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Abstract 

Biomass estimation is pivotal in understanding and managing global carbon 

stocks, offering vital insights into climate change and environmental 

ecology. It serves as a critical tool for evaluating carbon sequestration 

potential, a natural mechanism for regulating atmospheric carbon dioxide 

levels. Accurate estimation of forest biomass not only aids in quantifying 

carbon stocks but also provides a basis for sustainable forest management, 

conservation efforts, and policymaking to mitigate climate change impacts. 

This article provides a comprehensive review of various biomass estimation 

methods, including ground-based measurements, remote sensing 

technologies, and hybrid approaches. Each method's strengths, limitations, 

and practical applications are critically examined, highlighting their 

suitability for different spatial scales and ecological contexts. Traditional 

methods, while precise at small scales, are often labour-intensive and 

limited in coverage. In contrast, remote sensing technologies such as LiDAR, 

RADAR, and hyperspectral imaging have revolutionized biomass estimation 

by enabling large-scale and high-resolution assessments. Additionally, 

recent advancements in machine learning, data fusion, and satellite-based 

monitoring systems are transforming the field, offering unprecedented 

accuracy and efficiency. By presenting these trends and innovations, this 

article provides valuable insights for researchers, practitioners, and 

policymakers, emphasizing the importance of integrating advanced 

technologies into biomass estimation for sustainable development and 

climate resilience. 
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Introduction 

The forest is a complex ecosystem that supports a wide range of living 
organisms like plants, trees, and animals etc., Forest ecosystems contain a 

significant quantity of biomass and hence play an important role in carbon 

sequestration and global climate regulation. Woody biomass is the 

accumulated mass of above and below ground like roots, wood, bark, and 

leaves of living and dead woody shrubs and trees. It is considered one of the 

best forms of natural carbon sequester (1). Carbon is an important 

greenhouse gas because of its global warming influences. Carbon 

sequestration is the process of capture (through photosynthesis) and long-
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term storage of atmospheric carbon dioxide (CO2) (2). 

Carbon sequestration refers to the provision of long-term 

storage of carbon in terrestrial, underground, and oceans 

in the atmosphere. Terrestrial carbon stock mapping is 

important for the successful implementation of climate 

change mitigation policies (3). 

Forests and soils sequester atmospheric CO2 within their 
biomass or in organic matter that is stored in the ground. 

Forest and soil play an important role in the storing of 

atmospheric CO2. Currently, standing forests and soils 

sequester approximately two-thirds of terrestrial carbon. 

Biomass production in different forms plays an important 

role in carbon sequestration in trees (4). Concerns about 

climate change and global warming are increasingly 

centered on the extensive buildup of atmospheric 

greenhouse gases (GHGs). It can stabilize atmospheric CO2 

concentrations by sequestering 2-4 Gt of atmospheric 

carbon per year. (5). 

However, prolonged forest degradation and deforestation 

will result in a loss of forest biomass or carbon stock, 

exacerbating the negative effects of global climate change 

(6). As a result, contemporary concerns about global 

change and ecosystem functioning need precise biomass 

measurement and analysis of its dynamics, which is critical 

for quantifying carbon stock and sequestration rates, as 

well as analysing possible impacts from climate change 

(7). 

Atmospheric carbon concentration was around 280 ppm at 

the beginning of the Industrial Revolution, and it has 

crossed 420 ppm currently. Scientists project that, 

following current trends, atmospheric carbon levels could 

reach up to 700 ppm by 2080. Due to climate change, it 

causes various carcinogenic diseases. It is projected to 

maintain below 1.5C global mean annual temperature. 

Carbon stock (CS) estimation studies are essential to 

understand its overall potential in the forest system. About 

30% of the worldwide land surface is covered with forests, 

the most important providers of ecosystem services and 

human well-being (8,9).          

The Intergovernmental Panel on Climate Change (IPCC) 

has categorized biomass estimation methods into three 

distinct tiers: Tier-1, Tier-2, and Tier-3. Each tier represents 

a different level of methodological complexity in 

estimating biomass (10). However, continued forest 

degradation and deforestation will result in the loss of 

forest biomass or carbon stock. Notwithstanding, the 

growing biomass can remove carbon dioxide from the 

atmosphere and store it for an extended period. It can play 

a critical role in limiting the rise in global temperature (11). 

Hence, current concerns for global change and ecosystem 

functioning, require accurate biomass estimation and 

examination of its dynamics.  

Dynamics of research topic based on journals 

The bibliographic graph provides an overview of the 

distribution of journal articles and the thematic evolution 

of keywords related to biomass estimation methods 

across various journals and databases. A total of 100 

various research and review articles related to the topics 

from various journals have been analysed and reviewed for 

the current analysis. Numerous keywords are used for 

searching and finding out the related articles relevant to 

the topics, which is represented as the thematic evolution 

of keywords. The Web of Science contributes the largest 

number of articles, indicating that it is a significant source 

of publications on biomass estimation in India. Indian 

Journals also show a substantial contribution, which 

reflects a strong local interest and research focus on 

biomass estimation methods. Wiley comes next, 

showcasing its prominence as a source of international 

publications in this area. Taylor and Francis, and Springer 

have a smaller share, indicating moderate coverage of the 

topic. Others include various smaller or less prominent 

journals, showing a diversity of sources beyond the main 

publishers. 

In conclusion, the research on biomass estimation 

methods is well-represented in both local and 

international journals, with Web of Science, Indian 

Journals, and Wiley being the leading sources of 

publications. This suggests that there is a balanced 

interest in the subject both within India and globally (Fig. 

1&2). 

Importance of biomass estimation 

Accurately measuring and mapping biomass is crucial for 

quantifying carbon stocks, assessing climate change 

impacts, determining suitable locations for bioenergy 

processing plants, evaluating forest fire fuel, and 

appraising commercial timber. Although above-ground 

biomass encompasses both live and dead plant material, 

recent research has predominantly concentrated on the 

live component, specifically live trees, due to its 

significance. Accurate biomass estimates are essential to a 

better understanding of how deforestation and 

environmental degradation affect climate change. Interest 

in biomass studies has increased globally due to its 

importance as a source of food, energy, and fibre (12,13). 

The Intergovernmental Panel on Climate Change (IPCC) 

identifies five terrestrial ecosystem carbon pools involving 

biomass: above-ground biomass, below-ground biomass, 

litter, woody debris, and soil organic matter (14). Among 

these, above-ground biomass stands out as the most 

visible, dominant, dynamic, and significant pool, making 

up approximately 30% of the total terrestrial ecosystem 

carbon pool. In recent decades, the estimation of biomass, 

particularly in forests, has garnered significant attention 

due to growing awareness of climate change and the 

crucial role that forest biomass plays in both carbon 

sequestration and the release of greenhouse gases 

through deforestation (15). 

Estimates of biomass are fundamental for carbon 

inventories and are central to most international carbon 

trading negotiations. Carbon trading markets depend on 

long-term data on carbon stocks, especially the above-

ground 'live' biomass, as it is the most dynamic, 

changeable, and manageable component among all 

biomass pools. This live biomass is considered the 

'merchantable' portion of the biomass. 
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Above-ground forest biomass represents 70% to 90% of 

the total forest biomass. Globally, soil organic matter 

contains two to three times more carbon than biomass; 

however, soil carbon is generally more stable and less 

prone to oxidation. In contrast, biomass is highly dynamic, 

influenced by factors such as fire, logging, storms, and 

land use changes, significantly contributing to 

atmospheric carbon fluxes. Consequently, it is of greater 

interest and importance. Given this variability, continuous 

biomass monitoring is essential, rather than relying on one

-time measurements. 

Accurate biomass estimations are vital for precise carbon 
accounting, yet reliable methods are limited. Since 

biomass, as dry weight, is approximately 50% carbon, 

accurate measurements are essential for improving 

carbon flux models and making more accurate climate 

change projections. Programs such as Reducing Emissions 

from Deforestation and Forest Degradation (REDD) and its 

extension, REDD+, rely heavily on precise above-ground 

biomass estimates. REDD+ integrates financing 

mechanisms and incentives to combat climate change by 

reducing deforestation and forest degradation, promoting 

sustainable forest management, and conservation, and 

enhancing carbon stocks. Countries participating in REDD+ 

are required to provide accurate estimates of their forest 

carbon stocks and monitor changes over time to meet 

their commitments effectively (16,17).  

Wildfire management and fuel control are becoming 

increasingly integral to forest management strategies. 

Forest biomass, particularly crown biomass and dry litter, 

play a crucial role in fire modelling. Traditionally, crown 

biomass received less attention compared to commercial 

tree components, but with fire's growing significance in 

environmental planning, this biomass aspect has gained 

importance. 

Biomass is also a plentiful energy source widely utilized 

worldwide due to its renewable nature. However, biomass 

resources are dispersed across vast geographical areas, 

with their suitability for energy production varying over 

time and space. Moreover, these resources often exist far 

from energy generation centres. Given this spatial and 

temporal distribution challenge and its connection to 

energy demand centres, it's crucial to have accurate and 

consistent methods for biomass measurement to assess 

its feasibility for energy production. 

Fig. 1. Dynamic of research topic based on journals. 

Fig. 2. Thematic evolution of the keywords. 
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Different methodologies have been used to estimate 

forest biomass 

There are different methodologies available for forest 

biomass estimation. Every methodology has its pros and 

cons. This review will let us know about the different 

methodologies in detail: i) Field measurements; ii) Remote 

sensing.  

Field measurements are the most reliable way to estimate 

forest biomass, but they are time-consuming and labour-

intensive, and they cannot cover enormous areas (18,19). 

Remote sensing allows for the assessment of forest 

biomass at several scales, with extensive spatial and 

temporal coverage. It provides an efficient and affordable 

method for monitoring AGB by facilitating forest type and 

canopy density stratification, which substantially aids in 

field inventory (20). A significant source of inaccuracy in 

field measuring methods comes from sampling selection, 

measurement, and statistics or models (21). The cause of 

mistakes in remote sensing systems is knowledge and 

competence in image processing software and models 

(22). RADAR and LiDAR remote sensing, which can detect 

forest structures, are now being used to assess forest 

biomass. However, there are limitations in the usual study 

regions, and they have not been deployed extensively to 

large-scale investigations because of financial constraints, 

saturation problems, and environmental concerns (23) 

(Table 1). 

CLASSIFICATION METHODS DATA USED CHARACTERISTICS REFERENCE 

Field measurement-based  
methods 

Destructive method Sample trees Individual trees (75) 

Non-destructive meth-
od Sample trees Individual trees (76) 

Allometric equations Sample trees Individual trees (77)  

Conversion from vol-
ume to biomass 

Volume from sample trees 
or stands Individual trees or vegetation stands (78) 

  

GIS Method Methods based on an-
cillary data 

Elevation, slope, soil, pre-
cipitation, etc. Per-pixel level, or per field level (79) 

Optical sensor data Spectral features   Spectral bands, vegetation indices, 
and transformed images 

  
(80) 

  

  Spatial features   Textural images and segments from 
the spectral bands (81) 

  Subpixel features   
Fractional features such as green 
vegetation and NPV by unmixing the 
multispectral image 

(82) 

  Combination of spectral 
and spatial features   

Combination of images such as spec-
tral bands, vegetation indices, and 
textural images as extra bands 

(81,83) 
  

Active sensor data Radar   
Backscattering coefficients, textural 
images, interferometry SAR, and 
Polarimetric SAR interferometry can 
be used as variables 

(4,84) 

  Lidar   
Lidar metrics based on statistical 
measures of point clouds or estimat-
ed products (e.g. CHM or individual 
trees) can be used as variables 

(85) 

  Combination of radar 
and lidar data   

For mapping biomass over large 
areas where field plots are scarce, 
lidar samples (e.g. strips) can be 
taken. Lidar-derived biomass cali-
brated by field data is then used as 
the dependent variable, and radar 
data are used as independent varia-
bles for developing biomass estima-
tion models. Lidar-derived biomass 
serves as “virtual” field data to cre-
ate a spatially representative bio-
mass “truth” dataset for mapping 
biomass wall-to-wall using radar 
data. 

(54,86) 

Integration of option and/or 
active sensor data 

Fusion of different sen-
sor data e.g. optical and 
radar data 

  
Fusion of Landsat and radar data to 
generate an enhanced multispectral 
image using different techniques 
such as wavelet-merging. 

(87) 

  
Combination of optical 
and radar or lidar as 
extra variables 

  
Lidar and/or radar data are com-
bined with optical-sensor multispec-
tral bands as extra variables 

 (88) 

  
  
Remote sensing-based method 

Methods based on fine 
spatial resolution data Aerial photographs, IKNOS Per-pixel level (89,90) 

Methods based on me-
dium spatial resolution 
data 

Landsat TM/ETM+, SPOT Per-pixel level (91,81) 

Methods based on 
coarse spatial resolu-
tion data 

IRS-IC WiFS, AVHRR Per-pixel level (92) 

Methods based on radar 
data Radar, lidar Per-pixel level (93) 

Table 1. Different biomass estimation methods with recent technological advancements 
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Destructive (direct) methods 

The biomass estimation method is a destructive or harvest 

method also known as the direct method for estimation of 

Above-ground biomass (AGB) and Carbon stock (19). The 

destructive estimation method includes harvesting all the 

trees in the given area and measuring the weight of the 

various components of the harvested trees like tree trunks, 

leaves, and branches. Sometimes also known as the 

harvest method, drying them, and weighing the biomass. It 

comprises field (site preparation, measurement of felled 

trees, weighing of logs and sampling for laboratory) and 

laboratory (dry biomass, density and volume) 

measurement Operations (24,25). This method of biomass 

estimation is restricted to small areas or tree sample sizes. 

Although this method reliably determines biomass for a 

specific area, it is time-consuming, resource-intensive, 

damaging, and expensive, making it unsuitable for large-

scale investigation. This method is challenging, and only 

applicable to small areas not relevant to threatened, 

endangered species, vulnerable forest species and 

degraded forests. As a result, it is often used for specific 

research purposes and for developing biomass equations 

for estimating biomass on a large scale (26) for deriving 

allometric equations, a non-destructive method is used 

(4). 

Non-destructive (indirect) methods 

The non-destructive method is also known as the indirect 
method which aims to construct a functional relationship 

between the tree biomass and other tree dimensions, such 

as stem diameter, height and wood density, through 

regression analysis (27). It applies to ecosystems with rare 

or protected tree species were harvesting of such species 

is not practical or feasible (4). The harvest method is 

typically impractical or unsuitable for forest studies. As per 

the Forest Policy, 1988 trees inside the forest are 

prohibited to cut, so destructive is not suitable and we can 

adopt only non-destructive methods in the forest. To 

calculate the carbon estimation. Estimating the above-

ground forest biomass by the non-destructive method is 

by climbing the tree to measure the various parts or by 

simply measuring the diameter at breast height, height of 

the tree, volume of the tree and wood density (28). As a 

result, allometric methods have been developed to 

estimate total biomass in a non-destructive manner in 

which height and diameter are at breast height. 

The forest biomass/carbon has been estimated by several 

methods and techniques based on inventory and stock 

tables. By using the non-destructive method biomass 

estimation is an essential aspect of studies of carbon 

stocks as it directly relates to the carbon sequestration on 

the global carbon balance (4). The non-destructive method 

was used for the determination of the above-ground 

weight (total green) dry weight, and Carbon Sequestration 

(kg), and the total organic carbon of each tree species was 

evaluated (29). According to Montes, findings using non-

destruction methods for biomass estimation can lead to 

2.5-7.5 % per tree error (4). In Ethiopia, different 

researchers used non-destructive methods. However, 

these methods can also involve a lot of labour, and time 

and climbing can be troublesome. 

A. Challenges of field measurement methods 

Numerous academics have pointed out that variations in 

tree features like wood density and crown architecture, 

sample plots, and tree errors might impact the calculation 

of forest biomass. In general, there are three types of 

sources of errors: measurement error, statistical or model 

error, and sampling error (21,30). 

Sample mistakes can be classified into two phases: the 
first phase and the second phase, Uncertainty in the 

biomass estimate is introduced in the first phase when 

sample plots are chosen using satellite or aerial photos. 

The ambiguity in the biomass estimate is also caused by 

the second phase's choice of sampled trees that are 

measured to create the biomass equation. The inherent 

variability of the variable of interest, estimation technique, 

sample size, and sampling scheme all have an impact on 

sampling error (31,32) and found that the sampling error 

varied between 2.51% and 22.63% per tree, or 2.65% of the 

total biomass, in this regard.  

The second reason for errors emerged during the 

measurement of the tree variables, including DBH, height, 

and weight, which were determined using a calliper, 

measuring tape, and weighing scale, in that order. 

Measurement errors can arise from several sources, such 

as inaccurate equipment, inaccurate data entry, and errors 

resulting from the irregular shape of the object being 

measured (33). 

Selecting the wrong model to explain the relationship 
between biomass and tree factors is the third source of 

inaccuracy (34-36). The literature contains several biomass 

equations in various model formats. One would expect 

multiple parameter estimations when various modelling 

forms are applied to the same data set.  

B. General formulas used for biomass and carbon stock 

estimation 

The Above Ground Biomass (AGB) of tree species has been 
calculated by multiplying the volume of biomass and 

wood density (37). 

AGB (g) = volume of biomass (cm3) * wood density (g cm-3)                                

(Eqn 1) 

The Below Ground Biomass (BGB) has been calculated by 

multiplying Above Ground Biomass taking 0.26 as the root 

shoot ratio (38,39). 

BGB (g) = 0.26 X above ground biomass (ton)               (Eqn 2)                                       

 

Total Biomass (TB) = Above Ground Biomass + Below 

Ground Biomass                 

(Eqn 3)  

C. Estimation of carbon from biomass: 

Total carbon = Dry matter biomass × carbon fraction 

                                     (Eqn 4) 

 
Total carbon = Dry matter biomass × 0.47 (40)             (Eqn 5) 
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Allometric Equations for Biomass Estimation 

 Allometric equations are the most popular method 

for determining the biomass of a forest. To evaluate the 

biomass and carbon stocks of forests, allometric equations 

are created and applied to information gathered from 

forest inventories. Generalized biomass prediction 

equations for various forest types and tree species have 

been developed by numerous researchers (41-43). 

The allometric equations for biomass estimation are 

developed by establishing a relationship between the 

various physical parameters of the trees such as the 

diameter at breast height, height of the tree trunk, total 

height of the tree, crown diameter, tree species, etc. 

Equations developed for single species and a mixture of 

species give the estimate of biomass for specific sites and 

for large-scale global and regional comparisons. 

The forest carbon stocks are widely estimated from the 

allometric equations for forest biomass. Generally, the 

carbon concentration of the different parts of a tree is 

assumed to be 50% of the biomass (44) or 45% of the 

biomass (27). However, the study estimated the carbon 

concentration of the dry bole sample to be approximately 

48% of the dry bole biomass. The biomass estimation of 

the forest can be worked out using any of the methods or 

in combination of the methods mentioned. At the same 

time, while choosing a method for biomass estimation one 

should keep in mind the applicability or the suitability of 

that method for the area or forest type or tree species. The 

allometric equations and regression models, for biomass 

estimation, also should not be used beyond their range of 

validity (45) (Table 2). 

The generalized allometric models used to predict total 

above-ground biomass (kg dry weight) in individual trees 

were: (Eqn 6 to 11). 

Brown Moist: exp (− 2.134 + 2.530 × ln(D))                       (Eqn 6)                                    

Brown Wet: 21.297 −6.953 × D + 0.740 × D2                      (Eqn 7)                                        

Chave Moist: ρ × exp (−1.499 +2.148 × ln(D)+0.207 × (ln(D))2 

−0.0281 × (ln(D))3)                                                                      (Eqn 8) 

Chave Wet: ρ × exp (−1.239 + 1.980 × ln(D)+0.207 × (ln(D))2 

−0.0281 × (ln(D))3)                                                                      (Eqn 9) 

Chave Moist: 0.0509 × ρD2H                                                 (Eqn 10)                                                    

Chave Wet: 0.0776 × (ρD2H) 0.94                                       (Eqn 11)                                              

where D is the diameter at breast height (cm), H is total 

tree height (m), and ρ is wood-specific gravity (g/cm3). 

The following regression model can be used to estimate 

Below Ground Biomass in the forest developed by (46) 

(Eqn 12). 

BGB = EXP [-1.0589+0.0884 X In (AGB)+0.284]             (Eqn 12)                                

Remote Sensing 

The field of remote sensing saw fast development in the 

latter half of the 20th century, and data from this approach 

has been used extensively to measure forest biomass and 

carbon stock on a variety of scales. Its advantages include 

high spatiotemporal resolution, large coverage, and timely 

updates. In the last three decades, a significant amount of 

research has been done on remote sensing-based 

techniques for estimating AGB in forest ecosystems (47-

52).  

Remote sensing satellite data is accessible on a range of 

scales, from local to worldwide, and from several 

platforms. As such, we are required to deliver information 

that can be connected to biomass data both directly and 

indirectly. Remote sensing technology can yield valuable 

information about aboveground biomass (AGB), but it 

cannot be utilized to estimate subsurface biomass. The 

capacity to measure from any point in the forest, the 

quickness with which data is gathered and processed, the 

affordability of various remote sensing data kinds, and the 

ease with which data can be gathered in locations that are 

difficult to access on the ground are benefits of remote 

sensing.  

Remote Sensing Techniques  

Remote sensing techniques such as optical, radar, and 

light detection and ranging (LiDAR) are widely used for 

estimating aboveground biomass in forests. However, the 

accuracy of biomass estimation remains variable across 

different remote sensing techniques with each method 

having its limitations influenced by factors such as forest 

type, canopy structure and environmental conditions.  

Recent advancements in remote sensing technology have 
improved our ability to estimate biomass through the use 

of multispectral, hyperspectral, LiDAR, and radio detection 

and ranging (radar) data. Among these, multispectral 

sensors are the most commonly used. They measure 

reflectance from ground features in the visible, near, 

middle, and far-infrared portions of the electromagnetic 

spectrum and apply to various forest-related studies. A 

review of forest studies utilizing remote sensing indicates 

that this technology can supply crucial information 

needed for assessing forest biomass. 

Optical Remote Sensing 

Estimating forest biomass with optical satellite data is a 

common practice in biomass estimation, because of its 

cost-effectiveness, worldwide coverage, and repeatability, 

it probably offers the greatest substitute for estimating 

biomass by field sampling. The most popular sources of 

optical remote sensing data used to estimate biomass and 

Wet tropical forest M=e [-2.409+0.952 (ρwD2H)] 

  
(94) Dry tropical forest M=34.47-8.0671D + 0.6589D2 

Moist tropical forest M=e (2.134 + 2.53 X ln(D)) 

Wet tropical forest M=0.0776 (ρwD2H) 0.94 

  
(35) Dry tropical forest M=0.112 X (ρwD2 H) 0.916 

Moist tropical forest M=0.0509 X (ρwD2 H) 

Table 2. General Allometric equation for dry and wet tropical forest 
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there are three types of optical remote sensing sensors are 

distinguished by their spatial resolution, which includes: 

fine spatial resolution data (less than 5 meters) Rapid Bird, 

Worldview, IKONOS, and medium spatial resolution data 

(10-100 m) Land sat (TM, ETM+ OLI) Quick Bird, IKONOS. 

Data with coarse-spatial resolution (>100m) with Landsat 

4/5/7 Enhanced TM+, MODIS and POT (53). A recent study 

has explored the potential of multisource remote sensing 

data combined with deep learning algorithms for 

estimating forest aboveground biomass (AGB) in the 

Hangzhou area of China. By integrating optical and LiDAR 

data, the researchers achieved improved accuracy in AGB 

estimation, demonstrating the effectiveness of data fusion 

techniques (54). 

While optical sensors are effective at detecting horizontal 

vegetation structures, such as vegetation types and 

canopy cover, they have limitations in estimating vertical 

vegetation structures, such as canopy height. Canopy 

height is a critical parameter for biomass estimation 

because it is strongly correlated with forest volume and 

biomass. In general, optical sensor data are suitable for 

examining horizontal vegetation structures such as 

vegetation types and canopy cover; but they can't 

estimate vertical vegetation structures such as canopy 

height, which is one of the critical parameters for biomass 

estimation (43). Optical sensor technology is very 

important in the estimation of biomass and model  

development; however, the following problems are still 

unsolved: (1) optical sensor data suffer saturation 

problems such as high biomass density and (2) spectral-

based variables are influenced by external factors such as 

atmosphere, soil moisture, vegetation phenology, and 

growth vigor (55). 

RADAR 

Synthetic Aperture Radar (SAR) data, a type of radar (Radio 

Detection and Ranging), has gained popularity in recent 

years for aboveground biomass assessments, particularly 

in regions where cloudy conditions make it challenging to 

gather high-quality optical data. SAR systems can collect 

data both at night and in inclement weather, overcoming 

limitations faced by optical sensors. Additionally, SAR 

sensors provide critical information on the quantity and 

three-dimensional (3D) distribution of structures within 

vegetation, offering insights into biomass that optical 

sensors cannot. SAR systems can also penetrate 

vegetation to varying degrees, further enhancing their 

utility in biomass estimation. The most popular SAR data 

sources for biomass estimation include JERS-1 (from the 

early 1990s), ALOS/PALSAR 1, ALOS/PALSAR 2 (since 2014), 

ERS 1-2, Envisat 1-2 (until 2002), and RadarSat 1 (since 

1995) and RadarSat-2. 

The backscattering coefficient of land cover surfaces are 

subject to several critical aspects, including the 

wavelength (e.g., X, C, L, P), polarization (e.g., HH, VV, HV, 

VH), incidence angle, land cover, and topographical 

features (e.g., roughness and dielectric constant). Prior 

research has demonstrated that lower biomass is better 

represented by short-wavelength data, such as X- or C-

band, which primarily interact with canopy elements. In 

contrast, long-wavelength data, such as L- and P-band, 

interact with branches, trunks, and ground elements 

beneath the forest canopy, making them more suitable for 

estimating high biomass density. Sentinel-1, which 

operates in the C-band, has also been widely used in 

biomass estimation studies. Several studies have 

effectively utilized these datasets to assess biomass across 

different forest types and regions, demonstrating their 

efficacy in providing detailed and accurate biomass 

estimates. While airborne Synthetic Aperture Radar (SAR) 

systems have been in use for many years, space-borne 

systems like TerraSAR, ALOS, and PALSAR have become 

available since 2000 (56-58).  

The application of radar data for biomass estimation has 

been investigated in a wide number of recent research. 

When it comes to the usefulness of radar remote sensing 

for biomass assessment, there are several advantages over 

optical remote sensing. Radar is particularly helpful in the 

tropics since it can see through haze, rain, and clouds (40). 

Additionally, the controlled power outlet and active nature 

of radar-based sensors guarantee constant transmission 

and return rates. Nevertheless, there are several 

challenges in estimating biomass. For example, radar data 

reflect the roughness of land-cover surfaces rather than 

the differences between vegetation types, making it 

difficult to distinguish between different vegetation types. 

Additionally, the accuracy of biomass estimation is 

affected by high temperatures, moisture content, and 

wind speeds. Numerous recent studies have investigated 

the use of radar data for estimating above-ground biomass 

(59). 

LiDAR 

It is not possible to directly quantify certain vegetation 
parameters, such as tree height, canopy height, and 

volume, using optical remote sensing data because it is 

two-dimensional (2D). Light Detection and Ranging 

(LiDAR), a relatively new and advanced technology, helps 

overcome this limitation by expanding geographical 

analysis into a third dimension. LiDAR technologies emit 

laser light pulses and measure the time it takes for the 

signal to return, allowing for accurate determination of 

tree height and vertical structures. Additionally, Global 

Ecosystem Dynamics Investigation (GEDI) data, which 

leverages LiDAR technology, has become highly valuable 

for biomass studies, providing detailed insights into forest 

structure and biomass distribution. LiDAR (Light Detection 

and Ranging) operates by emitting laser pulses toward a 

target and measuring the time it takes for the reflected 

light to return to the sensor. This time-of-flight 

measurement is used to calculate distances, creating a 3D 

map of the target area. LiDAR systems can measure tree 

height, canopy structure, and ground elevation, making 

them essential for biomass estimation. The use of LiDAR 

data, including GEDI, in accurately assessing forest 

biomass and structure, demonstrating its effectiveness in 

ecological research (60,61). 

Small footprint (discrete return LiDAR) and ii) big footprint 

(full waveform LiDAR) are the two forms of LiDAR that are 

now in use. In general, both work in the wavelength that 
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ranges from 900 to 1064 nm, and that's where the highest 

plant reflectance occurs. For fine-scale biomass mapping, 

discrete return airborne LiDAR systems tend to be suitable, 

but waveform space-borne LiDAR is better suited for broad

-scale biomass mapping. Typical sources of LiDAR remote 

sensing data are the GLAS Geoscience Laser Altimeter 

System (introduced in 2003), ATLAS Advanced 

Topographic Laser Altimeter System (launched in 2018), 

and GALA Ganymede Laser Altimeter (launched in 2020).  

LiDAR technology can sample ground surfaces, canopy 

density, vertical canopy distribution, penology, and 

vegetation types, hence providing broad structural 

information on vegetation. It allows for more precise 

calculations of basal area and crown size (62). In contrast 

to radar and optical data, LiDAR approaches offer greater 

accuracy for AGB estimation, according to an evaluation of 

over 70 studies. Furthermore, LiDAR has provided a more 

accurate estimate of forest biomass than other 

approaches, according to comparison research by (63) on 

three methodologies (LiDAR, Quick Bird, and Field 

Measurement). 

The outcomes of Dong et al. (2023), Oehmcke et al. (2021), 

Morin et al. (2023) highlighted the importance of utilizing 

deep learning to estimate forest aboveground biomass 

(AGB) by integrating data from various satellite sensors 

and LiDAR. The approach improved accuracy in predicting 

wood volume and biomass, showcasing the effectiveness 

of deep learning in biomass estimation. High-resolution 

maps of forest height and biomass were also developed 

using multi-sensor satellite imagery and GEDI LiDAR data 

(64-66).  

Various studies carried out by Dong et al. (2024), May and 

Finley (2024) employed forest biomass mapping methods 

using new inventory plots in northeastern and 

southwestern China. It highlighted the need for local 

models and the integration of GEDI with Sentinel-1, ALOS-2 

PALSAR-2, and Sentinel-2 data for accurate mapping. A 

coregionalization model was developed to combine sparse 

field data with satellite maps, enhancing biomass density 

predictions at a 1 km² resolution in the Pacific states of the 

USA, addressing zero-inflation and heterogeneous errors 

for better accuracy and spatial detail (67,68). 

LiDAR data has certain advantages over optical and radar 
data, but its utility in field applications is limited by a few 

problems. LiDAR data analysis, for instance, needs 

specialized software, greater image processing expertise, 

and understanding. Because the LiDAR data-collecting 

procedure is costly and only covers smaller areas, research 

areas are still constrained and have not been widely used 

in bigger areas to estimate biomass (62).  

Challenges of Remote Sensing Methods 

In terms of cost, labour, and time, remote sensing 

techniques offer numerous advantages over field 

measurement approaches for estimating biomass at 

various scales, from local to regional. However, we must 

closely evaluate the expenses, the data analysis process, 

and the study area's size to choose the best remote 

sensing data source. Accurate estimates of biomass at 

local scales can be obtained using high spatial resolution 

data from both aerial and satellite platforms; however, for 

regional scales, a substantial amount of data is needed, 

which is costly and challenging to handle, restricting its 

applicability to larger areas (62). All remote sensing 

biomass estimating techniques, in general, have errors in 

terms of software selection, picture acquisition, and 

processing proficiency.  

Optical sensor data can be used for obtaining horizontal 

vegetation structures, such as vegetation canopy cover, 

but not to estimate vertical vegetation structures, like 

canopy height, which is one of the key criteria in biomass 

calculation (69).  

Although it hasn't received much attention yet, properly 

integrating textures, optical spectrum response, and 

vertical structure data into a biomass estimation model 

may be a novel way to increase the accuracy of biomass 

estimation (54). Moreover, previous researchers have not 

solved the challenges such as: (a) optical sensor data 

suffering the saturation problem for high biomass density; 

and (b) being influenced by bad weather conditions (22). 

Radar data, while useful for biomass estimation, faces 

challenges in differentiating between vegetation types. 

Other drawbacks of SAR include high data costs, a small 

coverage area, inability to discern between different types 

of vegetation, lack of globally available coherent SAR 

datasets, and accuracy being impacted by inclement 

weather. Future research prospects are attractive as 

improvements in the handling and processing of SAR data 

can lead to better insights (70,71). 

Although LiDAR data is superior to radar and optical data, 
a few problems prevent LiDAR from being used widely in 

field applications. For example, LiDAR data analyses are 

complex and call for expertise in image processing using 

particular software. Since the LiDAR data collecting 

procedure is costly and only covers smaller areas, it has 

not been widely used for biomass estimation in broader 

areas (63). It has several limitations, including limited 

utilization in inclement weather, limited applicability to 

bigger areas, geographical limitation, high cost ($350 - 

$450 / sq. mile - 1-meter resolution), and technological 

difficulty. 

Challenges and Prospects 

Every technology has benefits and drawbacks. Since the 

turn of the 20th century, other cutting-edge methods such 

as remote sensing, the National Forest Inventory (NFI), 

geographic information systems (GIS), and others have 

also been used to estimate biomass, although the 

accuracy of this process for forest biomass has not yet 

been increased. These days, researchers are more 

interested in applying advanced technologies for biomass 

assessment, such as LIDAR, multispectral data, and 

geostatistical approaches. On the other hand, time-

consuming field methods such as the destructive sampling 

approach also provide practical challenges. When 

estimating biomass, matching data from remote sensing 

with ground truth data is frequently a challenging task. 

Despite significant progress in biomass estimation 
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methods, quantifying biomass stocks for diverse forest 

types in India is challenging due to the lack of generalized 

biomass estimation equations (72,73). 

Most researchers conclude that ground truth biomass 

measurements are the most accurate of the different 

methodologies available for estimating biomass. 

Therefore, it is crucial to create a uniform biomass 

database and conduct field biomass measurements 

worldwide utilizing a unified investigation specification 

(74). 

Way Forward Techniques for Accurate Biomass 
Estimation 

To address the growing need for precise biomass 

estimation, and to enhance the accuracy, efficiency, and 

scalability of biomass estimation, addressing the 

limitations of current methodologies is essential. Various 

approaches can be taken, especially in the context of 

climate change, carbon accounting, and renewable energy 

generation. Here are several recommendations and 

potential improvements: 

Increase access to advanced tools like LiDAR and SAR 

through public-private partnerships or open-access 

initiatives. 

Invest in affordable technologies such as UAVs and 

miniaturized sensors for localized, high-resolution 

biomass estimation. 

Integrate high-frequency satellite imagery with automated 
ground sensors for near-real-time biomass tracking. 

Use time-series satellite data to monitor forest biomass 

changes, capturing regrowth and disturbances like 

wildfires. 

Foster partnerships between ecologists, remote sensing 

experts, and data scientists to improve biomass models. 

Promote international cooperation for data exchange and 

model validation, especially in tropical regions. 

Create universal guidelines for biomass estimation to 

ensure consistency across regions. 

Support open platforms for sharing biomass data, models, 

and methods globally. 

Leverage AI for predictive biomass modelling using diverse 

datasets from various forest types. 

Automate remote sensing data processing to make 

biomass estimation faster and more accessible. 

Organize training programs for local researchers, forest 

managers, and policymakers to enhance technical 

expertise. 

Focus on empowering communities with tools and 

knowledge for sustainable biomass management. 

Develop species- and region-specific allometric equations 
for more precise biomass estimation. 

Expand global databases, such as the GFBI, to include 

under-studied and tropical species. 

Prioritize non-invasive methods like remote sensing to 

minimize ecological disturbance. 

Align biomass data with sustainability initiatives (e.g., 

REDD+, carbon markets) to promote forest conservation. 

Embed accurate biomass estimation techniques into 

climate mitigation, biodiversity, and land-use policies. 

Develop decision support tools incorporating biomass 
data and socio-environmental factors for informed 

policymaking. 

Combine continuous satellite monitoring with robust 

ground-based observation networks. 

Strengthen capacity for detecting and analysing biomass 

trends and anomalies globally. 

 

Conclusion 

Forests play a crucial role in global carbon sequestration, 

and accurate estimation of Above Ground Biomass (AGB) is 

essential for understanding carbon stocks, assessing 

climate change impacts, and managing forests 

sustainably. Biomass estimation methods can be broadly 

categorized into destructive (direct) and non-destructive 

(indirect) approaches. Destructive methods, while 

accurate, are impractical for large-scale studies due to 

their resource-intensive and environmentally disruptive 

nature. Non-destructive methods, particularly those 

utilizing allometric equations, offer a practical alternative 

by relating easily measurable tree attributes to biomass. 

Recent advancements in remote sensing technologies, 

including multispectral, hyperspectral, LiDAR, and radar, 

have significantly enhanced the accuracy and efficiency of 

biomass estimation. The source of errors in both methods 

is categorized into two three such as: sampling error, 

measurement error and statistical or model error. These 

technologies, when integrated with ground inventory data 

and geostatistical techniques, provide comprehensive 

insights into forest biomass, making them indispensable 

tools for large-scale biomass estimation and monitoring. 

The integration of these advanced methods is crucial for 

carbon accounting, climate change mitigation, and 

sustainable forest management, as highlighted by 

initiatives like REDD+. 
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