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Abstract  

Phenolic acids are crucial for human health due to their potent antioxidant, 

anti-inflammatory, and antimicrobial properties, which help protect against 

chronic diseases and support overall well-being. In this study, 44 rice acces-

sions were evaluated for total phenolic content in three different locations 

of Tamil Nadu and the marker trait association was done using 208 SSR 

markers. Among the association panel, Mappillai Samba was identified as 

having the highest total phenolic content of 1049.936 mg GAE/100 g. The 

phylogenetic analysis grouped the panel of entries into five genetic struc-

ture groups which nearly matched the geographical distance among the 

entries. Marker-trait association studies using GLM and MLM revealed that 

SSR markers RM287 and RM19358 were significantly associated with total 

phenolic content, explaining 23.4% and 19.7% of the observed variability, 

respectively. These markers were located in genomic regions linked to can-

didate genes involved in the biosynthesis of trans-cinnamate 4-

monooxygenase (C4H) and phenylalanine ammonia-lyase (PAL), key en-

zymes in the phenolic acid pathway. Identifying these markers provides 

valuable tools for marker-assisted selection, enabling the development of 

biofortified rice varieties with enhanced phenolic content. Such advance-

ments promise to improve rice nutritional quality and promoting public 

health through dietary interventions.   
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Abbreviation             

C4H: Trans-cinnamate 4-monooxygenase 

G × E: Genotype x Environment 

GLM: General Linear Model 

MAS: Marker-Assisted Selection 

mg GAE/100 g: Milligrams of Gallic Acid Equivalent per 100 grams 

MLM: Mixed Linear Model 

PAL: Phenylalanine ammonia-lyase 

PIC: Polymorphism Information Content 

TPC: Total Phenolic Content  
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Introduction  

Rice (Oryza sativa L.) is one of the most important staple 

crops, providing sustenance to more than half of the glob-

al population. As a primary source of calories and nutrients 

in many regions, its quality plays a pivotal role in consum-

er acceptance and market value. Therefore, improving rice 

quality is a key objective in rice breeding programs world-

wide (1). While rice quality has traditionally been assessed 

based on its physical characteristics and cooking proper-

ties, recent research has increasingly emphasized its ther-

apeutic potential. This is particularly relevant in develop-

ing countries, where rice serves as a primary dietary staple 

(2). The growing challenge of global food security is exem-

plified by concerning statistics, with approximately 733 

million people experiencing hunger in 2023 and 2.33 bil-

lion facing moderate to severe food insecurity, according 

to the United Nations and the World Food Programme 

(3,4). In parallel, there is an increasing demand for healthi-

er food options, with functional foods enriched with phe-

nolic compounds emerging as a promising strategy to en-

hance nutritional quality and mitigate the impact of chron-

ic diseases (5). By incorporating these bioactive com-

pounds into food systems, it is possible to address both 

public health needs and the global issue of food insecurity. 

 Whole rice grains, especially pigmented rice have 

emerged as a significant focus due to their rich phyto-

chemical profiles, particularly in phenolic acids. The con-

sumption of pigmented rice can enhance overall health by 

mitigating oxidative stress and reducing inflammation, 

which are key factors in the development of chronic condi-

tions such as diabetes, cardiovascular diseases, and cer-

tain cancers (6,7). Phenolic acids play a crucial role in 

modulating metabolic pathways and improving glucose 

homeostasis (8). Furthermore, the regular intake of whole 

rice grain has been associated with improved gut health 

due to its high fiber content and prebiotic properties. As 

interest in functional foods continues to grow, biofortified 

rice with high phenolic content stands out as a promising 

dietary option that not only meets nutritional needs but 

also offers substantial health benefits (9). Therefore, 

breeding high-yield rice varieties with high phenolic con-

tent can address both food security and health improve-

ment.  

 In this study, 416 rice accessions (361 white, 50 red, 

and 6 black) were genotyped using 100 SSR markers, iden-

tifying the SSR marker RM346 as significantly associated 

with phenolic content, thereby enhancing the understand-

ing of the genetic factors influencing phenolic variation in 

rice (10). A study of 164 rice accessions identified 23 signifi-

cant marker-trait associations for antioxidant traits using 

155 SSR markers, with the Rc gene markers showing the 

strongest links, particularly Rid12, RM484, RM162, and 

RM5371 associated with phenolic content, flavonoid con-

tent, and antioxidant capacity (11). This study addresses 

the gap in the marker-trait association mapping of phenol-

ic content by linking SSR markers to functional genes in 

phenolic acid biosynthesis, which were previously under-

explored. This contributes valuable molecular tools for 

biofortification and improving the nutritional quality of 

rice, advancing current knowledge in rice breeding and 

public health. Considering these points, the present study 

was carried out to identify the best donor for improving 

phenolic content and to identify the SSR markers to accel-

erate the breeding programme.   

 

Materials and Methods 

The 44 rice accessions, obtained from the Ramiah Gene 

Bank, Department of Plant Genetic Resources, Tamil Nadu 

Agricultural University, were selected to represent a broad 

spectrum of genetic diversity. This association mapping 

panel included landraces, cultivars, improved varieties, 

and exotic collections from diverse geographical regions 

such as India, Colombia, Philippines, and Indonesia. The 

selection captured variability in TPC, spanning low, mod-

erate, and high TPC, ensuring a comprehensive represen-

tation of genetic and phenotypic diversity in global rice 

germplasm. 

 The panel was evaluated across three distinct agro-

climatic zones of Tamil Nadu i.e., Western, Cauvery Delta, 

and North Western zones in the Kharif 2021 to identify the 

interaction effect of environment on TPC. The seeds were 

dehusked using Lab Mini Rice Mill (LTJM 2099, GOYOJO, 

China) and then powdered using a cyclone sample mill 

equipped with a 0.5 mm screen (Udy Corporation, Fort 

Collins, Colorado- USA).  

 TPC was determined by the Folin-Ciocalteu colori-

metric method (12). The pulverized samples (250 mg) were 

extracted using 80% ethanol (10 ml) and centrifuged 

(3000 rpm for 20 min) (5430 R, Eppendorf, Germany). The 

extracts (200 μl) were then mixed with freshly prepared 1:1 

Folin-Ciocalteu reagent (500 μl) and 20% sodium car-

bonate (1000 μl), followed by incubation for 30 min. The 

absorbance was recorded at 660 nm using a spectropho-

tometer (LMSPUV1900, LABMAN, India). TPC was ex-

pressed as mg of Gallic acid (mg GAE/100 g) of dry weight. 

 Genomic DNA was extracted from 15-day-old seed-

lings using the CTAB extraction method (13). Polymorphic 

SSR markers (208) were used in this study. A Bayesian 

model-based clustering analysis was conducted using 

STRUCTURE v2.3.4, following the admixture model (14). 

Ten independent runs were performed, each with a burn-

in period of 10,000 iterations followed by 100,000 Monte 

Carlo iterations, considering a range of subpopulations    

(K = 1–10). The optimal number of subpopulations was 

determined using an ad hoc statistic (DeltaK), which evalu-

ates the rate of change in log probability between succes-

sive K-values using STRUCTURE SELECTOR (15). Addition-

ally, a neighbor-joining phylogenetic tree was constructed 

using TASSEL software (version 5.0). 

Statistical analysis         

Statistical analysis was performed using the META-R tool 

(13), which utilizes the 'lme4' package (14). BLUEs were 

calculated from three environments using the following 

equation: 
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 Where yijk = trait of interest; μ = overall mean;                

Ei = random effect of the ith environment; Rj(i) = random effect 

of the jth replicate nested in the ith environment;  Gk = fixed 

effect of the kth genotype, GEik = genotype by environment 

(G × E) interaction; eijk = residual error.  The calculated 

BLUEs were used for association mapping. Statistical anal-

ysis of phenotypic data was performed using R software 

(version 4.1.3). 

 Association analysis was performed using two mod-

els, the General Linear Model (GLM) (16) and Mixed Linear 

Model (MLM) (17). The association mapping analysis was 

performed using TASSEL software (version 5.0). The 

threshold for significant associations was calculated using 

a p-value < 0.05. To identify candidate genes linked with 

TPC, gene loci within 1 Mb up and downstream were ex-

tracted from the Rice Genome Annotation Project website 

(https://rice.uga.edu/).   

 

Results  and Discussion 

Total phenolic content          

TPC ranged from 105.087 to 1049.936 mg GAE/100 g with 

an average of 368.165 mg GAE/100 g. Among 44 genotypes, 

12, 21 and 11 genotypes showed low (< 200 mg GAE/100 g), 

moderate (200-500 mg GAE/100 g) and high (> 500 mg 

GAE/100 g) TPC respectively (Table 1). These findings indi-

cated the presence of a broad genetic diversity for TPC 

(18). The highest TPC was recorded in Mappillai Samba 

(1049.936 mg GAE/100 g) and the lowest in RPHP 134 

(105.087 mg GAE/100 g). The grains of Mappillai Samba had 

numerous bioactive compounds, including β-sitosterol, cam-

pesterol, stigmasterol, squalene, trans-4-coumaric acid,             

p-coumaric acid, chorismic acid, 7-hydroxyflavone, 

genistein, gamma-tocotrienol, alpha-tocopherol, sperm-

ine, and putrescine, which contribute to its health bene-

fits. The pigmented rice accessions exhibited higher TPC 

compared to the non-pigmented rice accessions (19–21). 

Sl.No Code Genotypes Origin/source Parentage TPC (mg GAE/ 100g) 

1 RG1 Mappilai Samba Tamil Nadu, India Landrace 1049.936 

2 RG3 Senkar Tamil Nadu, India Landrace 256.291 

3 RG4 Murugankar Tamil Nadu, India Landrace 735.927 

4 RG7 Kudaivazhai Tamil Nadu, India Landrace 898.515 

5 RG9 Kuruvai kalanjiyam Tamil Nadu, India Landrace 876.468 

6 RG12 Vellai chithiraikar Tamil Nadu, India Landrace 154.754 

7 RG15 Palakachaka Tamil Nadu, India Landrace 263.730 

8 RG18 CHIR 11 West Bengal, India Improved chinsurah 299.042 

9 RG20 Kalvazhai Tamil Nadu, India Landrace 222.496 

10 RG22 IR 36 IRRI, Philippines IR1561-228 -l2/IR1737//CR94-13 294.478 

11 RG32 Thogai samba Tamil Nadu, India Landrace 647.016 

12 RG33 Malayathan Samba Tamil Nadu, India Landrace 236.314 

13 RG39 Kattu Ponni Tamil Nadu, India Landrace 353.108 

14 RG41 Godavari samba Tamil Nadu, India Landrace 296.744 

15 RG42 Erapalli Samba Tamil Nadu, India Landrace 161.890 

16 RG44 Mangan samba Tamil Nadu, India Landrace 173.727 

17 RG48 Kalarkar Tamil Nadu, India Landrace 158.287 

18 RG50 Sornavari Tamil Nadu, India Landrace 179.782 

19 RG51 RPHP 134 Kerala, India Njavara 105.087 

20 RG57 RPHP 103 Uttarkhand, India Pant Sugandh Dhan 17 504.860 

21 RG60 Ramakuruvaikar Tamil Nadu, India Landrace 316.691 

22 RG66 Seevanasamba Tamil Nadu, India Landrace 168.130 

23 RG68 IG63 (EC 728711-117674) IRRI, Philippines Caawa/Fortuna 258.256 

24 RG69 RPHP 48 Uttarakhand, India Bindii 163.693 

25 RG72 Aarkadu kichili Tamil Nadu, India Landrace 289.313 

26 RG76 Mattakuruvai Tamil Nadu, India Landrace 732.133 

27 RG77 Karuthakar Tamil Nadu, India Landrace 795.392 

28 RG83 RPHP 93 Uttarkhand, India Type-3 Dehraduni basmati 202.954 

29 RG92 IG 49(EC 729102-121052) IRRI, Philippines Menakely: IRGC51021-1 228.325 

30 RG99 IG 31 (EC728844-117829) Colombia Oryzica Ilanos 5 250.286 

31 RG102 Varakkal Tamil Nadu, India Landrace 602.660 

32 RG103 Mattaikar Tamil Nadu, India Landrace 516.400 

Table 1. Details of rice accessions and BLUEs values of total phenolic content 
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 The results of stability analysis indicated that there 

is no significant influence of environment on TPC. Based 

on the AMMI biplot, Mappilai Samba, Murugankar, Kudai-

vazhai, Palakachaka, Mattaikar and Mikuruvai recorded 

higher mean values and were found nearer to the origin 

(Fig.1). These genotypes exhibited relatively uniform TPC 

across the three locations, resulting in low genotype × en-

vironment (G × E) interactions. This uniformity indicates 

that their phenotypic expression is largely stable and mini-

mally influenced by environmental variability. Such stabil-

ity underscores their potential for consistent performance 

across diverse agroecological conditions, making them 

valuable for breeding and cultivation. Further, these geno-

types were found to be stable across the three environ-

ments and hence these genotypes can be used as donors 

to enhance the TPC (Table 2). 

Population structure analysis           

Polymorphism Information Content (PIC) is a measure of 

the informativeness of a genetic marker, reflecting both 

the number of alleles at a locus and their frequency distri-

bution. The PIC values for a set of genetic markers are a 

useful tool for evaluating the informativeness of these 

markers in population diversity studies. Markers with PIC 

values greater than 0.5 are highly informative, those with 

PIC values between 0.5 and 0.25 are considered moderate-

ly informative, while markers with PIC values less than 0.25 

remain less informative. In the current study, 42%, 56% 

and 2% of SSRs were less, moderately and highly informa-

tive, which demonstrates the significance of these markers 

for genetic diversity analysis in rice. The average SSR PIC 

value of 0.49 obtained in this study was slightly higher 

than that reported in previous studies on rice 

(Supplementary Table 1)(22–24). 

 In the present study, the population structure gave 
five distinct subpopulations across the rice accessions 

(SP1, SP2, SP3, SP4 and SP5). The subpopulations were 

identified based on the maximum Delta K value (ΔK = 5) 

(Fig. 2). SP1, SP2 and SP5 predominantly consist of geno-

types with medium and high TPC, while SP3 and SP4 pri-

marily contain low TPC accessions, respectively. Addition-

ally, these sub-populations were categorized into distinct 

groups based on their geographical origin. SP1 comprised 

eight genotypes, which were composed of landraces from 

South Asia (India). SP2 also comprised eight genotypes, 

among which six were from South Asia (India), and two 

from South East Asia (Indonesia and Philippines). SP3 

comprised four genotypes, among which two were from 

South Asia (India) and two from Southeast Asia 

(Philippines). SP4 comprised five genotypes, among which 

four were from South Asia (India) and one from South 

33 RG105 IG 6 (EC 729592-121642) IRRI, Philippines SOM CAU 70::IRGC8227-1 236.076 

34 RG106 Katta samba Tamil Nadu, India Landrace 176.314 

35 RG110 Norungan Tamil Nadu, India Landrace 786.729 

36 RG118 Ponmani Samba Tamil Nadu, India Landrace 231.870 

37 RG161 Panamarasamba Tamil Nadu, India Landrace 148.530 

38 RG163 Mikuruvai Tamil Nadu, India Landrace 268.571 

39 RG176 Kodai Tamil Nadu, India Landrace 229.791 

40 RG182 ARB 59 Karnataka, India Variety 207.078 

41 RG184 IG 28(EC 728892-117880) Indonesia Seratoes hari 198.201 

42 RG188 RPHP 8 Andhra Pradesh, India 24(k) 202.688 

43 RG190 IG 26 (IC0590943-121899) IRRI, Philippines Basmati 370: IRGC 3750-1 219.132 

44 RG192 Nootri pathu Tamil Nadu, India Landrace 901.610 

Fig. 1. AMMI biplots for total phenolic content. 

 df SS MSS 

ENV 2 43.0466 21.5233 

REP(ENV) 6 537.9322 89.65537 

GEN 43 25723390 598218.4** 

GEN: ENV 86 4827.321 56.13164 

PC1 44 4382.826 99.60968 

PC2 42 444.4951 10.58322 

Residuals 258 143281.5 555.3545 

Total 481 25876910 53798.15 

Table 2. ANOVA for Stability (AMMI) for interactive traits – Total Phenolic 
Content 
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America (Colombia). SP5 comprised nineteen genotypes, 

among which seventeen were from South Asia (India), and 

two from South East Asia (Philippines). It clearly shows 

that each subpopulation is diverse from the others (25) 

Genetic diversity analysis          

The analysis of molecular variance (AMOVA) conducted on 

the 44 rice genotypes revealed highly significant genetic 

differences (p < 0.001) between sub-populations and with-

in genotypes. However, no significant difference (p > 0.001) 

was observed between genotypes within sub-populations. 

Among the total genetic variations observed in the 44 rice 

genotypes, 9% was attributed to genetic differentiation 

between the sub-populations, 53% to genetic differentia-

tion within the genotypes, and the remaining proportion 

(38%) was due to genetic differences between genotypes 

within the sub-populations (Table 3). Additionally, the 

overall fixation index (Fst) and number of migrants (Nm) 

among the sub-populations were 0.176 and 2.529, respec-

tively. This indicates the moderate level of gene flow and 

ensures the maintenance of genetic connectivity between 

sub-populations, while simultaneously permitting the de-

velopment of genetic differentiation. Such results suggest 

a well-defined genetic architecture within the rice geno-

types, where both intra-population processes, such as 

gene flow and mutation, and inter-population dynamics, 

like selection and genetic drift, contribute to the overall 

shaping of genetic diversity. This balance of forces under-

scores the complex evolutionary history of these geno-

types and highlights the importance of both local adapta-

tion and broader population-level interactions in main-

taining their genetic variability. 

 The alleles (Na) ranged from 2.278 in SP3 to 3.014 in 
SP5, with an overall mean of 2.6366. The effective alleles 

(Ne) were highest in SP2 (2.131) and lowest in SP5 (1.982), 

with an average of 2.0398. Observed heterozygosity (Ho) 

ranged from 0.189 in SP4 to 0.218 in SP2, with an average 

of 0.2038. Expected heterozygosity (He) values ranged 

from 0.421 in SP5 to 0.476 in SP2, with an average of 

0.4456. The lower Ho compared to He was expected due to 

rice’s self-pollinating nature (26), resulting in a relatively 

higher degree of inbreeding within the population (27). 

The unbiased expected heterozygosity (uHe) ranged from 

0.432 in SP5 to 0.507 in SP2, with a mean of 0.482. The fixa-

tion index (F), which measured inbreeding structure, var-

ied from 0.553 in SP3 to 0.611 in SP5, with an average of 

0.5802. The percentage of polymorphic loci (PPL) was 

A 

B 

Fig. 2. (A) Magnitude of delta K from STRUCTURE analysis of 44 germplasm. (B) Population structure of 44 rice accessions. Population structure of all genotypes 
was divided based on genetic diversity detected by 208 SSR markers with K=5.  

 

Source df MSS Estimated variance Proportion  of variation (%) Nm Fst 

Between sub-populations 4 162.413 5.084 9 (<0.001) 2.529 0.176 

Between genotypes within sub-population 39 81.191 29.772 53 (>0.001)   

Within genotypes 44 21.648 21.648 38 (<0.001)   

Total 87  56.503 100   

Table 3. Analysis of molecular variance among 44 genotypes based on the 208 SSR markers 
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highest in SP5 (97.17%) and lowest in SP4 (86.32%), with 

an overall average of 92.264%. The high percentage of pol-

ymorphic loci further emphasizes the genetic variability 

present, which is crucial for breeding programs aimed at 

enhancing resilience and adaptability (Table 4). 

 The population pairwise fixation indices, estimate 

genetic differentiation among populations due to genetic 

structure. An Fst value of 0.25 or higher suggests signifi-

cant differentiation, values between 0.15 and 0.25 indicate 

moderate differentiation and values of 0.05 or less signify 

insignificant differentiation. This framework allows re-

searchers to assess the extent of genetic structure and 

inform conservation and breeding strategies based on the 

level of genetic exchange between sub-populations. SP1 

and SP2 had a low Fst value of 0.066, indicating minimal 

genetic differentiation between these populations. SP3 

showed higher differentiation compared to the other pop-

ulations, with Fst values of 0.148 (with SP1), 0.151 (with 

SP2), 0.183 (with SP4), and 0.165 (with SP5), suggesting 

significant genetic divergence from the rest. SP4 exhibited 

moderate differentiation with SP1 (0.080) and SP2 (0.087), 

while showing a higher Fst with SP3 (0.183), indicating 

greater divergence from SP3. SP5 had relatively low Fst 

values with SP1 (0.061), SP2 (0.072), and SP4 (0.094), sug-

gesting these populations are genetically closer to SP5. 

However, SP5 showed higher differentiation from SP3 

(0.165). These Fst values suggest that SP3 is the most ge-

netically distinct population, while SP1, SP2, SP4 and SP5 

are more closely related (Table 5). 

Marker trait association          

The association between SSR markers and TPC was exam-

ined by two different models viz., GLM and MLM. The GLM 

with PCA model is expected to reduce the false positives 

that arise due to only population structure. The MLM with 

PCA and K model includes the kinship matrix in the model 

and is expected to reduce the false positives that arise 

from family relatedness. Both GLM and MLM are reported 

to control false positives better than ANOVA. The MLM 

model is reported to perform better than the GLM model 

alone by controlling false positives.  

 Based on the Q-Q plots, the MLM model showed 

deviations from the straight line, with upward inflation 

indicating false positives and downward deflation suggest-

ing false negatives. In contrast, the GLM model exhibits Q-

Q plots that closely follow the 1:1 line, with a slight upward 

deviation at the tail. This pattern suggests that both false 

positives and false negatives are well-controlled, indicat-

ing the presence of true associations and causal polymor-

phisms.  

 The association analysis using both the General 

Linear Model (GLM) and Mixed Linear Model (MLM) ap-

proaches identified several significant marker-trait associ-

ations across chromosomes 1, 2, 3, 4, 5, 8, and 12. In the 

GLM analysis, the R2 value ranged from 9.40% (RM230 on 

chromosome 8) to 28.52% (RM8136 on chromosome 1). 

Similarly, the MLM analysis showed R² values ranging from 

10.11% (RM230 on chromosome 8) to 42.93% (RM8136 on 

chromosome 1) (Fig. 3, Table 6).  

Pop Na Ne Ho He uHe F PPL (%) 

SP1 2.731 2.099 0.209 0.469 0.500 0.596 96.23 

SP2 2.811 2.131 0.218 0.476 0.507 0.564 94.81 

SP3 2.278 2.000 0.202 0.436 0.498 0.553 86.79 

SP4 2.349 1.987 0.189 0.426 0.473 0.577 86.32 

SP5 3.014 1.982 0.201 0.421 0.432 0.611 97.17 

Average 2.6366 2.0398 0.2038 0.4456 0.482 0.5802 92.264 

Table 4. Genetic diversity indices for the five rice sub-populations based on 208 SSR markers 

Na - No. Alleles; Ne - No. Effective Alleles; Ho - Observed Heterozygosity; He - Expected Heterozygosity; uHe - Unbiased Expected Heterozygosity; F - Fixation 
Index; PPL – percentage of polymorphic loci. 

 SP1 SP2 SP3 SP4 SP5 

SP1 0.000     

SP2 0.066 0.000    

SP3 0.148 0.151 0.000   

SP4 0.080 0.087 0.183 0.000  

SP5 0.061 0.072 0.165 0.094 0.000 

Table 5. Population’s pairwise genetic differentiation index (Fst). 

A 

B 
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 Out of all these markers, two SSR markers viz., 

RM12381 (Chr. 2) and RM6034 (chr 5) were found to be as-

sociated with TPC. These markers were found nearer to 

the candidate genes related to the synthesis of TPC. When 

the sequential positions of these markers were hit in the 

genomic regions of the rice sequence available in the NCBI 

database, the marker RM12381 was found to be associated 

with the gene at the position Chr02:15717050 – 15718956 

kb (Os02g0467000) which encodes the enzyme trans-

cinnamate 4- monooxygenase. It was also observed, that, 

the marker RM6034 was found to be linked with the gene at 

the position Chr05:20953643 – 20955793 (Os02g0626100) 

encoding phenylalanine ammonia-lyse. Trans-cinnamate 4

-monooxygenase (C4H) and phenylalanine ammonia-lyase 

(PAL) are key enzymes in the phenylpropanoid pathway, 

which plays a crucial role in the biosynthesis of TPC. PAL 

catalyzes the first step in this pathway, converting phenyl-

alanine into trans-cinnamic acid by deaminating phenylal-

anine. Trans-cinnamic acid is then hydroxylated by C4H to 

produce p-coumaric acid, a precursor for numerous phe-

nolic compounds.  In wheat, the expression levels of the 

phenylalanine ammonia-lyase (PAL6) and cinnamate 4-

hydroxylase (C4H) genes were significantly elevated in 

plants cultured in a medium enriched with phenylalanine, 

indicating a regulatory response in the phenylpropanoid 

biosynthetic pathway (28) (Fig. 4). 

 The interplay between C4H and PAL is critical for 

plant adaptation to stress. By regulating the biosynthesis 

of phenolic compounds, these enzymes contribute to 

structural defences and antioxidant systems that mitigate 

oxidative damage caused by biotic and abiotic stress. En-

hanced expression of these enzymes leads to increased 

accumulation of protective metabolites, improving overall 

plant health and survival under adverse conditions. There-

fore, targeting these pathways could be a valuable strate-

gy for developing stress-resistant crop varieties. 

 Earlier studies identified markers such as Rid12, 

RM346, RM484, RM162, and RM5371, which showed strong 

associations with phenolic content, flavonoid content, and 

antioxidant capacity (7,8). However, these markers were 

not directly linked to the genes involved in the phenylpro-

C 

D 
Fig. 3. (A-B) Quantile-quantile (QQ) plot of GLM and MLM (C-D) The Manhat-
tan plot of GLM and MLM for total phenolic content. 

Marker Chromosome Position (bp) p-value R2 

GLM 

RM243 1 7970836 0.00676 0.22569 

RM8136 1 42926406 0.01659 0.28521 

RM12381 2 1505683 0.00479 0.23708 

RM1334 3 17421657 0.04576 0.15689 

RM5511 4 30927988 0.04582 0.18805 

RM6034 5 7034442 0.01243 0.2049 

RM230 8 32538000 0.02995 0.09399 

RM474 10 1819051 0.00344 0.24777 

RM26762 11 17174930 0.03440 0.13253 

MLM 

RM8136 1 42926406 0.01788 0.42927 

RM243 1 7970836 0.02174 0.25675 

RM12381 2 1505683 0.01868 0.26689 

RM14432 3 3434709 0.02548 0.24625 

RM6034 5 7034442 0.04410 0.21038 

RM230 8 32538000 0.04494 0.10106 

RM474 10 1819051 0.02434 0.24927 

RM12381, and RM 6034 were found nearer to the candidate genes related to 
the synthesis of TPC. 

Table 6. Marker-trait associations and marker effect derived from 208 SSR 
markers and 44 rice accessions. 

Fig. 4. General phenylpropanoid pathway. PAL - phenylalanine ammonia-
lyase; C4H - cinnamate 4-hydroxylase.  
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panoid pathway, which is responsible for phenolic con-

tent. In contrast, the present study identified two key 

markers, RM12381 (Chr 2) and RM6034 (Chr 5), associated 

with genes encoding trans-cinnamate 4-monooxygenase 

(Os02g0467000) and phenylalanine ammonia-lyase 

(Os02g0626100). These enzymes play vital roles in the phe-

nylpropanoid pathway. By linking these markers to specif-

ic biosynthetic genes, this study makes a significant contri-

bution to understanding phenolic biosynthesis and pro-

vides valuable tools for improving rice nutritional quality.  

 

Conclusion  

The enhancement of phenolic content in rice holds consid-

erable promise for improving both food security and pub-

lic health. The findings highlight the significance of pig-

mented rice varieties, particularly for their phytochemical 

profiles that offer potential benefits in managing oxidative 

stress and supporting metabolic health. The genotypes 

Mappilai Samba, Murugankar, Kudaivazhai, Palakachaka, 

Mattaikar, and Mikuruvai exhibited consistently high TPC 

with minimal G × E interactions, indicating stable pheno-

typic expression across environments. Their stability and 

high mean TPC values make them ideal donors for marker-

assisted selection (MAS) programs targeting phenolic en-

richment. As the two significant markers, RM12381 and 

RM6034 have been confirmed to be linked to the candidate 

genes responsible for the biosynthesis of TPC, these mark-

ers could be used for improving therapeutic traits in high-

yielding rice varieties through Marker Assisted Breeding 

methods. Incorporating these genotypes and markers into 

breeding pipelines can accelerate the breeding programs 

focused on biofortified rice with functional health benefits. 

Continued exploration of these genetic markers can ad-

vance the development of nutritionally superior rice varie-

ties, supporting both sustainable agriculture and health 

improvement goals in rice-dependent regions worldwide.   
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