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Abstract   

Corn (Zea mays L.) is a major commercial crop cultivated worldwide.  Recognizing 

its economic importance, corn breeding has gained considerable momentum, 

with a key focus on understanding how the environment influences genotype 

performance. This interaction, known as Genotype × Environment (G × E), plays 

a crucial role in identifying stable and high-performing varieties. This study 

analysed three critical quality traits, such as cob weight, total soluble solids and 

total sugars using advanced statistical tools, including AMMI (Additive Model 

and Multiplicative Index), GGE (Genotype and Genotype-Environment) and 

WAASB (Weighted Average of Absolute Scores) models. These approaches were 

applied to evaluate the performance of 40 sweet-field corn hybrids across 

multiple environments. Based on the study two promising hybrids 45530×UMI 

1230β+
 and 45679×UMI 1200β+

, that consistently performed well across 

different seasons in Coimbatore were identified. The Which-Won-Where plot 

further characterized the mega-environment, identifying the most suitable 

genotype for each environment based on all traits. This comprehensive analysis 

provides valuable insights into the G × E interaction effects on key quality 

parameters of fresh corn. The findings of this study would help in focused 

breeding efforts for developing stable and better performing corn hybrids, 

ensuring they meet both production and quality demands across varying 

environmental conditions. 
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Introduction   

Corn is among the top three most consumed crop worldwide, serving both 

human and animal diets. It holds significant commercial value, being utilized in 

various industries and as a fuel source. Sweet corn is one of the specialty corn. It 

is the second-largest processing crop by production and value, trailing only 

tomatoes. In 2023, the total value of the sweet corn crop exceeded $774 million, 

with 75% designated for the fresh market and 25% for processing. The 

processing sector, which includes frozen and canned sweet corn, contributed 

$193 million to this total (1). Given its substantial market value and increasing 

demand, enhancing sweet corn production is essential for meeting consumer 

needs, in this context, sweet corn and corn breeding play a vital role. The 

genetic diversity of sweet corn is limited, as all modern sweet corn varieties 
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trace their lineage to a common progenitor. To enhance its 

genetic base, the integration of field corn is essential. This 

study explores the hybridization of sweet corn with field corn 

as a strategy to improve the germplasm of sweet corn. 

 In crop improvement programmes, evaluating 

genotype performance across diverse environments are 

critical for identifying stable and high-yielding genotypes. The 

interaction between genotype and environment (G × E) plays a 

significant role in influencing crop traits such as yield, quality 

and adaptability (2). This complexity is especially pronounced 

in crops like sweet corn and field corn, where hybrid 

performance can vary greatly across different agroecological 

conditions. To address this challenge, advanced statistical 

tools such as the Additive Main Effects and Multiplicative 

Interaction (AMMI) model, Genotype and Genotype-by-

Environment Interaction (GGE) biplot analysis and Weighted 

Average of Absolute Scores (WAASB) analysis have emerged as 

powerful methods for dissecting G × E interactions. These 

approaches not only enhance the understanding of genotype 

performance but also aid in identifying stable genotypes and 

delineating mega-environments, which are regions with 

relatively homogenous environmental conditions (3–5).  

Sweet corn, prized for its high sugar content and sensory 

quality and field corn, valued for yield and industrial uses, 

both require careful multi-environmental evaluations to meet 

the demands of specific production systems. By applying 

AMMI, GGE and WAASB models, breeders can effectively 

visualize and interpret complex data, enabling informed 

decision-making in selecting hybrids that combine stability 

with superior performance (6-8).  

 Present study leverages multi-environmental data to 

assess sweet corn and field corn hybrids using the AMMI, GGE 

biplot and WAASB model. The objectives of the research were 

to evaluate the impact of G × E interactions, identify stable 

and high-performing genotypes and define mega-

environments that facilitate targeted recommendations for 

cultivation. Such insights are vital for enhancing productivity 

and adaptability in the face of diverse growing conditions. 

 

Materials and Methods 

Research materials  

Ten sweet corn inbreds and four field corn inbreds were 
sourced from Department of Millets, Tamil Nadu Agricultural 

University, Coimbatore, India. Among the four field corn 

inbreds, two (UMI 1200β+
 and UMI1230β+

) were β-carotene 

allele introgressed NILs of UMI 1200 and UMI1230, with seven-

fold higher β-carotene as compared to their normal forms 

(10). The sweet corn parents had an average total sugar of 

around 17- 18%. The 10 sweet corn inbreds were considered 

as lines (females) and four field corn inbreds were considered 

as testers (males) and they were hybridised in Line x Tester 

fashion (9) to generate 40 hybrids (Table 1) .  The 40 hybrids 

thus generated were raised in the fields of the Department of 

Millets, CPBG, TNAU, Coimbatore during three consecutive 

seasons viz., Rabi of 2022 (E1), Summer of 2023 (E2) and Kharif 

of 2023 (E3) (Table 2). The soil type was clay loamy soil and soil 

health were maintained uniformly for all seasons. The 

coordinates of the location is 11.02°N and 76.92°E. The hybrids 

were evaluated in a randomized block design (RBD) with two 

replications in each season. Each entry was raised in a two-

row plot of row length 6.0 m adopting a spacing of 90 × 45 cm2. 

All the recommended agronomic practices were adopted for 

good crop establishment and stand. Observations were 

recorded in five random plants for cob weight and quality 

characteristics namely total soluble solids and total sugars 

were measured at 22 days after anthesis. Fresh cob weight 

was measured in grams, after dehusking the cob harvested at 

22 days after pollination (DAP). TSS was estimated in fresh 

seeds by using a hand refractometer (11), while total sugars 

(TS) were estimated by the anthrone method (12) and 

reducing sugars were estimated by following the Nelson- 

Somogyi method (13). 

 The total sugar was calculated using the standard 

curve developed with glucose as standard.  

Total sugar in 100 mg sample (%) = (mg of glucose (x value) / 

volume of test sample) ×100 

Statistical analysis 

Pooled Analysis of Variance (ANOVA) across environments: 
A simplified pooled ANOVA was constructed to identify the 

significance of genotype across different environments 

(seasons). 

                 Yijk= µ + Gi + Ej + GEij + Bij + εijk 

Sr. 
No. 

Code Genotype Sr.   
No. 

Code Genotype 

1 H1 45684 ×UMI 1200 21 H21 45503×UMI 1200 

2 H2 45684 ×UMI 1200β+ 22 H22 45503×UMI 1200β+ 

3 H3 45684 ×UMI 1230 23 H23 45503×UMI 1230 

4 H4 45684 ×UMI 1230β+ 24 H24 45503×UMI 1230β+ 

5 H5 12039-1 ×UMI 1200 25 H25 SC11-2×UMI 1200 

6 H6 12039-1 ×UMI 1200β+ 26 H26 SC11-2×UMI 1200β+ 

7 H7 12039-1 ×UMI 1230 27 H27 SC11-2×UMI 1230 

8 H8 12039-1 ×UMI 1230β+ 28 H28 SC11-2×UMI 1230β+ 

9 H9 12068-2 ×UMI 1200 29 H29 45530×UMI 1200 

10 H10 12068-2 ×UMI 1200β+ 30 H30 45530×UMI 1200β+ 

11 H11 12068-2 ×UMI 1230 31 H31 45530×UMI 1230 

12 H12 12068-2 ×UMI 1230β+ 32 H32 45530×UMI 1230β+ 

13 H13 SC1107 ×UMI 1200 33 H33 45679×UMI 1200 

14 H14 SC1107×UMI 1200β+ 34 H34 45679×UMI 1200β+ 

15 H15 SC1107×UMI 1230 35 H35 45679×UMI 1230 

16 H16 SC1107×UMI 1230β+ 36 H36 45679×UMI 1230β+ 

17 H17 USC 12-3-1×UMI 1200 37 H37 SC17-3×UMI 1200 

18 H18 USC 12-3-1×UMI 1200β+ 38 H38 SC17-3×UMI 1200β+ 

19 H19 USC 12-3-1×UMI 1230 39 H39 SC17-3×UMI 1230 

20 H20 USC 12-3-1×UMI 1230β+ 40 H40 SC17-3×UMI 1230β+ 

Seasons Code Duration Rainfall (mm/day) Relative humidity 
(%) 

Minimum temperature 
(°C) 

Maximum temperature 
(°C) 

Rabi, 2022 E1 02.09.2022 - 21.12.2022 476.55 86.3 19.7 27.3 

Summer, 2023 E2 02.02.2023 - 27.05.2023 219.4 60.5 22.5 34.2 

Kharif, 2023 E3 12.06.2023 - 02.10.2023 77.1 67.9 23.5 32.6 

Table 2. Location and its description 

Table 1. Genotypes used in this study 
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 Where µ represents the comprehensive mean of the 

analysed characteristic within the population, Gi denotes the 

influence of the ith genotype, Ej signifies the effectiveness of 

the jth environment, GEij illustrates the interaction between 

the ith genotype and the jth environment, Bij indicates the 

impact of the kth replication in the jth environment and Eijk 

embodies the stochastic error. 

 To investigate the G × E interaction three models were 

adopted in this study. AMMI, GGE and WAASBY models 

considered to find out stability to evaluate under fixed and 

random effects and for better visualisation. The AMMI model 

works based on Principal Component Analysis (PCA) applied 

to the main effect and interaction effect using a fixed effect 

model. In contrast, the GGE model utilizes genotype and 

interaction effects, while the WAASB model is based on the 

BLUP prediction model using a random effect. The AMMI 

model is suitable when a comprehensive understanding of 

both main effects and interaction patterns is essential. The 

GGE model is employed when the focus is on genotype 

performance across environments and identifying mega-

environments. The WAASB model is applied when balancing 

high productivity and stability is required, particularly for 

practical breeding decisions. The results of all these models 

can give a comprehensive view of selecting genotypes based 

on stability and productivity. Thus AMMI, GGE and WAASBY 

were optimal for investigating G × E interaction effects among 

different seasons under both fixed and random effects.  

AMMI analysis 

The Genotype - Environmental interaction was estimated 

based on the Additive Model and Multiplicative Index (AMMI) 

model as suggested by Gauch (14). The AMMI model is a widely 

used statistical method in agriculture, particularly for 

analysing genotype-by-environment interaction (G × E) in multi

-environment trials (METs). This method combines the ANOVA 

and principal component analysis (PCA) to effectively assess 

and interpret the interaction effects between genotypes and 

environments (4,15). To constitute the AMMI ANOVA, the 

following formula was used.  

               yij
N= µ + gi + ej + ΣλkYikαjk + Σij 

 Where yij represents the yield of the ith genotype within 

the jth environmental context, N denotes the number of 

principal components utilized in the AMMI model and µ signifies 

the overall mean across genotypes. In contrast, gi and ej 

represent the deviations of the genotype and environment 

from the overall mean, respectively. Furthermore, λk is the 

eigenvalue corresponding to the PCA axis k, Yik and αjk are the 

principal component scores for genotypes and environments 

associated with axis k and Σij constitutes the residual value. 

 A mathematical formulation for AMMI analysis referred 

to as the AMMI stability value (ASV) was proposed by Purchase 

(16). The ASV is represented as the distance from the origin in a 

two-dimensional scatter plot depicting IPC1 (interaction PCA 1) 

in relation to IPC2. It is note worthy that IPC1 exerts a greater 

influence compared to IPC2; consequently, an adjustment 

must be incorporated into IPC1 to account for the symmetrical 

disparity with IPC2, ensuring that the contributions of IPC1 and 

IPC2 are appropriately represented (17). Within this 

framework, the genotypes and test environments exhibiting 

the highest stability are characterized by a minimum ASV 

(15,18). 

 The subsequent equation was employed to quantify 

and rank the genotypes and seasons: 

 

 

 Another metric that can be derived from AMMI analysis 

is the genotype selection index (GSI). The selection based on 

stability does not invariably yield the optimal genotype in 

terms of performance. Consequently, the GSI for each 

genotype was determined by aggregating the rank of the 

genotype (RYi) with the rank of the genotype ASV (RASVi). A 

genotype possessing the lowest GSI is recommended as the 

most stable genotype (15,18,19). 

                       GSI = RYi + RASVi 

Weighted Average of Absolute Scores (WAASB) 

The WAASB can be derived from the singular value 

decomposition (SVD) of the matrix containing the best linear 

unbiased predictions (BLUPs) for G × E interaction effects, 

which are obtained using a linear mixed-effects model and 

the response variable(4,20). This can be calculated by the 

following formula. 

 

 

 Where IPCAik is the score of the ith genotype in the kth 

Interaction Principal Component Axis (IPCA) and EPk 

represents the proportion of variance explained by the kth 

IPCA. 

 WAASBY is constructed using the WAASB value and the 

mean value of the variable. It gives a clear idea of genotype 

selection based on stability and mean performance.   

 

 

 

 Where, rYi is the rescaled mean of the variable, rWi is 

the rescaled WAASBi value, θY and θS are the weights given to 

trait and stability respectively (4). Genotypes with higher 

WAASBYi are less interactive and better-performing genotypes 

(4,21). 

GGE biplot analysis 

The Genotype and Genotype-Environment analysis was 

suggested by Gauch (14). GGE biplot analysis is applied when 

significant genotype × environment interactions complicate 

the direct identification of superior phenotypes. The most 

commonly used model for this analysis employs singular 

value decomposition (SVD), centred on either genotypes or 

environments (22). The process follows the formula:   

                Ŷij = µ + βj + λ1ξilηlj + λ2ξizηzj + ϵij 

 The term Ŷij represents the expected yield of the ith 

genotype in the jth environment. Here, µ is the overall mean 

yield, βj denotes the main effect of the jth environment and λ1 

and λ2 are the singular values of the first two principal 

components, PC1 and PC2, respectively. Additionally, ξil  and ξiz 
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are the eigenvectors of the ith genotype for PC1 and PC2, while 

ηlj and ηzj are the eigenvectors of the jth environment for PC1 

and PC2. The term ϵij accounts for the residual variation not 

explained by the genotype (G) or genotype × environment (GE) 

interaction effects. Which-Won-Where GGE biplot is used in this 

study to classify the winning genotypes of the mega-

environment differentiated.  

 All the statistical analyses were carried out in Microsoft 

Excel (Version: 2410) and R software (4.4.1) using packages 

metanversion 1.18.0.  

 

Results  

Pooled ANOVA 

The ANOVA revealed highly significant differences between 

season, genotype and the interaction effect, genotype × 

season (G × E) at a 99.9% confidence level (p > 0.001) for all the 

characters. This indicates the presence of an interaction effect 

due to genotype and environment (Table 3). The G × E 

interaction can be substantiated using AMMI and GGE analysis. 

The same results were obtained in similar other studies 

(6,15,21). 

AMMI model analysis of traits 

The results of AMMI ANOVA also revealed that genotype, 

season, G × E, PC1 and PC2 were significant at a 99.9% 

confidence level for all three traits. Replication was significant 

for the trait CW and non-significant for TSS and TS. The 

variance explained by PC1 and PC2 cumulatively contributed 

100% in all three traits. In CW, PC1 and PC2 contributed 

69.6% and 30.4% variance respectively. The variance 

contributed by PC1 and PC2 were 73.5% and 26.5% in TSS 

and 62.5% and 37.5% in the trait TS respectively (Table 4). 

This indicated the adequacy of PC1 and PC2 for AMMI analysis 

variance. Similar results were reported by Movahediet al., 

Patel et al., Wang et al., Bocianowskiet al.,(6,15,21,23).  

Mean performance, ASV, GSI, WAASBi and WAASBY 

The performance of genotypes across different seasons was 

assessed and ranked based on the pooled mean across 

seasons, as well as their ASV, GSI, WAASBi and WAASBY values 

for all three traits (Supplementary tables 1, 2 and 3). 

Genotypes with the lowest ASV, GSI and WAASBi and higher 

WAASBY values were selected, as they exhibit minimal 

interaction with the environment. This approach provides a 

clear understanding of genotypes that perform consistently 

well with reduced environmental influence(21,24,25). 

 Heavier cobs yield more kernels per unit area, leading 

to better economic returns for farmers. This is especially 

critical in sweet corn, where cob appearance and kernel 

quantity are key drivers of profitability. Fresh cob weight is 

the representative of the sweet corn yield. Thus, focusing on 

higher CW is key. The genotypes H21, H32, H12, H29 and H36 

secured the top five spots based on the pooled mean across 

environments. The least interactive genotypes based on the 

ASV were H20, H28, H23, H37 and H14. The lesser the ASV, the 

lesser the G × E. GSI is a stability parameter that gives the 

result based on the ASV and mean value. Hence, the minimal 

value of GSI reveals genotypes that are least interactive with 

different seasons and good performers. For GSI, the top five 

stable and top-performing genotypes were in the order of 

H34>H23> H36> H32 > H3. Genotypes ranked based on 

WAASBi were similar to that of ASV, where the top five 

genotypes were H20 > H28 > H23 > H14 > H37. The WAASBY 

rank revealed the better performing and least interactive 

genotypes and the top five hybrids H32 > H34 > H36 > H23 > 

H20. Similar trend was seen by Patel et al., (6)(Supplementary 

table 1).   

 High TSS values often indicate superior genotypes for 
sweetness. This trait is essential for breeding programs to 

develop sweeter corn lines, especially for fresh market and 

processing purposes. The best-performing top five genotypes 

were in the sequence H22>H21>H24> H23>H32 based on the 

mean performance. The least environmentally interactive 

genotypes identified based on ASV were H27> H10>H12> 

H19> H14. Genotypes with lesser environmental interaction 

and above the average mean were H21 > H24 >H16> H22>H14 

identified based on GSI values. The genotypes with the lesser 

G × E, as determined by WAASBi values, were identified in the 

following order: H27> H14> H10>H19> H12. This trend was 

observed to be similar to ASV. The top five genotypes based 

on the values of WAASBY are H22 > H21 > H24 > H32 > H16 

(Supplementary table 2). Results of Patel et al., were similar 

to the current study (6).  

 The total sugar level is a crucial quality parameter. It 
reflects the biochemical composition of the kernels, which 

directly contributes to flavour. It is especially important in 

distinguishing sweet corn from field corn and other maize 

types. Based on the mean performance H32 > H22 > H23 > 

H21 > H29 performed better across three seasons. H24> H37> 

Source df Cob weight TSS Total sugars 

Season 2 9639.81** 62.82** 99.52** 

Replication 
(environment) 

3 77.68** 0.19 0.26 

Genotypes 39 7214.07** 8.64** 12.27** 

Genotypes × Season            
(G × E) 

78 62.25** 1.16** 1.36** 

Pooled error 117 7.53 0.23** 0.15** 

Source df Cob weight TSS Total sugars 
Season 2 9639.81** 62.82** 99.52** 

Replication 
(environment) 

3 77.68** 0.19 0.26 

Genotypes 39 7214.07** 8.64** 12.27** 
Genotypes x Season (G × 

E) 
78 62.25** 1.16** 1.36** 

PC1 40 84.53** 1.66** 1.66** 
PC2 38 38.80** 0.63** 1.05** 

G×E explained (%) for 
PC1 

  69.6 73.5 62.5 

G×E explained (%) for 
PC2 

  30.4 26.5 37.5 

Cumulative (%) for PC1   69.6 73.5 62.5 
Cumulative (%) for PC2   100 100 100 

Residuals 117 7.53 0.23 0.15 

Total 317 982.50 2.12 2.86 

Table 3. ANOVA for pooled analysis for cob weight, TSS and total sugar 

Table 4. AMMI ANOVA for cob weight, TSS and total sugar 
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H35> H31> H25 were identified as stable genotypes based on 

the ASV. Stable and better-performing hybrids were in the 

sequence H24 > H34 > H31 > H37 > H12 and identified based 

on GSI. The less interactive genotypes identified based on 

WAASBi values were H24 > H35 > H11 > H37 > H12. The 

sequence of top performing hybrids based on WAASBY were 

H24 > H32 > H22 > H34 > H31. Parameters of AMMI model 

resembled the parameters of WAASB model in all traits 

studied. Similar pattern were reported by Verma and Singh in 

wheat, Arshad et al., in pigeon pea(26,27)(Supplementary 

table 3).  

AMMI, GGE and WAASBY biplots  

AMMI 1 biplot was constructed based on the interaction of the 

mean of the variable and the first principal component (PC1). 

AMMI 1 biplot can be annotated based on the position of 

genotypes on the biplot. If the genotype is on the right side of 

the ordinate, then the mean of the variable could be 

considered to be above average. Abscissa remains to be the 

least interactive position on the AMMI 1 biplot. Thus, the 

genotypes from such positions can be chosen for better 

performance and stability (15). In the AMMI 2 biplot, 

genotypes positioned near the origin are the least interacting 

genotypes (4,15). The Which-Won-Where (WWW) plot is a GGE 

biplot which reflects the G × E crossover, winner of the specific 

environment, characterization of mega environments, etc. In 

WWW, a polygon is constructed using the farthest vertices of 

the biplot and the mega environment is differentiated based 

on the perpendicular line drawn from the origin to the sides of 

the polygon. These vertices are considered the winner of the 

mega environment from which it is hailed (3). The 

visualization of the WAASB model was performed using the 

mean and WAASBY biplot (Y × WAASBY biplot). This biplot can 

be annotated based on the quadrants where the genotypes 

are placed. Genotypes located in the first quadrant are highly 

unstable and perform below the mean. In the second 

quadrant, genotypes exhibit lower stability and a higher 

mean. The third quadrant contains genotypes with high 

stability and a low mean, while the fourth quadrant consists of 

stable genotypes with a higher mean (24,28,29). From Y × 

WAASBY biplot, five best performing and stable hybrids were 

picked from fourth quadrant.  

 In the present study, from the AMMI 1 biplot, H32, H12, 

H36, H34, H23 were five better hybrids with higher mean than 

average performing genotype and lesser G × E for the trait CW 

(Fig. 1). Whereas the stable genotypes identified from AMMI 2 

biplot were H20, H23, H28, H2, H4 (Fig. 2). The results of WWW 

biplot for CW revealed the presence of two mega 

environments. The first mega environment consisted of E1 

and second mega environment consisted of E2 and E3. The 

winners of the first mega environment were H30, while the 

winners of the second mega environment were H32, H21, H13 

and H22 (Fig. 3). From the Y× WAASBY biplot, H32, H36, H34, 

H23 and H17 were found in the fourth quadrant (Fig. 4).  

 In the case of TSS, based on AMMI 1 biplot (Fig. 5), the 

genotypes H22, H21, H24, H32 and H16were observed to 

exhibit higher mean values compared to the average-

performing genotype and demonstrated lower G × E 

interaction. The AMMI 2 biplot (Fig. 6) revealed that the 

genotypes H2, H12, H8, H35 and H27 were stable. The WWW 

biplot indicated the presence of two mega-environments: the 

first comprising E1 and E2 and the second including E3. In the 

first mega-environment, the winning genotypes were H23 

and H22, whereas, in the second mega-environment, H26was 

identified as the winner (Fig. 7).H22, H21, H24, H32 and H16 

were found to be stable and better performing in the Y× 

WAASBY biplot (Fig. 8). 

 Further, the AMMI 1 biplot (Fig. 9) indicated that the 

genotypes H32, H24, H34, H31 and H37 had higher mean 

values than the average-performing genotype and exhibited 

lower G × E interaction for the trait TS. In contrast, the AMMI 2 

biplot (Fig. 10) highlighted H37, H27, H24, H12 and H31 as the 

most stable genotypes. According to the WWW biplot for TS, 

two mega-environments were identified, the first consisting 

of E1 and the second comprising E2 and E3. The genotypes 

H22 and H15 were the winners in the first mega-environment, 

while H32 was the winner of the second mega-environment 

(Fig. 11).Stable and better performing five hybrids identified 

from Y× WAASBY biplot were H32, H24, H22, H34 and H31 (Fig. 

12) 

 This study employed  different approaches to identify 

genotypes that demonstrate better performance as well as 

stability across all seasons.  Among the genotypes identified 

from GSI and WAASBY, which can be considered selecting 

since these parameters are constructed based on mean and 

stability index (6,26). AMMI biplots and Y× WAASBY biplot 

visualisation was in anology with the indices GSI and 

WAASBY. From the results, hybrids H32 and H34 stood out as 

stable and better performing for all the traits. The 

coincidence of AMMI analysis and WAASB is seen in this study. 

A similar pattern was reported by Pranthiet al., in pigeon pea 

and Verma and Singh  in wheat(26,30). Admist of employing 

both random effect and fixed effect models in studying the G 

× E interaction effects, results were similar for both methods. 

Thus application of these methods in heterotic sweet corn 

hybrid analysis can be used in future. Hybrid H32 and H34 

outperformed other hybrids and shown its stability over 

environment in weight and quality traits. Better performance 

of these hybrids may attributed to their heterosis and better 

combining ability.  

 

Conclusion 

Sweet corn is a highly marketable crop that is consumed 

either fresh or frozen. Fresh cob weight, total soluble solids 

and total sugars are the important traits accounting for its 

marketability.   These traits are heavily influenced by the 

environment. The same pattern was noticed in the current 

study. From the assessment, a few hybrids were found to be 

better performing and stable across environments. The 

hybrids 45530 × UMI 1230β+
 and 45679 × UMI 1200β+

 were 

found to be stable and better performing for all the traits 

studied, owing to which they can be exploited after large 

scale evaluation. Further, selection from segregants of these 

hybrids could result in sweet corn inbreds with enhanced β-

carotene. Improvement of the above promising inbred lines 

for their biotic and abiotic stress tolerance could result in 

development of promising hybrids with better nutritional 

quality and stress resistance.  
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Fig. 1. Biplot of PC1 vs. cob weight (gm) in AMMI analysis   Fig. 2. Biplot of PC1 vs. PC2 in AMMI analysis of cob weight (gm) 

Fig. 3. Which-Won-Where plot of cob weight (gm) in AMMI analysis Fig. 4.WAASB scores vs. Cob Weight (gm) biplot in WAASB analysis 

Fig. 5. Biplot of PC1 vs. Total soluble solids (°) in AMMI analysis   Fig. 6. Biplot of PC1 vs. PC2 in AMMI analysis of Total soluble solids (°) 
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Fig. 7. Which-Won-Where plot of Total soluble solids (°) in AMMI analysis Fig. 8.WAASB scores vs. Total soluble solids (°) biplot in WAASB analysis 

Fig. 9. Biplot of PC1 vs. Total sugars (%) in AMMI analysis   Fig. 10. Biplot of PC1 vs. PC2 in AMMI analysis of Total sugars (%) 

Fig. 11. Which-Won-Where plot of Total sugars (%) in AMMI analysis Fig. 12. WAASB scores vs. Total sugars (%) biplot in WAASB analysis 
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