abstract 

Sweet corn, a naturally occurring mutant of field corn, is characterized by 

elevated levels of water-soluble polysaccharides due to the inhibition of 

sugar-to-starch conversion during seed development. This mutation results 

in seeds with lower carbohydrate reserves, which pose challenges such as 

reduced germination, seed vigour, poor field establishment, and limited 

shelf life. In this study, we investigated the relationship between food 

reserve levels and seed germination and vigour in sweet corn over a storage 

period. Seeds from both sweet and field corn, each with 8% moisture 

content, were stored under three conditions: ambient air, nitrogen, and 

vacuum. After six months, sweet corn seeds exhibited a 30% decrease in 

germination under ambient conditions, accompanied by a 73% reduction in 

total sugars. In contrast, field corn seeds showed a 6% decrease in 

germination and a 22% reduction in total starch under the same conditions. 

Notably, seed germination and seedling dry matter production were 

significantly and positively correlated with food reserve levels in both sweet 

and field corn across all storage environments. Total sugars were identified 

as a significant contributor to seed germination in sweet corn (p < 0.05), 

with regression models showing high R² values (0.9860 to 0.9998), indicating 

strong alignment with the observed data. These findings suggest that the 

depletion of total sugars in sweet corn seeds, driven by respiration and 

oxidation during storage, plays a critical role in the decline of seed quality 

and shelf life. 
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Introduction 

Sweet corn is well known worldwide for its distinct creamy, juicy, sweet 

taste, crispness, and pleasant flavour. It is a rich source of vitamins A and C, 

as well as several minerals and it is becoming increasingly popular because 

it contains zein, a protein used in medicine to produce nutraceuticals (1). 

Zein is particularly beneficial in nutraceuticals due to its excellent 

biocompatibility, biodegradability, and ability to encapsulate and deliver 

bioactive compounds effectively (2). The United States is the leading 

producer of sweet corn, followed by Japan, Canada, France, and Taiwan. 

The size of the sweet corn seed market worldwide is currently US$ 820.3 

million, and it is predicted to reach US$ 1.19 billion by the end of 2033, 
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increasing at a consistent 3.8% compound annual growth 

rate (CAGR) https://www.factmr.com/report/399/sweet-

corn-seed-market. 

Sweet corn is a naturally occurring mutant variety of 

"starchy" or field corn (3). Genetically, sweet corn differs 

from field corn because it carries homozygotes for one or 

more recessive genes involved in the biosynthesis of 

starch, which regulates the conversion of sugar to starch 

and ultimately results in ripened seeds with comparatively 

higher sugar and lower starch content (4). Field corn seeds 

are composed of 27% carbohydrates, 18% protein, 1% 

sugar, 6% fat, and 26% fiber, whereas sweet corn seeds 

consist of 6.8% carbohydrate, 6.2% protein, 13% sugars, 

2% fat, and 6.8% fiber (5). Genetically engineered corn can 

be produced from three varieties: high amylose (40–70% 

amylose content), waxy (nearly 100% amylopectin starch), 

and sugary (lower starch but higher sucrose content) (6). 

Mutation in genes that inhibit the conversion of sugar into 

starch results in significantly increased levels of water-

soluble polysaccharides (WSPs) and twice the sugar 

content of field corn (7). The main component extracted 

from the WSP fraction of sweet corn is phytoglycogen, a 

polysaccharide composed of glucose molecules linked by 

α-1,4- and α-1,6-glucosidic bonds (8). The accumulation of 

phytoglycogen results in a creamy texture. However, the 

rapid conversion of sugar to phytoglycogen after harvest is 

a major problem affecting seed quality (9). 

Sweet corn production is plagued by low seed germination 

and vigour, poor field establishment, and limited shelf life. 

Seed germination and vigour are influenced by genotype, 

which determines intrinsic potential; environmental 

factors like temperature and moisture; soil-borne diseases 

that impede growth; and storage duration, which affects 

seed viability and metabolic integrity (10). Field stand 

issues are often related to the inherent poor seed vigour 

and storability of the seeds (11). The poor field stands of 

sweet corn are associated with insufficient seedling energy 

reserves due to reduced starch concentrations (12). 

Similarly, shrunken2 (sh2) hybrids which are super sweet 

corn varieties that carry the shrunken2 gene lack sufficient 

storage carbohydrates for seedling growth compared to 

normal sweet corn and sh2 plants are unable to utilize 

available carbohydrate reserves (13, 14). The typical sh2 

corn seeds are depleted of starch after four days of 

germination (11). The lower seed weight of sh2 corn 

compared with that of normal endosperm corn is the 

result of low levels of stored carbohydrates (15). The 

presence of more sugar in the kernel is typically associated 

with decreased seedling vigour in endosperm mutant 

seeds. The sh2 genotype may also be associated with 

dysfunction of the scutellum or carbohydrate metabolism 

axis. 

Thus, the poor seed quality of sweet corn is largely 

attributed to its low levels of stored carbohydrates. To 

address this issue, it is crucial to study the correlation 

between the depletion of food reserves and the decline in 

seed germination and vigour during storage. Additionally, 

there is a need to develop standardized storage 

technologies to minimize the loss of stored food reserves. 

Therefore, this study was conducted to investigate 

changes in kernel food reserve composition and their 

impact on seed germination during the storage of sweet 

corn seeds under ambient and modified atmospheric 

storage conditions. Furthermore, correlation analysis and 

regression equations were established to understand the 

impact of kernel food reserves on seed germination and 

vigour. 

 

Materials and Methods 

Sweet corn seeds of the variety Indum Suruchi were 

obtained from Indo-American Hybrid Seeds, Bangalore, 

Karnataka and field corn seeds of the hybrid CO H(M) 8 

were obtained from the Department of Millets, Tamil Nadu 

Agricultural University (TNAU), Coimbatore, Tamil Nadu. 

Seeds of sweet corn and field corn were dried to 8% 

moisture content and packed in 700-gauge polythene bags 

to expose the seeds to three storage environments such as 

ambient air, N2 (100%) and vacuum (16). The seeds were 

stored for six months under ambient conditions at the 

Department of Seed Science and Technology, TNAU, 

Coimbatore. The stored seeds were subjected to an 

analysis of seed germination and vigour and food reserve 

analysis at monthly intervals for all treatments. 

Germination tests were conducted with three replicates, 

each consisting of 100 seeds on germination paper. After 

that, the seeds were incubated in a germination chamber 

at 25°C ± 3°C with 1000 lux light for 7 days. The number of 

germinated seeds was counted daily and reported as the 

speed of germination. Based on the number of germinated 

seeds, germination percentage (G%=∑(Gt/Gi), where Gt is 

the number of germinated seeds on day t), and the Gi total 

number of seeds sown and the vigour index (VI=G%×SL, 

where SL is seedling length) were calculated (17, 18). Later, 

the seedlings were dried in a hot air oven maintained at 85 

± 2°C for 24h, cooled in a desiccator, and weighed (19). The 

result was expressed as dry matter production (g 10 

seedlings− 1). 

The total starch content in the seeds was determined by 

following the method mentioned in previous research (20). 

Native starches in seeds (100 g) of sweet corn and field 

corn were isolated with toluene alcohol and then extracted 

with ethanol and hot water. The starch content was then 

measured spectrophotometrically at 490 nm using the 

phenolic-sulfuric method. The total sugar content in the 

seeds was determined using the phenol‒sulfuric method 

(21). Ground seed samples (100 mg) of sweet corn and field 

corn were sieved using 40µm-mesh sieves, and sugars 

were extracted with hot 80% ethanol in three repetitions. 

The combined ethanol extracts were then analyzed 

spectrophotometrically at 490nm. The reducing sugars in 

sweet corn seeds were determined by the 3, 5-

dinitrosalicylic acid method (22). The total seed protein 

content was determined using Lowry’s method (23) using 

hot trichloroacetic acid precipitation and alkaline reagent 

extraction. The extract was then reacted with Folin-

Ciocalteu reagent, and the absorbance at 750nm was 

measured to quantify the protein content in the seeds. 

https://plantsciencetoday.online
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Statistical Analysis 

Origin software version 2024b was used to plot the storage 

data. The Pearson correlation coefficients were calculated 

and tested for significance at p<0.01 and p<0.05 (24) for 

the germination with kernel food reserve components. The 

relationships were then plotted in Origin software (version 

2024b). Regression equations between seed germination, 

vigour and food reserve components were generated in 

XLSTAT Version 2019. 

 

Results and Discussion 

Seeds primarily store reserve foods in the form of 

carbohydrates, fats and proteins. The availability of food 

reserves is one of the important factors influencing seed 

storage potential as revealed by the theory of starvation of 

meristematic cells (25). Initially, sweet corn seeds 

contained 180.2mg/g total starch and 256mg/g total sugar, 

whereas field corn seeds contained 435.2mg/g and 

78.1mg/g, respectively (Fig. 1). Thus, food reserves in field 

corn seeds were dominated by total starch, while sweet 

corn was rich in total sugar.  

 

Both seed types were stored for six months in three 

environments such as ambient air, nitrogen and vacuum. 

Although initial germination of 96% was recorded for both 

sweet corn and field corn, after 6 months of storage, only 

66% germination was recorded for sweet corn, while 90% 

germination was recorded for field corn under ambient air. 

The rate of decrease in seed vigour parameters was greater 

in sweet corn than in field corn (Fig. 2, 3). Sweet corn is 

generally more susceptible to germination loss compared 

to field corn due to its unique genetic and physiological 

characteristics. The sugary (su) endosperm, associated 

with sweet corn, has been shown to result in reduced 

germination and shorter seedlings compared to the 

starchy (Su) endosperm found in field corn (26). 

Additionally, the presence of the ae gene in sweet corn 

seeds further contributes to decreased seedling 

emergence and early growth, as it manifests in lower seed 

vigour (27). The shrunken-2 (sh2) genotype, which is 

common in sweet corn, exacerbates this susceptibility due 

to the smaller and lighter seeds with a lower endosperm-

to-embryo dry weight ratio compared to su or normal 

plants, making them highly prone to fungal rot during field 

germination (27, 28). The biochemical composition of 

sweet corn seeds, characterized by a small endosperm, 

small embryo, high sugar content, and low starch content, 

further increases their vulnerability to fungal and soilborne 

pathogens (29). These factors also promote electrolyte 

leakage through pericarp fractures, stimulating fungal 

growth and infection, which further hampers germination 

(15, 29, 30). In contrast, field corn has a higher starch 

content and more robust seed structure, providing greater 

resistance to such challenges. Thus, the distinct seed 

morphology and biochemical composition of sweet corn 

make it more prone to germination loss under suboptimal 

conditions. Over six months of storage, the greatest 

decrease in food reserves occurred under ambient air 

conditions, followed by vacuum and nitrogen, for both 

sweet corn and field corn (Fig. 4, 5). At the same time, the 

decrease in food reserves over six months of storage was 

greater in sweet corn than in field corn under all three 

storage conditions, such as ambient air, vacuum and 

nitrogen (Fig. 4, 5). Furthermore, in both sweet corn and 

field corn, the rate of decrease in seed germination and 

seedling vigour was found to be gradual when stored in 

nitrogen and vacuum, while it showed a steep decrease 

when stored in ambient air (Fig. 2, 3).  

Food reserves in the endosperm is one of the factors that 

affect the shelf life of seeds, since seeds require a source of 

energy for germination after storage (14, 27). The 

consumption of reserves stored in the endosperm is one of 

the major causes of the loss of viability of primed rice 

seeds (31). Pre-consumption of stored reserves might 

result in a breakdown of the food transport system (31, 32). 

Respiration is a process that occurs in seeds, by which 

glucose, along with oxygen molecules, is converted into 

CO2 and energy for further utilization in metabolic 

activities (33). It is one of the important aspects that leads 

to loss of food reserves such as decrease in protein and 

non-reducing sugars along with increase in levels of 

reducing sugars and free fatty acids (34). Ambient oxygen 

is known to trigger a series of metabolic changes, such as 

an increase in respiration, consumption of storage 

reserves, accumulation of ROS and loss of membrane 

integrity, culminating in seed deterioration (35). Sweet 

corn and field corn differ significantly in their carbohydrate 

composition and metabolic activity, influencing their 

responses to ambient oxygen. Sweet corn has higher 

concentrations of simple sugars such as sucrose, glucose, 

and fructose, while field corn primarily stores 

carbohydrates as starch, which is metabolized more slowly 

(3). The abundance of simple sugars in sweet corn leads to 

higher respiration rates, causing faster depletion of energy 

reserves compared to field corn (11). In sweet corn, rapid 

sugar depletion also weakens antioxidant defense, 

exacerbating oxidative damage and membrane integrity 

loss (36). In contrast, field corn's reliance on starch 

mobilization slows its metabolic activity, providing greater 

stability under similar conditions (3). 

Fig. 1. Food reserves in sweet corn and field corn during initial storage. 
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High respiration rate can lead to rapid loss of seed reserves 

of energy and food supplies, especially in the embryo that 

can result in seeds not being able to germinate (37). 

Between the total sugars found in sweet corn and total 

starch stored in field corn, the former is the readily 

available substrate for respiration; hence, food reserves in 

sweet corn are more prone to rapid depletion (11). Thus, 

irrespective of the mechanisms that may be associated 

with seed deterioration, the loss of seed germination 

potential of orthodox seeds is known to be significantly 

influenced by rate of respiration (34). Therefore, reducing 

oxygen levels in the seed storage environment can lower 

the rate of respiration and slow the depletion of food 

reserve, thereby extending seed shelf life.  

Seeds also undergo oxidation, which results in faster seed 

deterioration (38). In particular, oxidative stress might be 

reduced in oxygen-free storage atmospheres (39, 40). The 

effect of oxygen on seed deterioration was found to be 

Fig. 2. Effect of modified atmospheric storage on physiological parameter of sweet corn seeds.  

https://plantsciencetoday.online
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greater when the seeds were stored at a lower moisture 

content (41). It should be noted that seed deterioration 

during storage could result in marked changes in the 

content and activity of enzymes capable of degrading 

stored reserves (42-44). Low rates of reduction in 

germination in oxygen-depleted atmospheric 

environments were observed for chickpeas, soybeans and 

carioca beans (45-47). A greater than 90% germination 

capacity was maintained for chickpeas stored under a 

combination of 80% CO2 and 20% N2 for one year (45). 

Similarly, in another study, soybean plants maintained 

their germination capacity when stored under CO2  

Fig. 3. Effect of modified atmospheric storage on physiological parameter of field corn seeds.  
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Fig. 4. Effect of modified atmospheric storage on food reserves of sweet corn seeds.  

Fig. 5. Effect of modified atmospheric storage on food reserves of field corn seeds. 
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compared to ambient air (46). Compared with that in an 

ambient environment, the hydration capacity of carioca 

beans was maintained when they were stored with N2 for 

360 days (47). A higher concentration of carbon dioxide 

(60%) and 0% of oxygen in pigeon pea seeds packed with 

gas enhances seed longevity, resulting in increased seed 

quality parameters (48). Retaining optimal germination 

capacity when storing seeds in an oxygen-depleted 

atmosphere may be associated with the inhibition of 

oxygen-dependent enzymatic activities, thereby retaining 

higher levels of seed reserves that is better utilized for 

seed germination, as observed in soybeans (46).  

In sweet corn, germination and seedling dry matter 
production were significantly and positively associated 

with all food reserves under nitrogen and vacuum 

conditions of storage. However, under ambient air 

conditions, the seed protein content was not correlated 

with seed germination. In field corn, seed germination and 

seedling dry matter production were significantly and 

positively associated with food reserves under all storage 

conditions (Fig. 6). The data revealed that the availability 

of storage reserves was strongly associated with seed 

germination and vigour since it was associated with faster 

depletion of food reserves, both between the corn types 

and among the storage environment. Therefore, the 

decrease in total sugar, the predominant storage reserve in 

sweet corn seeds, is significantly much greater than the 

decrease in total starch, the main storage reserve in field 

corn seeds. The loss of a predominant storage reserve 

(total sugar) could be one of the most important factors 

Fig. 6. Correlation matrix for seed germination and food reserves of sweet corn and field corn seeds stored under modified atmospheric storage. 
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leading to the poor storage potential of sweet corn seeds. 

Time series regression equations were used to examine the 

relationships between seed germination, seedling dry 

matter production, and kernel food reserves (Table 1, 2). 

The X2 (total sugars) under all three storage conditions and 

X4 (total protein) under vacuum storage considerably 

(p<0.05) contributed to seed germination in sweet corn. 

Table 1 shows that X2 (total sugars) considerably 

contributed (p<0.05) to the production of dry matter in 

seedlings under nitrogen and vacuum storage condition, 

while X4 (total protein) in vacuum storage strongly 

contributed (p<0.05) to the equivalent dry matter 

production in seedlings under those conditions. In the 

case of field corn, X1 (total starch) contributed (p<0.05) to 

germination and seedling dry matter production under all 

three storage conditions and two storage conditions like 

nitrogen and vacuum, respectively (Table 2). 

The equations with significant X2 (total sugars) in sweet 

corn had R2 values ranging from 0.9860 to 0.9998, 

suggesting that the equations are highly consistent with 

the data for sweet corn. Among the nutritive components, 

total sugar was the main factor affecting the seed 

germination of sweet corn under all three atmospheric 

storage conditions. The equations with significant X1 (total 

starch) in field corn had R2 values ranging from 0.9803 to 

0.9996, suggesting that the equations are highly consistent 

with the field corn data. In field corn, total starch had a 

significant role in influencing (p<0.05) germination under 

all storage conditions. The aforementioned analysis was 

followed by the development of more straightforward 

equations using the TSR by removing variables that had 

negligible impacts on seed germination and seedling dry 

matter production. The results of the investigation showed 

that in all three storage atmospheres of sweet corn, total 

sugars had a substantial (p<0.05) impact on both seed 

Parameters Timeseries regression equations R2 

  Ambient air   

Germination % 
Y1 = 58.34609– 0.32817X1 + 0.291547X2 + 0.231384X3 – 0.17933X4 

(b0 = 0.0522, b1 = 0.1584, b2 = 0.0407, b3 = 0.2943, b4 = 0.5858) 0.9979 

Seedling dry weight 
Y2= 0.6200591 – 0.00102X1 + 0.003444X2 + 0.00288X3 – 0.00714X4 
(b0 = 0.1842, b1 = 0.7878, b2 = 0.1267, b3 = 0.5155, b4 = 0.3703) 0.9954 

  Nitrogen   

Germination % Y1 = 76.47533– 0.02096X1 + 0.096074X2 – 0.02504X3 + 0.035366X4 
(b0 = 0.0041, b1 = 0.4285, b2 = 0.0275, b3 = 0.5480, b4 = 0.7110) 

0.9972 

Seedling dry weight Y2= 0.43976 – 0.00182X1 + 0.001735X2 + 0.004767X3 – 0.00105X4 
(b0 = 0.4915, b1 = 0.5079, b2 = 0.0914, b3 = 0.3308, b4 = 0.9168) 

0.9860 

  Vacuum   

Germination % Y1 = 43.44124– 0.05486X1 – 0.02934X2 +0.149504X3 + 0.637264X4 
(b0 = 0.0066, b1 = 0.0622, b2 = 0.0216, b3 = 0.0130, b4 = 0.0101) 

0.9998 

Seedling dry weight 
Y2= – 0.59773– 0.00204X1 + 0.000094X2 + 0.006767X3 + 0.015856X4 

(b0 = 0.0677, b1 =0.4276, b2 = 0.0135, b3 = 0.6876, b4 = 0.0336) 
0.9998 

Parameters Timeseries regression equations R2 

  Ambient air   

Germination % Y1 = 81.79741+ 0.04237X1 + 0.033545 X2 – 0.1117X3 – 0.01157X4 
(b0 = 0.0001, b1 = 0.0060, b2 = 0.3181, b3 = 0.0771, b4 = 0.6103) 0.9995 

Seedling dry weight Y2= – 0.01639 + 0.000627X1 + 0.011984X2 + 0.012102X3 – 0.00245X4 
(b0 = 0.9497, b1 = 0.4422, b2 = 0.1420, b3 = 0.2069, b4 = 0.5902) 0.9980 

  Nitrogen   

Germination % Y1 = 81.79741+ 0.04237X1 + 0.033545 X2 – 0.1117X3 – 0.01157X4 
(b0 = 0.0001, b1 = 0.0060, b2 = 0.3181, b3 = 0.0771, b4 = 0.6103) 0.9995 

Seedling dry weight Y2= – 0.01639 + 0.000627X1 + 0.011984X2 + 0.012102X3 – 0.00245X4 
(b0 = 0.9497, b1 = 0.4422, b2 = 0.1420, b3 = 0.2069, b4 = 0.5902) 0.9980 

  Vacuum   

Germination % Y1 = 90.67311+ 0.089047X1 –0.40383X2 +0.161154X3 – 0.14428X4 
(b0 = 0.0289, b1 = 0.0575, b2 = 0.1854, b3 = 0.6374, b4 = 0.7092) 0.9838   

Seedling dry weight Y2= 0.228723+ 0.004327X1– 0.00611 X2 + 0.001848X3 –0.00109X4 
(b0 = 0.4406, b1 = 0.0060, b2 = 0.1865, b3 = 0.7182, b4 = 0.8506) 0.9996   

Table 2. Regression equations: Seed vigour vs. kernel food reserves in field corn (X1: Total starch, X2: Total sugar, X3: Reducing sugar, X4: Total protein; Y1: Germi-
nation percentage, Y2: Seedling dry weight; b0, b1, b2, b3, b4: P value for intercept and coefficients of X1, X2, X3, and X4, respectively) 

Table 1. Regression equations: Seed vigour vs. kernel food reserves in sweet corn (X1: Total starch, X2: Total sugar, X3: Reducing sugar, X4: Total protein; Y1: Germi-
nation percentage, Y2: Seedling dry weight; b0, b1, b2, b3, b4: P value for intercept and coefficients of X1, X2, X3, and X4, respectively) 
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germination and seedling dry matter production (Table 3). 

On the other hand, under all three storage atmospheres, 

total starch was revealed to be a significant contributing 

factor (p<0.05) for field corn germination and seedling dry 

matter production (Table 4). During seed development, 

total starch was associated with germination percentage 

and germination index, indicating that seed vigour could 

be predicted by the total starch content in sweet corn and 

that vigorous seeds would have greater total starch 

content (49). Thus, the poor shelf life of sweet corn might 

be related to a starch-deficient endosperm that cannot 

sustain early seedling growth through the supply of the 

required energy (50). Total sugars are essential as the 

primary energy source during germination, driving 

metabolic processes essential for seedling establishment 

(51). Sweet corn seeds, with their inherently high sugar 

content, experience rapid sugar depletion due to elevated 

respiration rates (11). Ambient air storage accelerates this 

process via aerobic respiration, while residual enzymatic 

activity further breaks down stored sugars (52). The high 

soluble sugar content in sweet corn seeds makes them 

particularly susceptible to faster depletion compared to 

other maize types (11). Oxidative stress during storage, 

especially under air or nitrogen, exacerbates sugar loss by 

triggering energy-intensive repair mechanisms (53). 

Additionally, factors like moisture content and 

temperature significantly influence sugar degradation 

rates (54). This depletion directly impacts germination and 

seed vigour, requiring effective storage interventions. 

Thus, among the nutritive components, total sugar was 

the main factor affecting seed germination under all three 

atmospheric storage conditions, viz., ambient air, nitrogen 

and vacuum. Therefore, the predominant storage reserve 

of sweet corn, namely, total sugars, might be rapidly 

depleted due to respiration and oxidation, leading to a 

shorter shelf life and reduced seed vigour. Furthermore, 

vacuum storage and low temperatures are effective in 

reducing sugar loss by minimizing respiration and 

oxidative stress (55). Antioxidant seed coatings or breeding 

for genotypes with stable sugar profiles can also enhance 

Parameters Time series regression equations R2 

  Ambient air   

Germination % Y1 = 80.9846+ 0.03504X1 
(b0 <0.001, b1 <0.001) 0.9614 

Seedling dry weight Y2= 0.11932 + 0.003526X1 
(b0 = 0.059, b1<0.001) 0.9918 

  Nitrogen   

Germination % Y1 = 84.80093+ 0.026358X1 
(b0 <0.001, b1 =0.008) 0.7795 

Seedling dry weight Y2= -0.18517 + 0.00414 X1 
(b0 = 0.279, b1<0.001) 0.9600 

  Vacuum   

Germination % Y1 = 82.08875+ 0.032896 X1 
(b0 <0.001, b1 <0.001) 0.9104   

Seedling dry weight Y2= 0.1610 + 0.003437 X1 
(b0 = 0.003, b1<0.001) 0.9971   

Table 4. Regression equations: Seed vigour vs. Total starch in field corn (X1: total starch content, Y1: germination percentage: Y2: seedling dry weight; b0, b1: P 
value for intercept, and X1, respectively) 

Parameters Time series regression equations R2 

  Ambient air   

Germination % Y1 = 29.39815+ 0.26534X1 
(b0 <0.001, b1 <0.001) 0.9894 

Seedling dry weight Y2= 0.064175 + 0.004424X1 
(b0 = 0.344, b1<0.001) 0.9770 

  Nitrogen   

Germination % Y1 = 70.23923+ 0.1023X1 
(b0 <0.001, b1 <0.001) 0.9302 

Seedling dry weight Y2=  -0.02909 + 0.004925 X1 
(b0 = 0.793, b1<0.001) 0.9548 

  Vacuum   

Germination % Y1 = 68.15062+ 0.111299 X1 
(b0 <0.001, b1 <0.001) 0.9907 

Seedling dry weight Y2=  -0.10247 + 0.005241 X1 
(b0 = 0.021, b1<0.001) 0.9961 

Table 3. Regression equations: Seed vigour vs. Total sugar in sweet corn (X1: total sugar content, Y1: germination percentage: Y2: seedling dry weight; b0, b1: P 
value for intercept, and X1, respectively) 
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shelf life (53, 56). 

 

Conclusion 

The study highlights that total sugars and total starch 

serve as the predominant storage reserves in sweet corn 

and field corn seeds, respectively. A strong correlation was 

established food reserve components and seed quality. 

Regression equations demonstrated the crucial role of 

food reserves in seed germination and vigour under 

ambient and MAP conditions, such as nitrogen and 

vacuum. Oxygen-free storage environments were shown to 

significantly reduce the rate of food reserve depletion by 

limiting aerobic respiration, thereby extending the shelf 

life of sweet corn seeds. Therefore, the loss of the 

predominant storage reserve (total sugar) could be the 

most important factor leading to the poor storage 

potential of sweetcorn seeds, irrespective of the seed 

deterioration mechanism that takes place in the seeds. 

Furthermore, the packing of sweet corn seeds in MAPs with 

nitrogen or vacuum conditions is highly recommended to 

preserve seed vigour and prolong shelf life. 
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