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Abstract  

Agriculture encounters significant challenges, with the demand to increase 
food production by 50% by 2050 to sustain a growing global population 

while tackling the impacts of climate change and resource scarcity. Artificial 
intelligence (AI) has transformative potential for precision agriculture, opti-
mizing crop management, resource allocation and sustainable farming 

practices. A systematic literature review (SLR) was conducted using the Sco-
pus database, initially identifying 8145 articles. Based on eligibility criteria, 
76 were selected for in-depth analysis. This paper focuses on AI applications 

in key areas of agriculture, including crop monitoring, irrigation manage-
ment, weed and pest control, yield prediction, and smart spraying technolo-
gies. AI-driven techniques, such as machine learning, computer vision, ro-

botics and the Internet of Things (IoT), enhance agricultural productivity 
and sustainability through data-driven decision-making and real-time mon-
itoring. AI-based irrigation systems optimize water use efficiency by inte-

grating sensor inputs with weather data, while robotic technologies en-
hance targeted weed and pest management. Resource efficiency is further 
enhanced by smart sprayers and yield estimation techniques. Despite these 

advancements, research gaps remain, particularly in integrating AI with 
emerging fields such as nutrient management and expanding the use of 
sensor systems. This paper highlights advancements in AI for precision agri-

culture, including crop monitoring, irrigation management and yield predic-
tion, while identifying gaps in areas like nutrient management and sensor 
integration. Addressing these gaps is essential for developing more sustain-

able and resilient agricultural systems.   

 

Keywords  

agriculture robots; artificial intelligence; machine learning; systematic literature 

review; yield prediction    

 

Introduction  

Agriculture currently faces significant challenges, including feeding a grow-
ing population, coping with climate change and managing limited re-
sources. With the world's population projected to reach nearly 10 billion by 
2050, the demand for food will necessitate a 50% increase in agricultural 
production compared to 2013 levels (1). This increased demand puts im-
mense pressure on agricultural systems to enhance productivity sustaina-
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bly while minimizing environmental impact. Artificial intel-
ligence (AI) has emerged as a transformative technology 
capable of addressing these challenges by offering ad-
vanced techniques for optimizing crop management, re-
source allocation, and sustainable farming practices. Lev-
eraging AI in precision agriculture allows for the integra-
tion of machine learning, computer vision, robotics, and 
big data analytics, leading to data-driven decision-making 
and more efficient farming operations (2,3). AI-driven 
drones are transforming Indian agriculture through real-
time crop monitoring, precision input application, and 
resource mapping (4). Unmanned aerial vehicles (UAVs) 
and IoT-based sensor network technologies facilitate the 
collection of real-time, actionable data to enhance deci-
sion-making, optimize resource use, and promote sustain-
able solutions in agriculture (5). 

 AI applications in agriculture span a wide range of 
areas, such as crop monitoring, pest and weed manage-
ment, irrigation optimization, and yield prediction. For 
instance, AI-driven crop monitoring using machine vision 
and deep learning enables the early detection of nutrient 
deficiencies and diseases, allowing for timely interven-
tions that reduce crop losses (2). Similarly, robotics and 
autonomous systems equipped with AI are increasingly 
used in agriculture to perform tasks like soil sampling, 
precision spraying, and harvesting, thereby reducing la-
bour costs and enhancing efficiency (6,7). Moreover, AI-
powered irrigation management systems optimize water 
use by analysing real-time data on soil moisture, weather 
conditions, and crop water needs, contributing to signifi-
cant water savings and improved crop health (8). 

 The purpose of this study is to explore the current 
state of AI applications in precision agriculture, highlight 
recent advancements, and discuss the challenges and fu-
ture directions for integrating AI technologies into sustain-
able farming practices. Recent studies have demonstrated 
the potential of AI to revolutionize traditional agricultural 
practices, supporting a shift towards more sustainable and 
resilient food production systems (9,10). This study aims to 
provide insights into how AI-based methods contribute to 
optimizing agricultural operations and ensuring environ-
mental sustainability.   

Materials and Methods 

Literature search strategy          

The Preferred Reporting Items for Systematic Reviews 

(PRISMA) technique was used for systematic review 
(11,12). The search was performed in the Scopus database 

https://www-scopus-com.elibrarytnau.remotexs.in/. Vari-
ous combinations of keywords related to AI in agriculture 
were considered, and the outcome of interest was used as 

input to search for research papers. The search strings 
used and the corresponding number of publications re-
trieved from the Scopus database in this systematic re-

search study are given in Table 1. Each row in the table 
represents a particular keyword used by the researchers, 
while the last row indicates the total number of publica-

tions retrieved. The search strings are constructed to cap-
ture various dimensions of the artificial intelligence tech-
nologies used for precision agriculture. 

Criteria for inclusion and exclusion           

For the initial screening of the articles, inclusion and exclu-

sion criteria were implemented to select relevant publica-
tions from the articles obtained from the Scopus database 
(Fig. 1). Using the automation filters provided by the data-

bases, non-English, review papers, book chapters, and 
restricted access were deleted from the records. Publica-
tions from the specified subject areas, such as Agricultural 

and Biological Sciences, Environmental Science, Biochem-
istry, Genetics, and Molecular Biology were included. Re-
search articles written in English from open-access jour-

nals published between 2000 and 2024 were included us-
ing inclusion criteria.  

Relevance, duplicate removal and quality evaluation           

Further extraction of articles involved screening the titles 
and abstracts of the remaining articles. Studies were in-

cluded based on the presence of predefined keywords re-
lated to artificial intelligence in agriculture in the title, ab-
stract or keywords section of the paper and the studies 

that focus on precision agriculture and sustainability as a 
key outcome. Studies that failed to exhibit these charac-
teristics or did not include the relevant keywords were  

 

S. No. Search strings Number of publications 

1 “Artificial Intelligence” AND “Agriculture” AND “Precision Agriculture” 1089 

2 “Artificial Intelligence” AND “Agriculture” AND “Machine learning” 2028 

3 “Artificial Intelligence” AND “Agriculture” AND “IoT” 1226 

4 “Artificial Intelligence” AND “Agriculture” AND “Agricultural Robots” 694 

5 “Artificial Intelligence” AND “Agriculture” AND “GIS” 195 

6 “Artificial Intelligence” AND “Agriculture” AND “Remote sensing” 534 

7 “Artificial Intelligence” AND “Agriculture” AND “Automation” 646 

8 “Artificial Intelligence” AND “Agriculture” AND “Crop management” 179 

9 “Artificial Intelligence” AND “Agriculture” AND “Sustainability” 666 

10 “Artificial Intelligence” AND “Agriculture” AND “Image analysis” 130 

11 “Artificial Intelligence” AND “Agriculture” AND “Yield prediction” 166 

12 “Artificial Intelligence” AND “Agriculture” AND “Crop yield” 541 

13 “Artificial Intelligence” AND “Agriculture” AND “Crop quality” 51 

Table 1. Keywords and search strings used and the total number of publications from the Scopus database  
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Fig. 1. Flowchart illustrating the inclusion and exclusion criteria for selecting articles from the Scopus database for analysis.  
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excluded. Based on the eligibility criteria of including, 
some studies were excluded from the available literature 

after a thorough screening of the full text which is not rele-
vant to artificial intelligence in agriculture. Finally, the eli-
gibility assessment phase included all original research 

articles aiming at precision agriculture for sustainability 
through artificial intelligence.  

Bibliometric analysis          

The bibliometric analysis of all the eligible articles was 
analysed using R-Studio and VOS viewer to identify annual 

scientific production, organization networks, and key-
words networks. Thematic mapping, highlighting the need 
for a strategy for future research projects on artificial intel-

ligence in precision agriculture, was created using R-
Studio by uploading all 76 full articles.   

Results   

The PRISMA flow diagram was used to depict the number 

of studies that were finally taken for systematic literature 
review (Fig. 2). This systematic literature review provided 

an overview of the existing literature on artificial intelli-
gence in agriculture. Initially, a Scopus database search 
using various combinations of search strings resulted in a 

total of 8145 articles from the most diverse disciplines. 
From the automation filters provided by the database, 
7433 articles were marked as ineligible using the inclusion 

and exclusion criteria during the initial identification (e.g. 
non-English, restricted access, etc.) and deleted from the 
records.  

 The remaining 712 articles underwent further 

screening based on the title and abstract. After the 

Fig. 2. The PRISMA flow diagram depicting the selection process and number of studies taken for systematic review.  
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screening, 590 articles were eliminated for the non-
existence of predefined keywords in the title, abstract or 

keywords part of the paper. The remaining 122 articles 
underwent a thorough screening of the full-text articles 
and eliminated 42 research studies. Based on the eligibility 

criteria, the remaining 80 articles were subjected to a de-
tailed quality assessment to ensure that only high-quality 
research was included in the systematic review. During 

this assessment phase, 42 articles were excluded for failing 
to meet the quality benchmarks set for the review. Conse-
quently, 76 articles were selected for inclusion in the final 

systematic literature review, with an additional 4 articles 
excluded in the last stage due to non-compliance with 
quality assessment criteria. This selection process enabled 

a comprehensive analysis of relevant literature on the role 
of artificial intelligence in transforming precision agricul-

ture for sustainability (2,3,6–10,13–81). 

Optimizing crop health and water use: Crop monitoring 

and irrigation management           

AI technologies are transforming agriculture in crop moni-
toring, where machine learning and computer vision are 

used to assess plant health and detect stress signals in real 
time (Table 2). Techniques such as UAV imaging and deep 
learning enable precise estimation of biomass and plant 

height which improve data-driven crop management deci-
sion-making (2,26,48). The intelligent irrigation system 
utilizes AI-powered technologies to optimize water usage 

Application area Methods/techniques used Key findings/results References 

Crop monitoring 

Crop monitoring Nitrogen 

content 
Hybrid DCNN-LSTM model, image analysis, 

deep learning 
The hybrid model achieved high accuracy (R² = 0.904) in 

predicting nitrogen content in muskmelon. (26) 

Coffee crop monitoring YOLOv7, computer vision, semi-supervised 

learning 
Achieved 0.89 mAP for fruit detection, improving accuracy, 

yield estimation (36) 

Non-destructive crop 

growth monitoring 
Convolutional Neural Network for estimating 

leaf area and fresh weight 
Achieved R² values of 0.95 for leaf area estimation and 0.70 

for fresh weight estimation (29) 

Crop stress detection 
Multi-rotor small unmanned aerial systems 

(sUAS) with intra-canopy sensors for stress 
diagnosis 

Achieved timely detection of stress factors, providing near 

real-time stress diagnosis using RGB imagery (34) 

UAV-based rootstock evalu-

ation 
UAVs with multispectral imaging and AI algo-

rithms for phenotyping 

Achieved 99.9% accuracy in tree detection and high correla-

tion (R=0.84) in canopy size estimation compared to manu-
al methods 

(80) 

Maize height estimation UAV, satellite, ML (Random Forest), vegetation 

indices 
High accuracy in estimating maize height, with a strong 

correlation to the manual method (48) 

Lettuce pigment phenotyp-

ing 
Integration of reflectance spectroscopy with AI 

algorithms (AdaBoost, Neural Network) 
Achieved high accuracy (>99%) for pigment content across 

multiple lettuce varieties using hyperspectral data (19) 

Real-time crop monitoring AI-enhanced push-broom hyperspectral imag-

ing for plant identification 
Achieved 99.6% accuracy in classifying plant species at a 

high frame rate (50 fps) (23) 

Phosphorus content detec-

tion in plants 
Hyperspectral imaging and machine learning 

(SVM, RF, BNN) 
Achieved over 80% accuracy in identifying phosphorus 

levels across different plant species and growth stages (30) 

Plant stress detection Low-cost thermal imaging with AI-based image 

segmentation models (SVM and SegNet) 
Achieved an R² correlation of 0.75 with commercial thermal 

cameras for monitoring crop water stress (72) 

Rice growth prediction Artificial Neural Network and Gene-Expression 

Programming combined with GDD modeling 

ANN and GEP outperformed traditional methods, with GEP 

showing the lowest RMSE (3.83) for rice growth stage pre-
diction 

(53) 

Greenhouse monitoring Multilayer Perceptron for predicting plant 

growth based on LoRaWAN data 
Achieved a root mean square error (RMSE) of 10% in pre-

dicting weekly plant growth (24) 

Irrigation 

Precision irrigation in leg-

ume farming 
AI, machine learning, remote sensing, real-time 

monitoring 

AI-driven precision irrigation optimizes water use, boosts 

crop yields, and conserves resources by adjusting irrigation 
based on environmental and crop data 

(50) 

Automated irrigation IoT, SDI-12 sensors, cloud monitoring 
The system improves water use efficiency by enabling real-

time soil moisture control and remote irrigation manage-
ment. 

(73) 

Irrigation scheduling for 

Maize 
Hybrid LSTM model, Aquacrop simulations, 

remote sensing 
LSTM model accurately predicts soil moisture reductions, 

improving irrigation precision and water management (32) 

Intelligent irrigation for Rice IoT, automatic control, cloud-based systems, 

remote telemetry 

The system enhanced water-saving significantly, achieving 

a reduction in water use by 2.9–19.3% across various sea-

sons. 
(8) 

Smart irrigation manage-

ment 
AI and Big Data analytics integrating XGBoost 

and ERA5-Land reanalysis data 
Achieved R² = 0.97 for Evapotranspiration estimation, im-

proved irrigation management (38) 

Predictive irrigation man-

agement 
Multi-layer perceptron (MLP), support vector 

machine (SVM), k-nearest neighbours (KNN) 
Achieved water savings of up to 27.6% and energy savings 

of up to 57% by optimizing irrigation schedules (67) 

Table 2. Current applications of AI in precision agriculture, methods and key findings 
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by predicting irrigation needs based on real-time weather 

data, which enhances water use efficiency in rice farming 
(8). The hybrid Long Short-Term Memory (LSTM) model 
developed for irrigation scheduling in maize integrated 

with crop simulation data further improves irrigation pre-
cision by accurately predicting soil moisture levels (32). 

 

Precision control in the field: Weed and pest manage-

ment and smart sprayers           

AI-powered robotic systems are transforming weed and 

pest management by facilitating focused interventions. 
Computer vision enabled autonomous weeding systems 

reduce the need for herbicides, providing an effective, en-
vironment friendly method of weed management while 

Yield 

Yield estimation Deep learning (YOLOv3, DeepSORT), geospatial 

mapping 
Achieved 91–95% accuracy in apple counting, with opti-

mized visualization and harvest (25) 

Carrot yield and quality 

prediction 

Artificial Neural Network, Random Forest, 

Multiple Linear Regression using satellite vege-
tation indices 

ANN showed superior performance with R² = 0.68, outper-

forming RF (R² = 0.67) and MLR (R² = 0.61) for yield predic-
tion 

(37) 

Citrus yield prediction 
UAV multispectral imaging combined with 

ground-based fruit detection using YOLOv3 and 
ML algorithms 

Model-2 achieved a MAPE of 23.45%, offering the best accu-

racy among tested approaches for tree-level yield predic-
tion 

(49) 

Predicting mass flow in 

Sugarcane harvesting 
NARX neural networks for multi-sensor data 

fusion 
Achieved 0.3 kg/s RMSE and 0.7% MAPE, outperforming 

traditional linear regression (17) 

Grape bunch detection YOLOv4 object detection for identifying grape 

bunches 
Achieved an R² of 0.83 in grape bunch detection with a low 

error rate of 1.12 bunches (52) 

Weeds 

Robotic weed removal Mixed-autonomous robotic platform with RGB-

D cameras and gantry robot 
Achieved over 97% accuracy in weed identification and 85% 

effectiveness in weed removal with minimal crop damage (68) 

Robotic weeding in agricul-

ture 
Autonomous weeding robots, RTK-GPS, camera

-guided systems 
Robots achieved 87% weed control efficacy, with the poten-

tial to reduce herbicide use by up to 83% in sugar beet and 
(15) 

Weed detection using deep 

learning 
CNNs, YOLO variants, U-Net, SegNet for image 

classification 
Improved weed identification accuracy with deep learning 

models (61) 

Precision weed manage-

ment 
AI-based machine vision and deep learning for 

weed detection and selective spraying 
Achieved 91% accuracy for detecting artificial weeds and 

71% precision in real field conditions (76) 

Early weed identification YOLOv5 and YOLOv8 CNNs for detecting weed 

species in wheat fields 

Achieved an average precision (AP) greater than 0.6 for 

several weed species, enabling early weed management 
decisions 

(69) 

Pest and Diseases 

Cotton disease detection CANnet architecture incorporating RFSC and 

PCA modules for feature extraction 
Achieved 96.3% accuracy on self-built dataset and 98.6% on 

public dataset for cotton disease identification (75) 

Watermelon disease detec-

tion 

Multilayer Perceptron (MLP) and Decision Tree 

(DT) classifiers for hyperspectral imaging analy-
sis 

MLP achieved 90% classification accuracy for high disease 

severity stages, showing better performance than DT for 
detecting downy mildew stages 

(39) 

Tomato leaf disease detec-

tion 
Optimized MobileNetV2 model for classifying 

tomato leaf diseases 
Achieved 98.3% accuracy and 94.9% recall in identifying six 

types of tomato leaf diseases (51) 

Pest damage detection Decision Trees algorithm for identifying dam-

age intensity from images 
Achieved a precision of 0.98 and an accuracy of 0.99 in 

classifying pest damage on tomato leaves (66) 

Fungal contamination 

detection 
Ghost-YOLOv4 for detecting sundry bacteria on 

Lentinula edodes logs 

Achieved real-time detection with over 90% accuracy, ena-

bling rapid identification and reduced contamination 
spread 

(41) 

Smart and Sustainable Agriculture 

Sustainable agriculture AI, ML, big data, remote sensing, automation 
AI enhances agricultural sustainability by optimizing re-

source use and improving decision-making, addressing 
economic, social, and environmental challenges 

(45) 

Sustainable precision farm-

ing 
Integration of AI and IoT for resource manage-

ment and decision support 
Achieved 98.65% accuracy in precision farming applications 

with significant resource optimization benefits (10) 

AI for sustainable agricul-

ture practices 
Machine learning for precision water manage-

ment and IoT for smart farming 
Enhanced resource efficiency and reduced water wastage 

through AI-driven irrigation scheduling (79) 

Smart sprayers 

Site-specific UAS spraying Feature Pyramid Network (FPN) and YOLOv5 for 

artichoke plant detection 

YOLOv5 achieved better overall performance, with an F1 

score of around 90% for detecting artichoke plants in real-
time UAS spraying applications 

(62) 

Smart spraying system LiDAR, machine vision, GPS, and sensor fusion 

for variable-rate tree spraying 
Achieved a 28% reduction in spraying volume while main-

taining effective coverage, reducing agrochemical waste (28) 
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maintaining high efficacy (6,14,15). Similarly, AI-based 
pest detection technologies can identify and monitor pest 

populations, facilitating timely and accurate pest manage-
ment. Based on real-time field data analysis, smart spray-
ers integrated with AI technologies apply agrochemicals at 

variable rates. This approach reduces waste from chemical 
input, minimizes environmental impact, and optimizes 
agrochemical usage for crop protection (7). AI and IoT-

based systems in precision farming facilitate targeted ag-
rochemical applications, optimizing crop protection by 
reducing pesticide use and minimizing environmental im-

pact (10). AI-powered data-driven approaches in agricul-
ture enhanced the efficiency of agrochemical usage by 
providing precise, localized crop protection strategies 

based on environmental and crop-specific data (45). AI 
applications in sustainable agriculture aid in the optimiza-
tion of agrochemical use by analysing crop health data to 

target specific pests and diseases, which reduces unneces-
sary chemical inputs and promotes eco-friendly practices 
(79). 

Towards resilient farming: Sustainable agriculture and 

yield optimization           

AI-driven technologies contribute to smart and sustaina-

ble agriculture by enhancing resource efficiency, reducing 
environmental footprints, and promoting resilience to cli-

mate change. AI applications in agriculture facilitate the 
transition to data-driven, eco-friendly farming practices 
(3,6,8). Yield optimization techniques, such as deep learn-

ing-based fruit counting (e.g., YOLOv3) and machine learn-
ing algorithms for biomass estimation, support accurate 
yield predictions and harvest planning, leading to better 

resource allocation (25,48).  

 

Discussion 

The Annual scientific production graph (Fig. 3) shows the 

number of research articles published each year related to 

artificial intelligence in precision agriculture. From 2008 to 
around 2020, fewer than 10 articles per year were pub-

lished, which indicates the slow rate of publications. A no-
ticeable increase in publications was observed from 2021 
onward, exceeding 30 articles by 2023. This growth sug-

gests an increasing interest and investment in this area of 
study, which is driven by advancements in AI and its uses 
in agriculture. The upward trend suggests that artificial 

intelligence in precision agriculture is gaining a major fo-
cus, reflecting its potential to increase agricultural efficien-
cy and sustainability. 

 The keyword network (Fig. 4) depicts a network 

diagram of the most frequently used terminologies in AI-
related precision agriculture studies. This network shows 
the interdisciplinary scope of the research, highlighting 

the interrelation of technological, agricultural, environ-
mental, and economic aspects. Key terms such as 
"precision agriculture," "machine learning," "sensor," and 

"robotics" are closely interconnected, indicating the con-
vergence of AI, data science, and agricultural practices. 
Additionally, connections with terms like "sustainability," 

"irrigation," and "crop production" indicate efficient and 
sustainable resource management and enhancing produc-
tivity. This interconnected network captures the collabora-

tive efforts of diverse fields to address agricultural chal-
lenges through an integrated approach focused on sus-
tainable precision farming. 

 A network diagram of collaborations among various 

research institutes and organizations engaged in AI appli-
cations for precision agriculture (Fig. 5). Institutes such as 
Leibniz Centre for Agricultural Landscape Research, Fraun-

hofer Institute for Intelligent Analysis and Information Sys-
tems and multiple computer science, geoscience, and agri-
cultural engineering institutes emphasizes the multidisci-

plinary approach for advancements in this field. The col-
laborative nature of research in precision agriculture 
where expertise from agricultural sciences, computer    

Fig. 3. Annual scientific production of research articles.  
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Fig. 4. Frequently used keywords network in research studies on artificial intelligence applications in precision agriculture. 

Fig. 5. Collaborative network among research institutes and organizations involved in artificial intelligence applications for precision agricul-
ture. 
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science, geosciences and engineering converge to address 
complex sustainability challenges. This supports interdis-

ciplinary innovation, advancing AI-based precision agricul-
ture solutions that enhance efficient and sustainable farm-
ing practices. 

Potential gap           

The thematic map (Fig. 6) provides an overview of key re-

search areas in AI-driven precision agriculture, dividing 
into four quadrants i.e., Motor Themes, Niche Themes, 
Basic Themes, and Emerging or Declining Themes, based 

on centrality (relevance) and density (development stage). 
Motor themes, including "Smart Agriculture," "Artificial 
Intelligence," “Crop Production,” “Sensor,” “Robotics,” 

and “Alternative Agriculture,” are well-developed and 
highly relevant areas that form the foundation of AI appli-
cations. These themes indicate a research focus on the 

application of AI to enhance crop management and agri-
cultural productivity. Niche themes with lower centrality 
are less integrated and remain less explored. The basic 

themes, which have not been classified in this map denote 
fundamental widely applicable areas; however, they re-
main less developed in terms of density from the selected 

articles. Emerging or declining themes include "Coffee," 
"Nitrates," and "Farming Systems," which exhibit both 
lower centrality and density indicating that they represent 

emerging topics and have potential for future research. 
This thematic map, therefore, underscores the significant 
role of core areas like "Precision Agriculture" and 

"Artificial Intelligence" while emerging themes hold prom-
ise for future research and development. 

 The thematic map identifies a notable research gap 
in the comprehensive integration of topics such as 
"Irrigation" and "Sensor" technologies within central AI 
applications in precision agriculture. Addressing this gap 
by linking specialized technologies with AI-driven frame-
works could significantly improve resource efficiency, par-
ticularly in water and nutrient management, advancing 
sustainability objectives. This enhances resource efficien-
cy and sustainability in agriculture by bridging these 
emerging and foundational themes.  

 

Conclusion  

The systematic literature review emphasizes the critical 
role of AI in addressing key agricultural challenges, includ-
ing feeding a growing population, coping with climate 
change, and managing limited resources. AI provides ad-
vanced solutions for improving crop management, re-
source allocation, and sustainable farming methods to 
increase agricultural production by 50% by 2050. This 
study covers a diverse AI application that transforms agri-
cultural practices such as crop monitoring, irrigation man-
agement, weed and pest control, yield prediction, and 
smart sprayers. AI-enhanced irrigation systems optimize 
water use based on sensor data and weather forecasts. 
These innovations improve water use efficiency and preci-
sion in irrigation scheduling. AI-powered robotic systems 
targeted weed and pest management, reducing chemical 
inputs and promoting sustainable agriculture. In yield esti-
mation, AI models facilitate accurate predictions which 
helps in better harvest planning and resource manage-
ment. 

Fig. 6. Thematic analysis of research papers. 
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 This study also identifies existing research gaps, 
particularly in integrating AI with emerging areas like nu-

trient management and the comprehensive use of sensor 
technologies for resource efficiency. Addressing these 
gaps could extend AI's impact on effective agricultural 

practices. AI-driven approaches with less explored themes, 
such as nitrate management and alternative farming sys-
tems, offer opportunities for future research. By address-

ing these gaps, AI has the potential to drive the transfor-
mation of agriculture towards resilience and sustainabil-
ity.  
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