TABLE 2. Effects of plant polyphenolic extracts on HCC in vivo models

Biological Model	Plant Polyphenolic Extract	Tumor inductor	Extraction Solvent	Biological Activity	References
Male Sprague Dawley rats	Cacao liquor (0.5 g/kg of body weight/day)	DEN 200 mg/kg of body weight	70% (vol/vol) ethanol/water	↓ of tumor markers enzymes: alkaline phosphatasa, glutathione S transferases, glutamyl transpeptidase and glutathione reductase	Amin et al., 2004
Male Wistar Rats	Ardisia compressa leaves (0.5%, w/v in tap water)	DEN 100 mg/kg body weight	Water at 94 °C	↓ development and progression of the tumor	Gonzalez Mejia <i>et al.</i> , 2004
Female swiss albino rats	Acacia nilotica (100 or 200 mg/kg of body weight/day)	NDEA 200 mg/kg of body weight	Hexane/1% 6N HCl ethanol	↓ ALT, AST, ALP, GT, TBL; ↓ AFP, CEA; ↓ LPO; ↑ GSH, CAT, SOD; ↑ GPx, GST	Singh <i>et al.</i> , 2009
Athymic nude mice	Solanum nigrum (5 g of daily basal diets containing 1 or 2µg/mL (w/v)	5×10 ⁶ HepG2 cells in 400μL matrigel were implanted	Boiling water	↓ tumor weight and volume	Wang <i>et al.</i> , 2010
Kunming mice	Pinus massoniana bark (100, 200 or 300 mg/kg of body weight/day)	0.2 ml of 5x10 ⁶ hepatoma cells H22	Boiling water	↓ tumor growth	Ma et al. 2010
BALB/c nude mice	Camellia ptilophylla (0.5%, 1% and 2% (wt/vol)/day)	2×10 ⁶ HepG2 cells were injected	Water at 98°C	↓ tumor growth; ↑ apoptosis	Yang et al.,2012
Male nude mice	Pulsatilla koreana (intraperitoneal injection of 125 and 250 mg/kg/day)	5x10 ⁶ Huh-7 cells were injected	50% aqueous ethanol/ acetone	↓ tumor growth; ↑ apoptosis and necrosis; ↓ Ki- 67; ↓ CD31, VEGF; ↑ caspase 3, PARP degradation	Hong et al., 2012

© Martinez, M. J., Andreu, A. & Barbini, L. (2014)

Publisher: Horizon e-Publishing Group

CITATION

Martinez, M. J., Andreu, A. and Barbini, L. (2014). Plant polyphenolic extracts as potential anti-human hepatocarcinoma agents. *Plant Science Today*, 1(4), 213-218. http://dx.doi.org/10.14719/pst.2014.1.4.62