

RESEARCH ARTICLE

Multipurpose use of *Colocasia esculenta* for COD and iron leachate treatment in constructed wetlands optimized by response surface methodology

Isni Arliyani¹, Shreeshivadasan Chelliapan^{2*}, Bieby Vojant Tangahu¹ & Sarwoko Mangkoedihardjo¹

¹Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

²Department of Engineering and Technology, Universiti Teknologi Malaysia, Skudai 81310, Malaysia

*Correspondence email - shreeshivadasan.kl@utm.my

Received: 21 December 2024; Accepted: 28 September 2025; Available online: Version 1.0: 04 February 2026

Cite this article: Arliyani I, Chelliapan S, Tangahu BV, Mangkoedihardjo S. Multipurpose use of *Colocasia esculenta* for COD and iron leachate treatment in constructed wetlands optimized by response surface methodology. Plant Science Today (Early Access). <https://doi.org/10.14719/pst.6850>

Abstract

This study explores the versatile application of *Colocasia esculenta* (L.) Schott (taro) in the treatment of contaminated water, focusing on its dual role as a natural component of constructed wetlands and as an adsorbent for the removal of chemical oxygen demand (COD) and iron (Fe) from landfill leachate. Constructed wetlands (CW) planted with *C. esculenta* achieved an Fe removal efficiency of 77.97 % (from 0.59 mg/L to 0.13 mg/L), while COD removal was limited to 33.37 % (from 1531 mg/L to 1020 mg/L). To improve pollutant reduction, activated carbon derived from *C. esculenta* was tested using batch adsorption experiments. Response surface methodology (RSM) was employed to optimize key parameters, including pH 6 and a contact time of 53 min, resulting in 46.37 % COD removal and 84.62 % Fe removal. These findings demonstrate the promising potential of *C. esculenta* as both a phytoremediator and a bio adsorbent, providing an eco-friendly and sustainable solution for leachate treatment in agricultural, industrial and municipal wastewater applications. This research contributes to the development of low-cost, environmentally sound strategies for pollutant removal and resource recovery in sustainable water management.

Keywords: bio adsorbent; enhance efficiency; sustainability; taro

Introduction

Leachate is a polluted liquid that results from the degradation of solid waste in landfills. It is contaminated with organic and inorganic chemicals, heavy metals and hazardous compounds. Treatment of leachate is critical for preventing pollution of groundwater and surface water bodies (1). Several strategies for leachate treatment have recently been proposed, including biological, physical, chemical and physicochemical procedures (2).

Biological treatment is often favoured because of its dependability, simplicity and cost-effectiveness (3). One of the biological treatments that has succeeded in processing raw leachate as a pre-treatment with phytotechnology uses a combination of *Typha angustifolia* plants and bioaugmentation. Excellent pollution removal capabilities can be achieved with several plants such as *Phragmites australis* (common reed), *Typha* spp. (cattails), *Colocasia* spp. (taro) and *Scirpus* spp. (bulrushes) are frequently used (4). *C. esculenta* have a strong pollution absorption capability and resistance to leachate conditions and was chosen (5).

Some chemicals, however, such as ammonia, are difficult to biodegrade due to their toxicity to microorganisms at high concentrations (6). Several studies have found that physicochemical procedures are appealing pre- or post-treatment approaches for

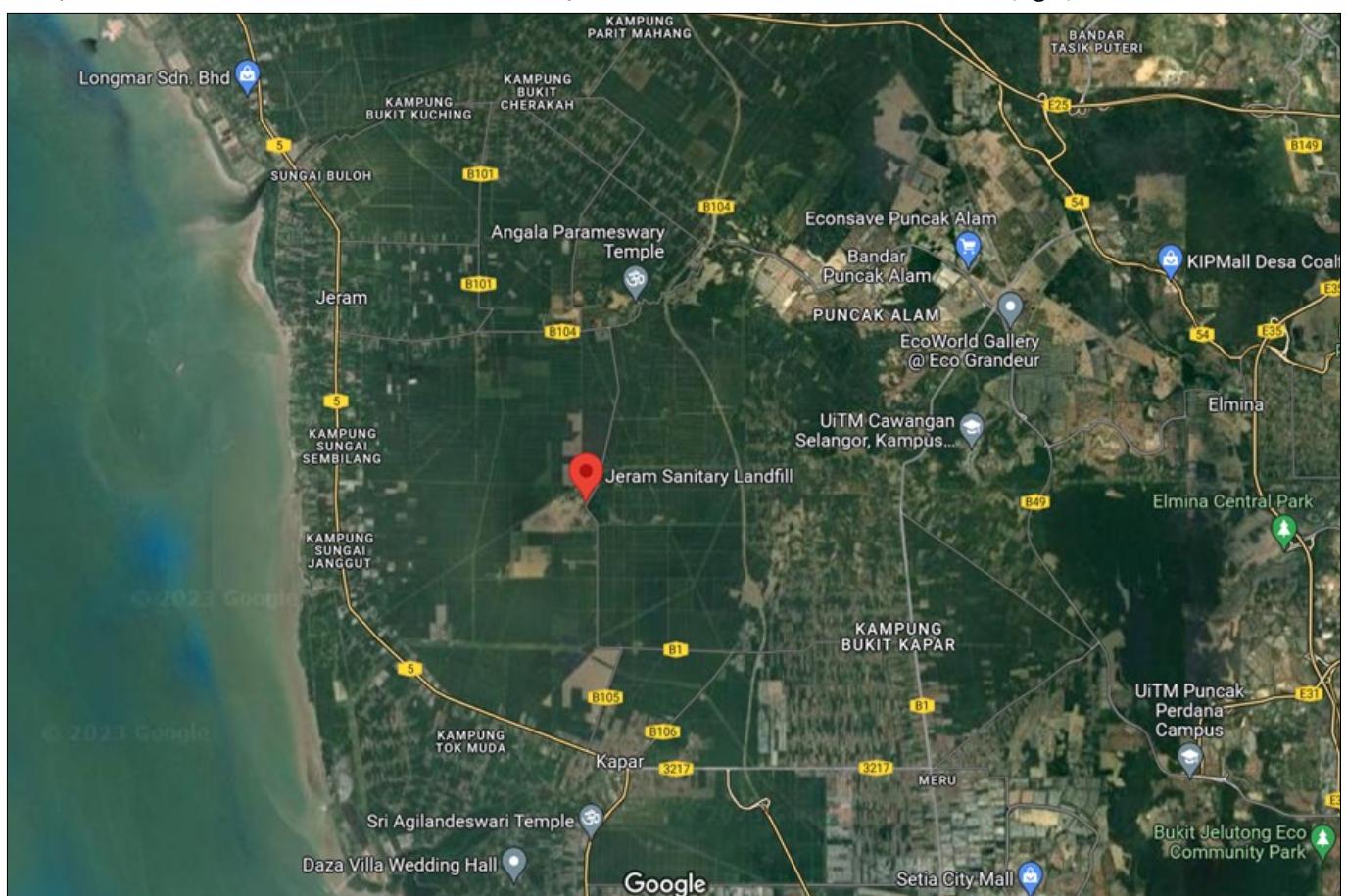
lowering effluent toxicity (7). Adsorption is a popular approach for removing toxins from a variety of environmental matrices, including air, water and soil. Because of its high adsorption capacity, vast surface area and versatility, activated carbon has attracted substantial attention among the many adsorbents available (8). Because of their renewable and sustainable nature, adsorbents are often generated from a variety of carbonaceous sources, including plant materials (9).

Plant-based activated carbon (AC) has emerged as a viable alternative to non-renewable activated carbons made from coal or petroleum. Plants have various benefits as raw materials for the synthesis of activated carbon, including abundant availability, low cost and environmentally friendly properties (10). Furthermore, the utilization of plant-based activated carbon helps to valorize agricultural wastes and biomass waste, decreasing reliance on fossil fuels and creating a circular economy (11, 12). Carbonization, activation and purification are three critical processes in the manufacture of AC from plant sources. Carbonization is the process of heating plant material in an oxygen-depleted atmosphere to eliminate volatile components and convert it to carbon. The carbon is then activated to improve its adsorption characteristics by forming a porous structure (13). This is usually accomplished by physical or chemical means, such as steam activation or chemical activation with activating agents such as phosphoric acid or zinc chloride.

Finally, purifying operations are performed to eliminate any remaining impurities or activating agents, ensuring that the finished product fulfils the specified quality criteria (14).

The selection of plant material for AC manufacture is critical because it has a large impact on the adsorption performance and characteristics of the resultant material. Agricultural leftovers (e.g., rice husk, coconut shell, sugarcane bagasse), wood-based materials (e.g., sawdust, wood chips) and other biomass waste (e.g., bamboo, fruit peels) have all been investigated for their potential as activated carbon precursors (15). The plant material chosen is determined by criteria such as availability, cost, carbon content and particular adsorption needs (16). The adsorption capacity and effectiveness of plant-based activated carbon are determined not only by the carbonaceous material's intrinsic qualities, but also by the surface functional groups and chemical composition. Surface modifications and post-treatments can be used to improve adsorption performance and customize the material for specific purposes (17). To increase the adsorption capacity and selectivity of plant-based activated carbon, techniques such as chemical functionalization, thermal treatments and impregnation with metal nanoparticles have been studied (18).

Furthermore, research efforts have concentrated on the development of new adsorbent materials and modifications to improve leachate adsorption performance (19). To increase adsorbent selectivity, adsorption capacity and regeneration potential, advanced approaches such as chemical modification, surface functionalization and hybrid adsorbents have been investigated. Adsorption has also been combined with other treatment technologies, such as biological processes or membrane filtration, to produce better removal efficiencies and comprehensive leachate treatment (20). However, the process's


performance depends on variables such as starting pollutant concentration, chitosan dose, pH, sedimentation duration and their optimisation to maximise the adsorption process. Finally, the use of plant-based AC from constructed wetland (CW) is abundant and their regenerative nature makes them an appealing alternative to standard activated carbons.

More research and development in this area hold strong potential to expand the applications and enhance the performance of plant-based activated carbon materials for environmental remediation, water treatment and air purification. Continued efforts are essential to improve the leachate treatment process using CW and adsorption, explore novel adsorbents and integrate adsorption with other treatment technologies to achieve sustainable and environmentally friendly leachate management strategies. Traditionally, the one-variable-at-a-time (OVAT) method has been widely applied for developing media composition during the initial phases of experimental design (21). However, this method has limitations in identifying interactions among variables. In this study, RSM was employed to examine the combined effects of pH and contact time and to optimize the adsorption process for reducing COD in leachate. This approach builds on earlier research highlighting the efficiency of RSM in optimizing adsorption conditions for complex wastewater systems (22, 23).

Materials and Methods

Collection of leachates

Leachate samples were collected from Jeram Sanitary landfill in appropriate containers to retain their original composition and avoid additional contamination (Fig. 1).

Fig. 1. Leachate sampling location.

Leachate characterization

The physicochemical parameters and pollutant concentrations of the collected leachate samples were determined. pH, COD and Fe concentrations were assessed (Table 1).

Plant selection and culture

C. esculenta plants were collected from Taman Tasik Metropolitan Kepong, Malaysia. The samples were taken by digging around the plant using a scoop. Following that, the plant samples were carefully extracted from the soil medium to ensure that the plant's roots were not harmed (21). The plant samples were gathered and acclimated in the nursery tank for three days. Throughout the research period, healthy plant samples with nearly the same plant size and number of leaves (2 to 3) were chosen and utilized for research purposes to ensure the accuracy of the experimental results.

Preparation of plant-adsorbent

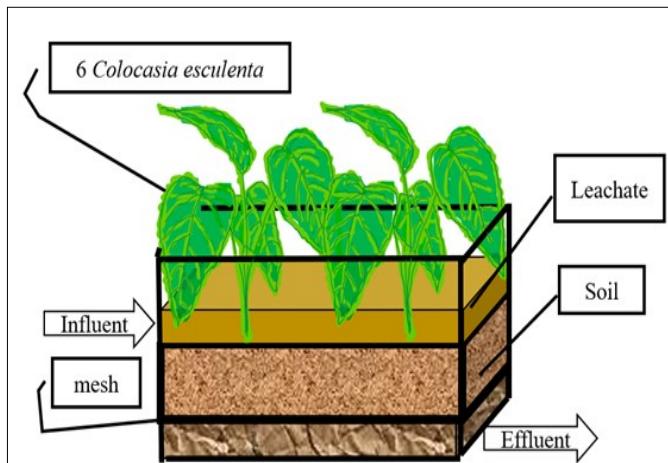

A carbonization and activation technique were used to create adsorbents from plant-based resources. The old *C. esculenta* plants were taken from CW tank, rinsed and dried at 100 °C for 12 hr in an oven. Physical activation entailed heating the carbonized material to high temperatures in the presence of steam or carbon dioxide and then, grinding it to a sufficient particle size to

Table 1. Leachate characteristics

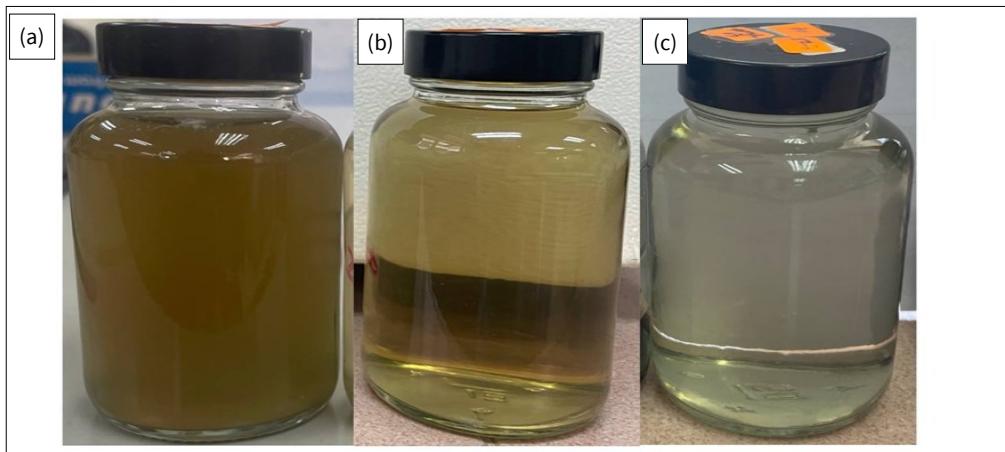
Parameter	Unit	Result 1 (external lab)	Result 2 (internal lab)	Method
pH		7	8	ASTM D1293
COD	mg/L	3840	4784	APHA 5220 C / HACH
Cadmium (Cd)	mg/L	ND (< 0.01)	-	APHA 3030 F b & APHA 3120 B
Nickel (Ni)	mg/L	ND (< 0.01)	-	APHA 3030 F b & APHA 3120 B
Iron (Fe)	mg/L	13.9	-	APHA 3030 F b & APHA 3120 B

Fig. 2. Stages of CAC process.

pass a 63 µm mesh (22). The sequence of making CAC can be seen in Fig. 2.

Constructed wetland design and installation

For leachate treatment, a CW system was planned and installed in a 10 L tank size. The substrate material was chosen because it acts as a medium for plant development and as a surface for microbial adhesion. Substrates used include gravel 3-5 cm (3 cm), gravel 1-2 cm (3 cm) and biochar soil (5 cm). Constructed wetland reactor can be seen in Fig. 3.


Results and Discussion

Experiments with adsorption

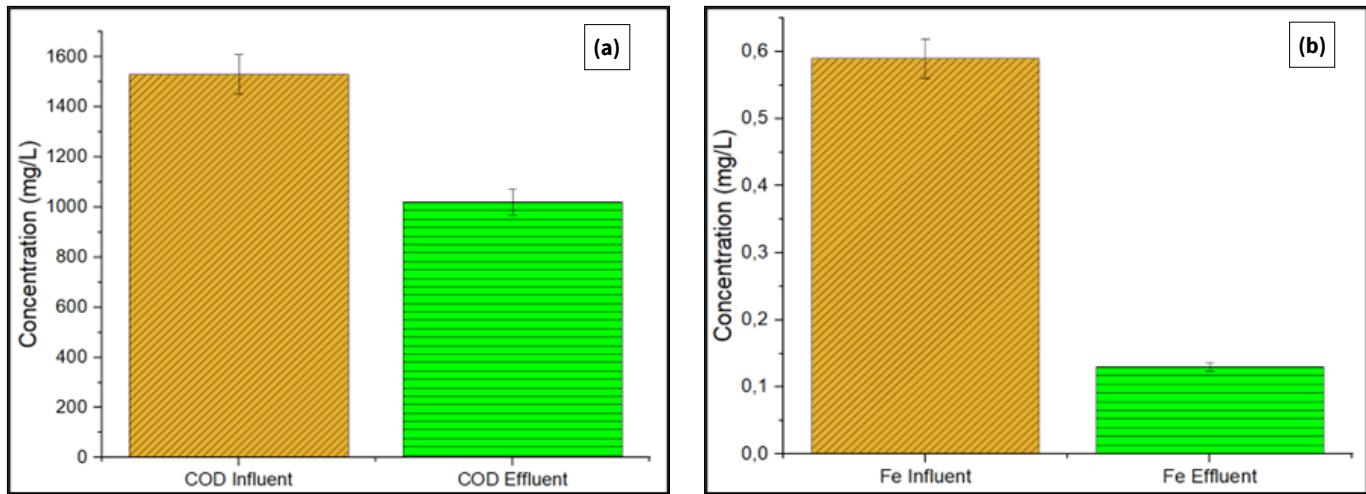

In this study, *C. esculenta* var. *antiquorum* was selected. This variety, locally known as "keladi pulut" in Malaysia, is commonly found in wetland areas and is known for its high biomass production and tolerance to polluted water. The specimens were collected from Taman Tasik Metropolitan Kepong, Selangor, Malaysia, where they naturally grow in moist, nutrient-rich soils. *C. esculenta* activated carbon (CAC) was used in adsorption studies. To generate standard solutions for adsorption testing, leachate samples were collected from the CW effluent. In batch adsorption tests, a 100 mL volume of leachate was mixed with 1 g of CAC. The containers were agitated or mixed (120 rpm) to ensure appropriate contact between the leachate and the CAC and the adsorption process was allowed to run for a predetermined amount of time (15-60 min) and a pH of 5-7 (11, 23). Samples were collected at regular intervals and examined to determine the residual pollutant concentrations in the leachate. By comparing the initial and final pollutant concentrations and the efficiency of plant-activated carbon were assessed (Fig. 4).

Fig. 3. Constructed wetland reactor.

Fig. 4. Leachate visualization (a) raw leachate; (b) after treatment using constructed wetland; (c) after adsorption process.

Fig. 5. Leachate treatment result using CW.

Constructed wetland

C. esculenta was assessed for its performance in leachate treatment in a constructed wetland. CW is a treatment that is commonly used for leachate (25). Leachate was tested in CW for pre-treatment of COD and Fe (Fig. 5).

C. esculenta exhibited a low concentration reduction from 1531 mg/L to 1020 mg/L, whereas Fe was reduction from 0.59 mg/L to 0.13 mg/L (Fig. 5). However, *C. esculenta* did not significantly contribute to COD removal. This result is consistent with previous studies, which have reported that constructed wetland shows greater heavy metal reduction (26). However, the effluent still retained a yellowish colour and high COD concentration. The adsorption process has the potential to purify the water colour and COD by using an adsorbent (27). This finding suggests that the CW is better suited for further treatment or modification with AC to reduce the yellowish colour and increase COD removal.

Response surface methodology

OVAT analysis for primary screening of medium components

Based on the previous research screened and optimised the major influencing factors (pH and contact time) for the adsorption process were screened and optimised. Different pH and contact time were then chosen for an OVAT study to discover the most optimal leachate treatment. The factor concentration ranges were established based on current literature data and publications (24). Subsequently, RSM based on central composite design (CCD) was used to model and optimise the parameters that impact the adsorption process for effective COD removal in leachate. The

Table 2. Central composite experimental design matrix on adsorption processes

Std	Run	Factor 1		Factor 2		Response 1 COD %	Response 2 Fe %
		A: pH	B: contact time min	C	D		
11	1	6	37.5	46.37	84.62		
5	2	4	37.5	2.06	69.23		
1	3	5	15	12.65	69.23		
12	4	6	37.5	46.37	84.62		
7	5	6	5.68	17.65	53.85		
3	6	5	60	11.57	61.54		
4	7	7	60	12.65	61.54		
2	8	7	15	26.57	53.85		
6	9	7	37.5	45.98	84.62		
10	10	6	37.5	46.37	84.62		
8	11	6	69.32	28.33	69.23		
9	12	6	37.5	46.37	84.62		
13	13	6	37.5	46.37	84.62		

parameters of the adsorption process, namely contact time (A) and pH of leachate (B) were examined. The range and magnitude of the process variables are shown in Table 2.

Assessment of COD and Fe using OVAT analysis in adsorption treatment (pH versus contact time)

The effect of pH and contact time in the adsorption process were chosen for an OVAT study. The contact time and pH ranges were selected based on existing literature data and available reports (28). Based on the previous study, contact time (15-60 min) and pH (5-7) were chosen as the variable for the subsequent OVAT analysis (29). Table 3 displays the results of the experimental vs projected values for all 13 experimental runs. ANOVA was used to assess the statistical

Table 3. Design matrix and CCD experimental and predicted results for COD removal in leachate treatment

Source	Sum of squares	df	Mean square	F-value	p-value	
Model	2977.02	5	595.40	8.21	0.0076	significant
A-pH	743.29	1	743.29	10.25	0.0150	
B-contact time	0.0013	1	0.0013	0.0000	0.9967	
AB	41.22	1	41.22	0.5684	0.4755	
A ²	1191.30	1	1191.30	16.43	0.0049	
B ²	1286.91	1	1286.91	17.75	0.0040	
Residual	507.62	7	72.52			
Lack of fit	507.62	3	169.21			
Pure error	0.0000	4	0.0000			
Cor total	3484.64	12				
Std. Dev.	8.52	R²	0.8543			
Mean	29.95	Adjusted R²	0.7503			
C.V. %	28.44	Predicted R²	-0.0359			
		Adeq Precision	6.8803			

Table 4. Design matrix and CCD experimental and predicted results for Fe removal in leachate treatment

Source	Sum of squares	df	Mean Square	F-value	p-value	
Model	1498.33	5	299.67	5.99	0.0181	significant
A-pH	5.10	1	5.10	0.1019	0.7588	
B-contact time	59.14	1	59.14	1.18	0.3128	
AB	59.14	1	59.14	1.18	0.3128	
A ²	231.65	1	231.65	4.63	0.0684	
B ²	1260.91	1	1260.91	25.22	0.0015	
Residual	349.95	7	49.99			
Lack of fit	349.95	3	116.65			
Pure error	0.0000	4	0.0000			
Cor total	1848.29	12				
Std. Dev.	7.07	R²	0.8107			
Mean	72.78	Adjusted R²	0.6754			
C.V. %	9.71	Predicted R²	-0.3464			
		Adeq Precision	6.4060			

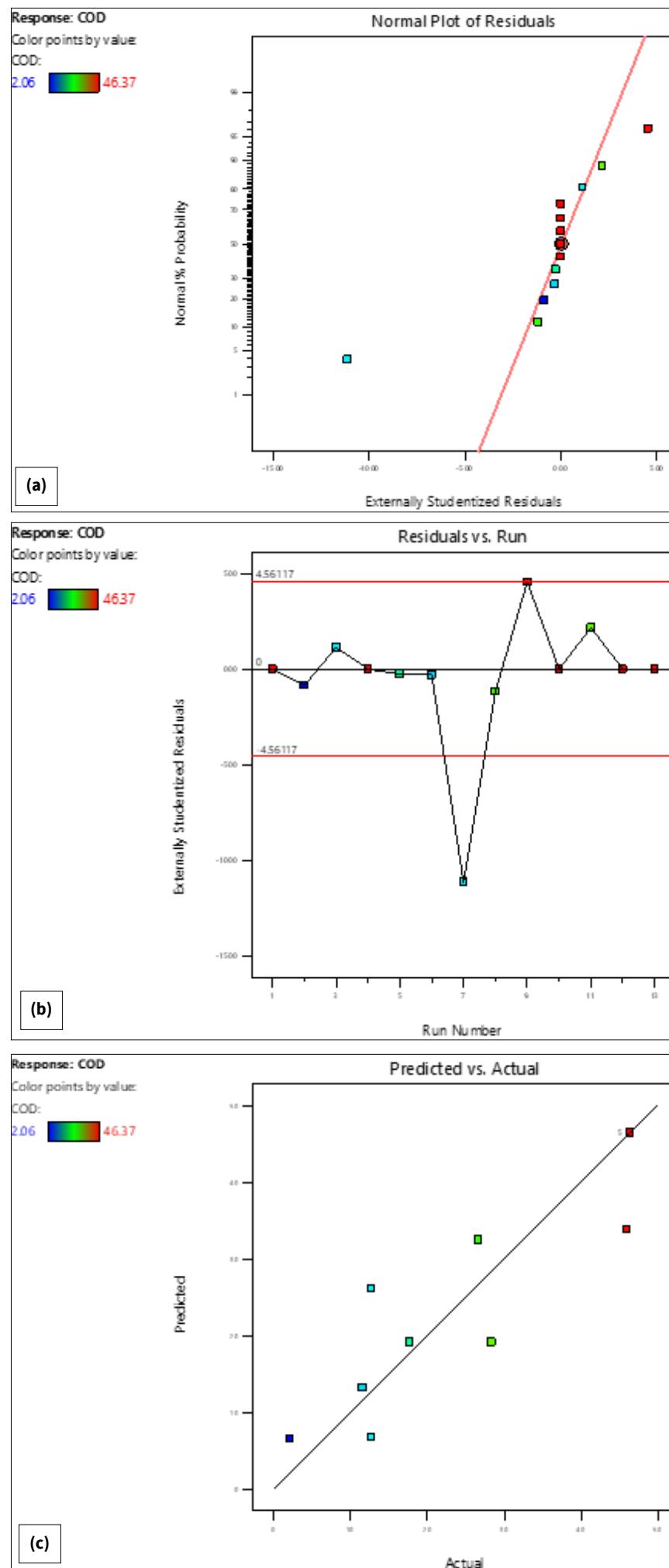
significance of the quadratic model (Table 3, 4). Eq. 1 and Eq. 2 show the quadratic equation derived from ANOVA for COD and Fe.

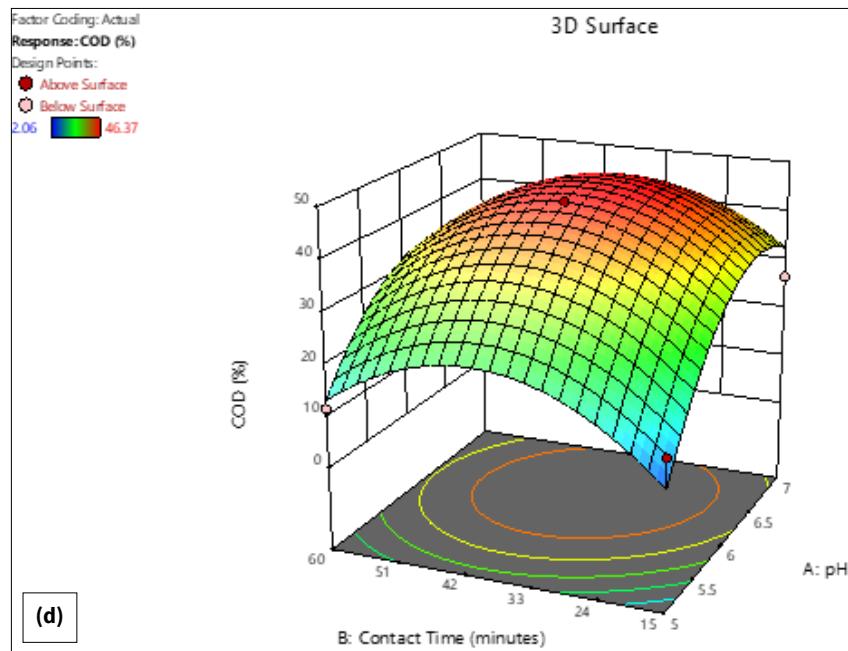
$$Y = +15.73 + 23.41A + 0.02B - 5.08AB - 1.97A^2 - 0.0002B^2 \quad (1)$$

$$Y = -225.79 + 98.00A + 0.14B - 5.15AB - 8.1A^2 - 0.0019B^2 \quad (2)$$

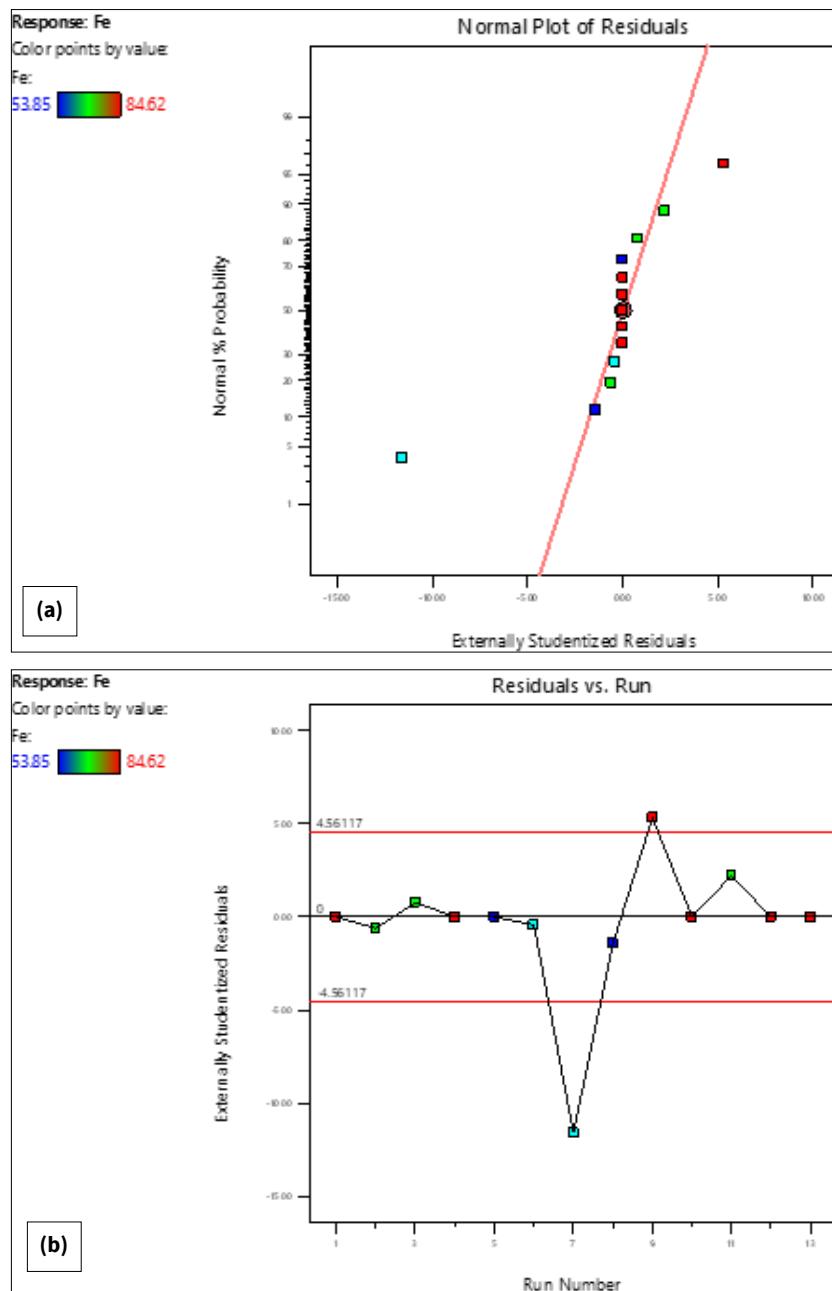
Model terms were evaluated by the highest value of coefficient of determination (R^2), F-test, p -value and lack of fit. P -values less than 0.05 indicate that model terms are significant. In this case B^2 was a significant model term. Values greater than 0.10 indicate the model terms are not significant. If there are many insignificant model terms (not counting those required to support hierarchy), model reduction may improve the model (30). Table F-test values of 8.21 and 5.99, indicating that the developed models are significant (Table 3 & 4). The predicted R^2 value for COD and Fe (0.8543 and 0.8107, respectively) is in reasonable agreement with the adjusted R^2 values (0.7503 and 0.6754, respectively), with a difference of less than 0.2 (31). In this study, the adequate precision was less than 15 for the two responses, proving the model can be used to navigate the design space. Additionally, the adequate precision ratio, with a value of 6.88 and 6.41, are higher than 4, which indicates an adequate signal (30).

RSM model analysis


The RSM model was utilized to fit the experimental data and the relationship between normal and residual plots, actual and predicted values and surface of interactive effect between contact time and pH was analysed (Fig. 6 & 7). The normal plot residual showed that the data points closely followed the straight line, indicating that the model is a reliable tool for predicting responses from independent input data points.


Although some data points deviated from the normal distribution, the deviation was not significant.

The residual versus run number plot showed that the data points were randomly scattered within the red line boundaries, while one point exceeded the redline (Fig. 6). A similar condition observed in previous study showed that the residuals are normally distributed and the variance equations do not appear to be violated (32). Furthermore, the predicted vs. actual plot revealed that the distribution points were closely matched along the 45° line, implying that the model can reliably predicting COD and Fe reduction (Fig. 4c & 5c). The 3D response surface plots highlighting the interaction impacts of each factor's response and experimental levels (Fig. 6d & 7d). According to the response surface plots, the highest turbidity reduction is located within the design limit.


The interaction influence of pH and contact time throughout a 60-min adsorption time (Fig. 6d & 7d). The pH increases the COD and Fe removal rise gradually in line with the increase in contact time. In contrast, when the pH approaches alkaline levels, COD and Fe removal reduces at a higher time of 40 min. The resulting graphic appearance is like what has been done in previous studies, which found that a high pH and a longer contact time can reduce the performance efficiency of the adsorption process (33, 34).

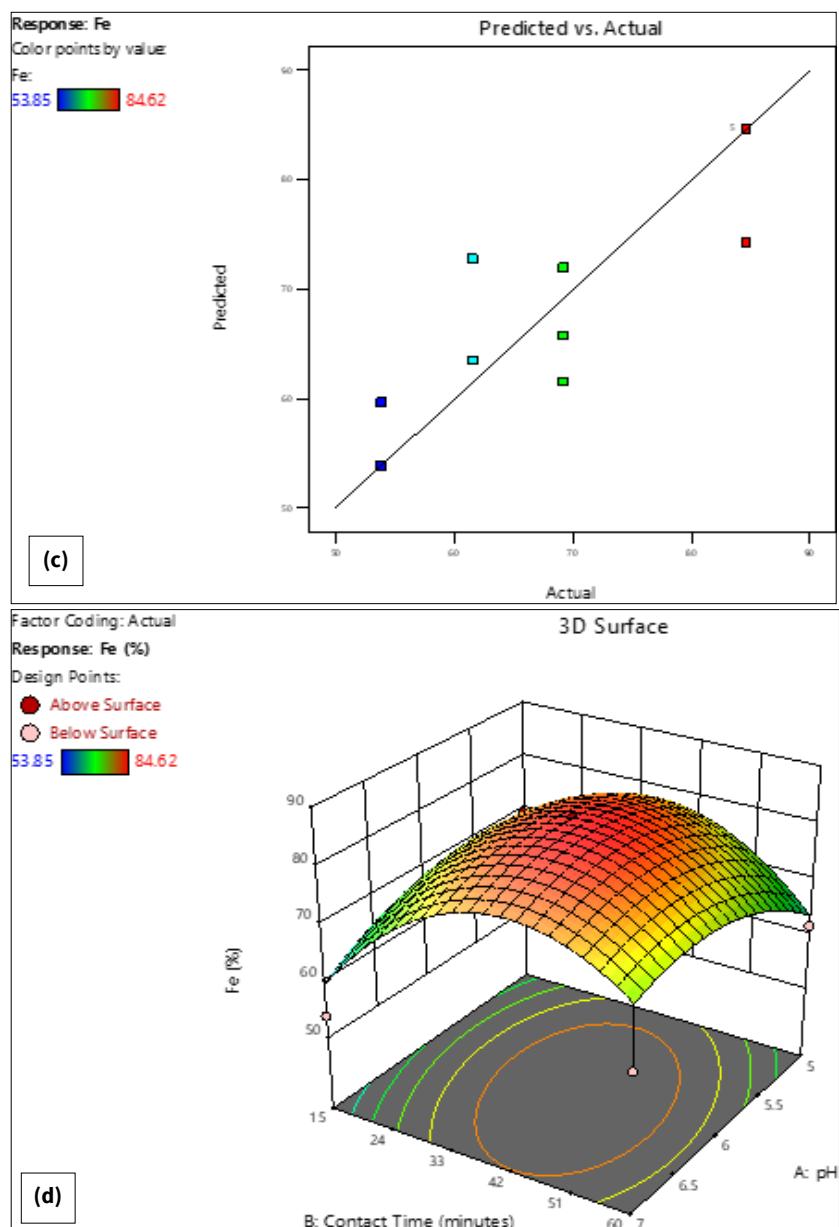

Overall, the results show that *C. esculenta* in the constructed wetland effectively removed certain pollutants (notably Fe) but gave only limited COD reduction. Integrating a subsequent adsorption step using CAC markedly improved COD and colour removal, supporting the value of combining phytotechnology and plant-

Fig. 6. Plot of (a) normal plot of residuals; (b) residuals versus run number; (c) predicted versus actual; (d) surface of interactive effect between a contact time and pH for COD removal in leachate treatment using CAC as adsorbent.

Fig. 7. Plot of (a) normal plot of residuals; (b) residuals versus run number; (c) predicted versus actual; (d) surface of interactive effect between a contact time and pH for Fe removal in leachate treatment using CAC as adsorbent.

based adsorbents for leachate polishing (35, 36). Optimization using RSM confirmed that pH and contact time are key parameters for adsorption efficiency and the developed quadratic models had acceptable predictive performance within the experimental domain (37, 38).

Conclusion

The research undertaken in this study explored the multifaceted utility of *C. esculenta* in two distinct applications: as a constituent of constructed wetlands and as an adsorbent for the treatment of COD and iron in leachate. Through the systematic application of RSM, the results provided valuable insights into the optimization of these applications. The predicted R^2 values for COD and Fe (0.8543 and 0.8107, respectively) are in reasonable agreement with the adjusted R^2 values (0.7503 and 0.6754, respectively). The combination of multipurpose *C. esculenta*, constructed wetlands and RSM optimization represents a promising approach for the sustainable and cost-effective treatment of COD and iron in wastewater. This innovative method aligns with the principles of green and eco-friendly wastewater treatment, offering a viable solution for addressing water pollution challenges.

Acknowledgements

We would like to express our sincere appreciation to Universiti Teknologi Malaysia (UTM) for kindly granting us permission to conduct our research on-site, as well as for providing complimentary access to its laboratory facilities and analytical instruments. We also extend our gratitude to the International Office of Institut Teknologi Sepuluh Nopember (ITS) for supporting this work through outbound research internship funding for transportation to Malaysia. This research is funded by the Indonesian Endowment Fund for Education (LPDP) on behalf of the Indonesian Ministry of Higher Education, Science and Technology and managed under the EQUITY Program (Contract No. 4299/B3/DT.03.08/2025 & No 3590/PKS/ITS/2025).

Authors' contributions

IA conducted the experimental research, performed data collection and contributed to drafting the manuscript. SC provided the overall

research guidance, designed the study and performed the statistical analysis using response surface methodology (RSM). BVT contributed to the analysis and interpretation of the data and helped in manuscript preparation. SM participated in the study design, provided expert advice on the treatment process and supported the experimental setup. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest: Authors do not have any conflict of interests to declare.

Ethical issues: None

References

- Iravanian A, Ravari SO. Types of contamination in landfills and effects on the environment: A review study. *IOP Conf Ser Earth Environ Sci.* 2020;614(1):012083. <https://doi.org/10.1088/1755-1315/614/1/012083>
- Galvão N, de Souza JB, de Sousa Vidal CM. Landfill leachate treatment by electrocoagulation: Effects of current density and electrolysis time. *J Environ Chem Eng.* 2020;8(5):104368. <https://doi.org/10.1016/j.jece.2020.104368>
- Wang K, Li L, Tan F, Wu D. Treatment of landfill leachate using activated sludge technology: A review. *Archaea.* 2018;2018:1-10. <https://doi.org/10.1155/2018/1039453>
- Brix H. Wastewater treatment in constructed wetlands: System design, removal processes and treatment performance. In: Moshiri GA, editor. *Constructed Wetlands for Water Quality Improvement.* Boca Raton: CRC Press; 2022. p. 09-22 <https://doi.org/10.1201/9781003069997-3>
- Madera-Parra CA, Peña-Salamanca EJ, Peña MR, Rousseau DPL, Lens PNL. Phytoremediation of landfill leachate with *Colocasia esculenta*, *Gynerum sagittatum* and *Heliconia psittacorum* in constructed wetlands. *Int J Phytoremed.* 2014;17(1):16-24. <https://doi.org/10.1080/15226514.2013.828014>
- Wang T, Huang Z, Ruan W, Zhao M, Shao Y, Miao H. Insights into sludge granulation during anaerobic treatment of high-strength leachate via a full-scale IC reactor with external circulation system. *J Env Sci.* 2018;64:227-34. <https://doi.org/10.1016/j.jes.2017.06.024>
- Cherni Y, Elleuch L, Messaoud M, Kasmi M, Chatti A, Trabelsi I. Recent technologies for leachate treatment: a review. *Euro Meditarr J Environ Integr.* 2021;6(3):1-20. <https://doi.org/10.1007/s41207-021-00286-z>
- Iftekhar S, Heidari G, Amanat N, Zare EN, Asif MB, Hassanpour M, et al. Porous materials for the recovery of rare earth elements, platinum group metals and other valuable metals: a review. *Environ Chem Lett.* 2022;20(6):3697-746. <https://doi.org/10.1007/s10311-022-01486-x>
- Benítez A, Amaro-Gahete J, Chien YC, Caballero Á, Morales J, Brandell D. Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host. *Renew Sustain Energy Rev.* 2022;154:111783. <https://doi.org/10.1016/j.rser.2021.111783>
- Makgabutlane B, Nthunya LN, Maubane-Nkademeng MS, Mhlanga SD. Green synthesis of carbon nanotubes to address the water-energy-food nexus: A critical review. *J Environ Chem Eng.* 2021;9(1):104736. <https://doi.org/10.1016/j.jece.2020.104736>
- Kuncoro EP, Arliyani I, Darmoekoesoemo H. Removal of Pb (II) ions from aqueous solution using Mahogany (*Swietenia macrophylla* King) sawdust as low cost adsorbent. *Jurnal Kimia dan Pendidikan Kimia.* 2022;7(1):38. <https://doi.org/10.20961/jkpk.v7i1.59757>
- Mujtaba M, Fraceto L, Fazeli M, Mukherjee S, Savassa SM, Araujo de Medeiros G, et al. Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. *J Clean Prod.* 2023;402:136815. <https://doi.org/10.1016/j.jclepro.2023.136815>
- Zakaria MR, Ahmad Farid MA, Andou Y, Ramli I, Hassan MA. Production of biochar and activated carbon from oil palm biomass: Current status, prospects and challenges. *Ind Crops Prod.* 2023;199:116767. <https://doi.org/10.1016/j.indcrop.2023.116767>
- Danish M, Ahmad T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. *Renew Sustain Energ Rev.* 2018;87:1-21. <https://doi.org/10.1016/j.rser.2018.02.003>
- Alam MM, Hossain MA, Hossain MD, Johir MAH, Hossen J, Rahman MS, et al. The potentiality of rice husk-derived activated carbon: From synthesis to application. *Processes.* 2020;8(2):203. <https://doi.org/10.3390/pr8020203>
- Dey T, Bhattacharjee T, Nag P, Ritika, Ghati A, Kuila A. Valorization of agro waste into value added products for sustainable development. *Bioresour Technol Rep.* 2021;16:100834. <https://doi.org/10.1016/j.biteb.2021.100834>
- Ashok Kumar SS, Bashir S, Pershaanaa M, Kamarulazam F, Saidi NM, Goh ZL, et al. A review on the recent progress of the plant-based porous carbon materials as electrodes for high-performance supercapacitors. *J Mat Sci.* 2023;58(15):6516-55. <https://doi.org/10.1007/s10853-023-08413-7>
- Abuelnoor N, AlHajaj A, Khaleel M, Vega LF, Abu-Zahra MRM. Activated carbons from biomass-based sources for CO₂ capture applications. *Chemosphere.* 2021;282:131111. <https://doi.org/10.1016/j.chemosphere.2021.131111>
- Huang L, Luo Z, Huang X, Wang Y, Yan J, Liu W, et al. Applications of biomass-based materials to remove fluoride from wastewater: A review. *Chemosphere.* 2022;301:134679. <https://doi.org/10.1016/j.chemosphere.2022.134679>
- Daikh S, Ouis D, Benyoucef A, Mouffok B. Equilibrium, kinetic and thermodynamic studies for evaluation of adsorption capacity of a new potential hybrid adsorbent based on polyaniline and chitosan for Acetaminophen. *Chem Phys Lett.* 2022;798:139565. <https://doi.org/10.1016/j.cplett.2022.139565>
- Men CK, Mohd Ghazi R. Phytoremediation of chromium (VI) using *Colocasia esculenta* in laboratory scale constructed wetlands. *J Tropical Res Sus Sci.* 2021;6(1):45-49. <https://doi.org/10.47253/jtrss.v6i1.727>
- Li Y huan, Chang F min, Huang B, Song YP, Zhao HY, Wang KJ. Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage. *Fuel.* 2020;266:117053. <https://doi.org/10.1016/j.fuel.2020.117053>
- Kuncoro EP, Fahmi MZ, Ama F, Arliyani I, Syaifuddin M. Adsorption of Pb(II) from aqueous solution using mixture of tofu solid waste and bentonite. *Pollut Res.* 2023;38:S173-76.
- Venkatachalam M, Shum-Chéong-sing A, Caro Y, Dufossé L, Fouillaud M. Ovat analysis and response surface methodology based on nutrient sources for optimization of pigment production in the marine-derived fungus *Talaromyces albabiverticillius* 30548 submerged fermentation. *Mar Drugs.* 2021 May 1;19(5). <https://doi.org/10.3390/md19050248>
- Madera-Parra CA, Peña-Salamanca EJ, Peña MR, Rousseau DPL, Lens PNL. Phytoremediation of landfill leachate with *Colocasia esculenta*, *Gynerum sagittatum* and *Heliconia psittacorum* in constructed wetlands. *Int J Phytoremed.* 2015;17(1):16-24. <https://doi.org/10.1080/15226514.2013.828014>
- Jia L, Liu H, Kong Q, Li M, Wu S, Wu H. Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater. *Water Res.* 2020;169:115285. <https://doi.org/10.1016/j.watres.2019.115285>
- Tebeje A, Worku Z, Nkambule TTI, Fito J. Adsorption of chemical oxygen demand from textile industrial wastewater through locally

prepared bentonite adsorbent. *Int J Env Sci Tech.* 2022;19(3):1893-906. <https://doi.org/10.1007/s13762-021-03230-4>

28. Anjum H, Johari K, Gnanasundaram N, Appusamy A, Thanabalan M. Investigation of green functionalization of multiwall carbon nanotubes and its application in adsorption of benzene, toluene and p-xylene from aqueous solution. *J Clean Prod.* 2019;221:323-38. <https://doi.org/10.1016/j.jclepro.2019.02.233>

29. Mengelizadeh N, Pourzamani H. Adsorption of reactive black 5 dye from aqueous solutions by carbon nanotubes and its electrochemical regeneration process. *Health Scope.* 2020;9(4):e102443. <https://doi.org/10.5812/jhealthscope.102443>

30. Okolo BI, Adeyi O, Oke EO, Agu CM, Nnaji PC, Akatobi KN, et al. Coagulation kinetic study and optimization using response surface methodology for effective removal of turbidity from paint wastewater using natural coagulants. *Sci Afr.* 2021;14:e00959. <https://doi.org/10.1016/j.sciaf.2021.e00959>

31. Iloamaeke IM, Nnaji NJ, Okpala EC, Eboatu AN, Onuegbu TU. Mercenaria mercenaria shell: coagulation-flocculation studies on colour removal by response surface methodology and nephelometric kinetics of an industrial effluent. *J Environ Chem Eng.* 2021;9(4):105715. <https://doi.org/10.1016/j.jece.2021.105715>

32. Adaobi IC, Onukwuli D, Onyeuchi PC. Optimal route for turbidity removal from aquaculture wastewater by electrocoagulation-flocculation process. *Journals Unizik Edu.* 2019;15(1):99-108.

33. Othman NH, Alias NH, Shahruddin MZ, Abu Bakar NF, Nik Him NR, Lau WJ. Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide. *J Environ Chem Eng.* 2018;6(2):2803-11. <https://doi.org/10.1016/j.jece.2018.04.024>

34. Yap PL, Tung TT, Kabiri S, Matulick N, Tran DNH, Losic D. Polyamine-modified reduced graphene oxide: A new and cost-effective adsorbent for efficient removal of mercury in waters. *Sep Purif Technol.* 2020;238:116441. <https://doi.org/10.1016/j.seppur.2019.116441>

35. Arliyani I, Tangahu BV, Mangkoedihardjo S, Zulaika E, Kurniawan SB. Enhanced leachate phytodetoxification test combined with plants and rhizobacteria bioaugmentation. *Heliyon.* 2023;9(1):e12921. <https://doi.org/10.1016/j.heliyon.2023.e12921>

36. Arliyani I, Noori MT, Ammarullah MI, Tangahu BV, Mangkoedihardjo S, Min B. Constructed wetlands combined with microbial fuel cells (CW-MFCs) as a sustainable technology for leachate treatment and power generation. *RSC Adv.* 2024;14:32073-100. <https://doi.org/10.1039/D4RA04658G>

37. Ahmad I, Chelliapan S, Othman N, Nasri NS, Krishnan S. Treatment of landfill leachate using modified anaerobic baffled reactor. *Desalination Water Treat.* 2020;183:268-275. <https://doi.org/10.5004/dwt.2020.25242>

38. Chelliapan S, Arumugam N, Md Din MF, Kamyab H, Ebrahimi SS. Anaerobic treatment of municipal solid waste landfill leachate (Chapter 11). In: Singh L, Yousuf A, Mahapatra DM, editors. *Bioreactors.* Elsevier; 2020. pp. 175-93. <https://doi.org/10.1016/B978-0-12-821264-6.00011-5>

Additional information

Peer review: Publisher thanks Sectional Editor and the other anonymous reviewers for their contribution to the peer review of this work.

Reprints & permissions information is available at https://horizonpublishing.com/journals/index.php/PST/open_access_policy

Publisher's Note: Horizon e-Publishing Group remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Indexing: Plant Science Today, published by Horizon e-Publishing Group, is covered by Scopus, Web of Science, BIOSIS Previews, Clarivate Analytics, NAAS, UGC Care, etc
See https://horizonpublishing.com/journals/index.php/PST/indexing_abstracting

Copyright: © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited (<https://creativecommons.org/licenses/by/4.0/>)

Publisher information: Plant Science Today is published by HORIZON e-Publishing Group with support from Empirion Publishers Private Limited, Thiruvananthapuram, India.