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Abstract

The United Nations conference on Trade and Development has projected that by 2050, two-thirds of the global population will reside in
urban areas. In response to the growing demand for food in urban settings, indoor farming-particularly through Controlled Plant
Production Systems-offers a viable solution. Among the critical factors influencing indoor cultivation, light availability and quality are
especially limiting. The intensity and spectral composition of light are essential for maximizing crop productivity per unit area. Light
Emitting Diodes (LEDs) have emerged as a transformative tool in indoor cultivation, serving as an efficient and highly effective light source.
The National Aeronautics and Space Administration (NASA) used LED lights to grow plants in space during the 1960s. Later, in the 1980s,
Japan began utilizing LEDs for high quality vegetable and fruit production. In addition, LED lights in horticultural crops have been applied
intensively, providing specific wavelengths of light to meet the crop demand. LED technology offers numerous advantages including,
lower heat generation, higher energy efficiency and reduced power consumption, making it a sustainable choice for indoor farming. Red
and blue LED lights, in particular, are more efficient and promote higher photosynthetic rate, flowering , bioactive compound production
and overall crop yield. LED light consumes only 25 % of the energy used in conventional lighting systems, which significantly reduces
operational costs. The paper reviews the significance of LED farming and its effects on crop growth, crop quality and yield. It also explores
the application of LEDs in speedy breeding and algal photobioreactors. Further, it underscore LEDs potential to revolutionize urban
agriculture and highlights the need for future research focused on optimizing spectral combinations and improving cost-efficiency.
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immense potential to secure future food supplies and meet the
nutritional needs of the growing urban population.

Introduction

The global population is rapidly increasing and is projected to
reach approximately 9.7 billion by 2050. It is estimated that
around 68 % of this growing population will reside in urban
areas (1). Currently, the urban population accounts for 51.1 %
in developing nations and 80.5 % in developed nations,
respectively. Meanwhile, cultivable land is shrinking
significantly due to rapid urbanization and is further affected
by the adverse effects of climate change, including rising global
temperatures, erratic monsoon rainfall, droughts, etc. These
factors, coupled with the escalating demand for food in urban
areas, present significant challenges to ensuring food security
in the future.

Light is a critical factor in indoor farming, as its intensity,
spectral quality and photoperiod significantly influence plant
growth and development. These parameters can be precisely
managed through artificial lighting systems. However,
traditional lighting technologies such as fluorescent,
incandescent and high-pressure sodium (HPS) lamps are often
energy-intensive and inefficient (2). Advancements in lighting
technology have led to the development of LEDs as a superior
alternative. LEDs are semiconductor devices that consume
significantly less energy while offering high luminous efficacy,

ing from 80 to 150 Im/W (3).
Meeting this rising demand through conventional ranging from £to mW )

farming methods is increasingly difficult due to numerous
limitations. Controlled Environment Agriculture (CEA),
commonly referred to as indoor farming, is emerging as a
sustainable and innovative approach to address these issues. It
allows crops to be cultivated under optimized and controlled

In controlled environment agriculture, LED farming
employs LEDs as the primary light source. LEDs can emit
specific wavelengths at desired intensities, effectively targeting
plant photoreceptors and meeting their exact light
requirements. This capability enables optimal plant growth,

conditions, thereby enhancing productivity per unit area and
ensuring profitability. By integrating advanced technologies

maximizes photosynthetic efficiency and enhances flowering
and fruiting. Additionally, LEDs produce minimal heat, making
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them ideal for inter-canopy lighting, which improves light
penetration and photon absorption, leading to uniform growth
and increased yields.

Moreover, LED farming supports the year-round
cultivation of healthy and nutritious crops-particularly leafy
greens and vegetables-regardless of external weather
conditions. As such, LED farming represents a cutting-edge,
sustainable solution to meet the world’s growing food demand
by maximizing productivity, promoting resource efficiency and
addressing environmental constraints.

Principle of LED

Oleg Vladimirovich Losev, a Russian scientist developed the
first LED; however, his work was overlooked at that time.
Eventually, Nick Holonyak in 1962 developed the first visible
spectrum LED and considered as the father of LED. LED is a
semiconductor device that operates under forward bias
condition and consists of a P-N junction, which is fabricated
by the semiconductor material. The P-type region consists of
holes and N-type have free electrons. When a forward voltage
is applied, holes and free electrons move towards each other,
resulting in recombination. During recombination process, an
electron falls to a lower energy level, releasing energy in the
form of a photon. The wavelength of light produced on LED is
determined by the energy band gap of the material utilized
for semiconductor (4).

LEDs offers numerous advantages over conventional
lighting sources, including smaller size, lower power
consumption, higher luminous efficacy and reduced heat
generation. These attributes make LEDs highly suitable for
applications such as indoor crop cultivation, where efficient
and controlled lighting is essential (5).

Science of LED farming

Light, air, water and nutrients are the essential growth factors
for all plants. It is crucial to regulate these factors at optimal
levels to achieve the maximum potential of the plant (6). LED
farming provides an innovative solution, allowing precise
control over these elements. It enables the plants to thrive in
a perfectly optimized setting by customizing light intensity
and spectrum, ensuring a balanced supply of water and
nutrients and maintaining ideal environmental conditions.
The method not only enhances the growth efficiency but also
ensures the production of healthy, nutrient-rich greens and
vegetables, paving the way for sustainable and high-quality
food supply.

LEDs and plant production

In the 1990s, research findings revealed that red LED light
alone was sufficient for crop growth and the completion of
the plant life cycle. However, subsequent studies
demonstrated that the combination of blue light with red
LEDs significantly enhanced crop growth and development
(7). When chlorophyll molecules absorb light energy, it
triggers photosynthetic activities, converting light energy into
chemical energy to produce carbohydrates by utilizing
carbon dioxide and water under light conditions. Red and
blue light are particularly effective in being absorbed by
chlorophyll, thus accelerating the photosynthetic process
(8, 9). Red light was found to be 25-35 % more efficient than
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blue light in driving photosynthetic activities. This difference
is attributed to the fact that blue light is partially absorbed by
accessory pigments and non-photosynthetic pigments, which
reduces the efficiency of energy transfer to the
photosynthetic reaction centers (10, 11). However, both red
and blue light are absorbed at different levels by chlorophyll a
and chlorophyll b, contributing to enhanced photosynthesis.

In addition, plant photoreceptors play a critical role in
regulating growth and development. For instance,
phytochrome, a key photoreceptor, responds to red and far-
red light, mediating processes such as flowering and seed
germination. Meanwhile, the internal clock of plants is
regulated by cryptochrome, which absorbs ultra-violet, blue
and green spectra. Further, phototropin is a photoreceptor
that absorbs blue light and influences stomatal opening, as
well as the arrangement of photosynthetic pigments,
optimizing light capture (12). The combination of red and
blue light promotes optimal plant growth and development.
However, achieving the ideal ratio of these wavelengths in
indoor cultivation remains challenging for various crops. The
broad spectrum of light often leads to energy wastage,
whereas LEDs offer an advantage as they can emit specific
spectral compositions, thus reducing power consumption.

The combined irradiance of red and blue LED light can
trigger desirable plant responses; however, the optimal red to
blue light ratio varies significantly among different crops (13).
By utilizing LED technology, growers can tailor light spectra to
meet specific crop requirements, enhancing productivity and
sustainability while minimizing energy usage. This highlights
the importance of continued research to optimize light
quality for various crops.

Effects of LED lighting on crops

Light plays a dual role in plant development : it serves both as
an essential energy source for driving photosynthesis and as a
crucial signaling mechanism that regulates
photomorphogenesis. Crop development can be optimized by
providing plants with the required quality and intensity of light.
LED lights have emerged as a highly effective tool for achieving
these conditions, offering precise control over spectral
composition, light intensity and photoperiod. Plants exhibited
improved photosynthetic efficiency, biomass accumulation
and bioactive compound production and achieved higher
yields under LED lighting conditions.

Crop growth and development

LED lighting substantially promotes leaf area, chlorophyll
content, net photosynthetic rate and biomass production,
particularly under red and blue LED lights, which directly
enhance crop yield attributes and overall productivity. Plants
achieve maximum photosynthetic efficiency when the
wavelength of LED light closely aligns with the absorption
peaks of chlorophyll. The effects of different LED lights
including, red LED, blue LED, red-blue LED and white LED on
various vegetables, flowers and medicinal plants has been
investigated (14). Findings revealed that a red-blue LED
combination in 70:30 ratio offered the most significant
benefits, such as increased photosynthesis rates and fresh
weight, compared to other light treatments.
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An earlier study evaluated the use of red LEDs as
radiation sources for growing lettuce and compared the
results with those under fluorescent and incandescent lamps
(15). The results demonstrated that plant characteristics such
as fresh weight, dry weight and stem length were notably
enhanced under red LED lighting. Similarly, a combination of
red-blue-far-red LEDs resulted in increased plant height and
fresh weight in sweet basil (Ocimum basilicum L.) compared
to red-blue and white LED treatments (16).

Investigations into different red-blue LED ratios in
tomato plantlets revealed that a 10:1 red-to-blue ratio
yielded higher survival rates, pigment concentrations and
growth parameters, including leaf area, shoot number, root
length and dry weight (17). Additionally, blue LEDs (465-470
nm) significantly increased seedling weight and chlorophyll
content in pea seedlings compared to red LEDs (18). Blue
light also promotes stomatal opening, thereby facilitating
CO, uptake and enhancing photosynthesis.

Various photoreceptors respond effectively to red, far-
red and blue light under targeted spectral compositions at
optimal intensities (Table 1). These findings underscores the
potential of LED lighting as a sustainable and efficient light
source for controlled environment agriculture, enabling
improved plant growth, productivity and resource efficiency.

Flowering

In the floriculture sector, LED lighting is predominantly favored
for two main purposes viz. stimulating plant growth rate and
improving the quality of cut flower production and
manipulating flowering time by adjusting day length to ensure
flowering at predetermined dates, thereby maximizing income
potential. This is achieved through the precise control of light
spectra, particularly in the red and far-red wavelengths, which
influence  photoreceptors  such as  phytochromes.
Phytochrome is a critical photoreceptor that governs flowering
in plants which exists in two interconvertible forms such as Pr
and Pfr. Red light (660 nm) converts Pr into its active form (Pfr),
during daylight conditions, promoting flowering and
vegetative responses. Conversely, far-red light (730 nm)
converts Pfr back to Pr, thereby regulating flowering responses
and photoperiodic behaviors in crops (26).

Spectral control using red and far-red light via
LEDs effectively manipulate pythochrome levels in crops,
directly influencing critical day length and optimizing

Table 1. Effect of LED lighting on the growth of various crops

flowering time. LEDs are also favoured for their low power
consumption, minimal heat output and long operational
lifespan, making them efficient for floriculture sector. Several
studies have documented the significant impacts of LED
lighting on flowering behavior. For instance, flower crops
such as marigold and treasure flowers under red-blue LED
lighting in greenhouse conditions exhibited a 50 % increase
in flower production and a reduction in time to first flowering
by half compared to conventional condition (27). These
findings highlights the potential of LEDs to enhance both the
speed and yield of floral production.

Furthermore, LED lighting is widely employed to
accelerate plant propagation, notably reducing the rooting
period by 2-3 days. Red LEDs are particularly effective in
improving photosynthetic activity and manipulating
flowering time through phytochrome-mediated responses
(28). Far-red LEDs are also utilized to modulate flowering,
complementing the function of red LEDs in optimizing
photoperiodic and developmental responses. By leveraging
the precision and adaptability of LED technology, the
floriculture industry can achieve enhanced productivity, high
quality flower production and improved profitability through
efficient light management.

Bioactive compound production

Bioactive compounds, including both primary and secondary
metabolites, are essential in determining the flavor, aroma and
taste of crop produce. Secondary metabolites, in particular,
play a vital role in protecting plants against oxidative damage
and various environmental stress. Light-responsive
photoreceptor such as phytochrome and cryptochrome are
integral to the biosynthesis of these compounds.
Phytochromes and cryptochromes act as molecular switches
detect light signals and trigger a cascade of biochemical events
that ultimately leads to the production of various bioactive
compounds. Phytochrome primarily regulate the synthesis of
phenolic compounds, while cryptochrome facilitates the
synthesis of pigments such as carotenoids, chlorophyll and
anthocyanins (Table 2). This regulation is achieved by
influencing transcription factors and gene expression
pathways associated with bioactive compound biosynthesis.

Recent advancements in agricultural research have
highlighted the potential of LED to enhance the production of
bioactive compounds and improving crop quality (29, 30)
(Fig. 1). LEDs with specific wavelengths and intensities, such as

Light source or/and lighting

conditions Crops Effect on crop growth References
Red-blue LEDs Micro propagated strawberry plants Increased root and shoot fresh weight 19
(70:30 and 45 pmol m2s?) propag yp &
Red-blue LEDs Radish and Lettuce Higher leaf area with enhanced photosynthetic rate 20

_ . -2
SR.T')d blue LEDs (1:1 and 70 umol m Lillium Increased bulblet fresh and dry weight 21

Red LEDs (638 nm, 300 pmol m?2s?)
with HPS lamp (90 umol m2s?)

Red LEDs (640 nm, 270 pmol
m2s!) with blue LEDs (440 nm, 30
umol m?s?)

Blue LEDs with red and green LEDs
(Total PPF maintained at 300 pmol
m?2s?

Blue LEDs (460 nm) with red LEDs
(660 nm) with total PPF of 80 umol
m?s?

Cherry tomato seedling

Red leaf, green leaf and light green leaf
lettuces (Lactuca sativa L.)

Red leaf lettuce (Lactuca sativa L.)

Chinese cabbage (Brassica camprestis L.)

NOs concentration increased by 12.5% in light
green lettuce but decreased by 56.2% and 20% in 22
red and green leaf lettuce respectively

More leaf expansion 23

Stomatal number and net rate of photosynthesis

increased 24

Increased chlorophyll content 25
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Table 2. Production of bioactive compounds in response to LED lightning
Light source or/and lighting conditions Crop Effects References
Red LEDs (660 nm, 50 pmol m2s?) Red leaf cabbage Promotes anthocyanin content 40
Brassica oleracea L. . :
Red LEDs (640 nm) (Khale plants) Increases lutein accumulation 13
Red leaf lettuce Decreases antioxidant potential and a1

Farred (730 nm, 20 pmol m?2s?) with red (640 nm, 300 umol m?2s?) (Lactuca sativa L)

anthocyanin content

LED Light
(638 nm, 170 umol m2s)

Blue LEDs alone (468 nm) or with red LEDs (655 nm)

Red leaf lettuce

Improves free radical scavenging
activity, tocopherol content and 42
phenolic compound

Promotes antioxidant activity and
polyphenols

Lactuca sativa

seedlings 43

Increased Phenolics and soluble sugar content
Enhanced antioxidant and pigment level
Reduced disease incidence

Fig. 1. Influence of LED light source on production of bioactive compounds in crops.

red, blue and red-blue combinations, have been shown to
significantly influence the accumulation of bioactive
compounds. The activity of enzymes critical to secondary
metabolite production, such as phenylalanine ammonia-lyase,
chalcone synthase, chalcone isomerase, flavanol synthase and
stilbene synthase, are also significantly upregulated under LED
lighting.

Studies indicated that the combination of red and blue
LEDs is mainly effective in increasing chlorophyll, carotenoid
content and antioxidant levels in crops such as lettuce, kale,
spinach, basil and sweet peppers. The red-blue LED
combination is superior over red LEDs alone in enhancing
antioxidant activity, with its effectiveness varying among crops
(17). In pea seedlings, red LEDs (625-630 nm) promoted B-
carotene synthesis and overall antioxidant activities (18). Red
LEDs also increase phenolic compound levels in buckwheat
sprouts (31), while blue LEDs enhance carotenoid content in
strawberries and tocopherol concentration in lettuce (32, 33).
Moreover, high-intensity blue LEDs have been shown to
significantly elevate antioxidant activity in vegetables by
enhancing the scavenging capacity for reactive oxygen species
and free radicals (34). LEDs with mixed spectra, such as red-
blue-green, further improved nutritional quality by improving
the nitrogen, magnesium, zinc and other micronutrient levels
in crops such as lettuce, tomatoes and radish (34, 35).

The application of LEDs not only enhances crop
quality but also reduces microbial contamination, increases
nutrient content and modulates the post-harvest ripening
process in fruits and vegetables. For instance, green, blue and
red LEDs have been reported to induce systemic acquired
resistance against fungal pathogens in crops (36). Further,
LEDs also play a critical role in disease resistance and defense
mechanisms in plants. Blue LEDs (460 nm) have been shown
to enhance resistance against grey mold in tomatoes by

increasing proline levels, antioxidant activity and free radical
scavenging capacity (37). Similarly, red and purple LEDs
suppress grey mold in tomatoes through physiological
modifications and pathogen photo-inhibition (38). In lettuce,
blue LEDs effectively suppress grey mold by enhancing
antioxidant activity and promoting favorable morphological
changes (39).

Crop yield

LED lighting, particularly in the red and blue spectra has
demonstrated remarkable efficacy in promoting plant growth
and enhancing crop vyield (44, 45). These benefits are
attributed to its role in expanding leaf area, optimizing net
photosynthesis and regulating stomatal opening and closure-
mechanisms that drive higher plant productivity.
Additionally, LEDs influence flowering and activate plant
defense mechanisms, thereby contributing to improved crop
yield and quality (46, 47).

The interlighting system, an innovative application of LED
technology, has proven especially beneficial for promoting fruit
ripening, particularly in greenhouse cultivation environments (48
-53). Among the various LED spectra, red light has emerged as
the most effective in supporting superior growth, development
and vyield in vegetable crops. Moreover, the strategic
combination of blue, green and red wavelengths further
enhances crop production, underscoring the importance of
tailoring light spectra to specific crop requirements.

For instance, basil plants grown under red-blue-far-red
LED combination exhibited one-fold increase in yield, while
blue-red LED combination resulted in a half-fold increase
compared to white LED light illumination (54). Similarly, red-
blue LED spectra increased the yield of Sida tomato fruits,
enabling early harvest with enhanced fruit quality (55).
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Other applications of LEDs in agriculture
Speedy breeding

Conventional breeding methods are inherently time-
consuming and required multiple generation cycles to produce
genetically stable lines. NASA pioneered the concept of speed
breeding by cultivating wheat crops in space, leveraging
extended photoperiods and precise temperature controls to
accelerate photosynthesis and crop growth. This innovative
approach inspired its adoption in terrestrial breeding
programs, revolutionizing the pace of crop improvement by
drastically reducing generation times. Speed breeding is
achieved by extending the duration of light exposure, which
promotes early seed set and enables multiple generations to
be completed within a single year (56-59). Using this technique,
it is possible to produce up to six generations annually in crops
such as spring wheat, durum wheat, barley and bengal gram
and it has also been successfully applied to rice, sorghum,
amaranth and cotton (60).

The critical enabler of speed breeding is the use of LEDs
as supplemental light sources to extend daylight periods. LEDs
offer precise spectral control and high energy efficiency,
playing a crucial role in maintaining optimal light conditions
that support accelerated plant growth and development. This
technology has demonstrated the ability to reduce the time
required to reach anthesis by nearly half compared to crops
grown under standard greenhouse conditions (61). Further,
speed breeding represents a paradigm shift in plant breeding,
allowing for the rapid development of crop varieties with
improved traits such as yield, disease resistance and climate
resilience. By combining extended photoperiods, controlled
environmental conditions and advanced LEDs lighting
technology, speed breeding has become an indispensable tool
in addressing the challenges of global food security and
sustainable agriculture.

Algal production

Microalgal production has emerged as a cost-effective and
sustainable technology, particularly for bioenergy generation.
Light illumination plays a critical role in optimizing algal
growth, insufficient lighting reduced productivity, while
excessive light intensity can lead to photo-inhibition. Algae
exhibits higher photosynthetic efficiency than terrestrial
plants, with chlorophyll pigments showing peak absorption
of light in the blue (425 nm) and red (665 nm) regions of the
spectrum. Artificial light sources are increasingly utilized,
especially in controlled production system such as
bioreactors, to fully harness the potential of microalgae.
Furthermore, LEDs emit minimal heat, are durable, compact
and highly adaptable for use in photobioreactor (62-66).

The findings revealed that red-blue LED light at an
intensity of 500 lux significantly increases biomass production
in Chlorella species compared to white or red light alone (67).
Moreover, red light at an intensity of 220 lux was found to
double the lipid dry weight compared to white light,
demonstrating its potential for improving biofuel production
from microalgae.

However, spectral requirements for optimal algal
growth varied for different species, necessitates precise
tuning of light wavelengths and intensities for optimal algal
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growth vary among species, necessitating precise tuning of
light wavelengths and intensities tailored to each strain (68-
71). Identifying the optimal combination of wavelength is
essential to maximize both the quantity and quality of algal
biomass. Red LEDs has been shown to be more effective than
blue light in improving growth rates in many algal species,
highlighting their potential for large-scale applications (64). By
leveraging the flexibility of LED lighting, microalgal production
systems can be manipulated to enhance productivity, offering
a scalable solution for bioenergy and other industrial
applications.

Efficiency of LED lighting

Heating and lighting are among the most significant cost
factors in protected cultivation (72). Reducing these costs
through energy-efficient approaches is critical for sustainable
production. LED lighting has emerged as a superior
alternative to traditional light sources due to higher energy
efficiency and longer lifespan. LEDs require only 25 % of the
energy used by conventional lamps to achieve a similar crop
response or yield (73). For example, bedding plants exhibited
similar flowering patterns under 150 W HPS lamps and 14 W
LED light, highlighting the energy efficiency of LEDs.

LEDs can convert approximately 50 % of electrical
energy into usable light, compared to only 30 % for HPS
lamps. The efficiency of LED systems is determined by
considering factors such as LED package efficiency under
current droop, driver inefficiencies and optical losses. The
most efficient HPS lamps have an efficacy of 1.7 pmol J!,
while early-generation LEDs ranged from 0.8 to 1.7 pmol J™.
The advancements in LED technology have significantly
improved the efficacy, with modern LEDs achieving as high as
4.1 umol J* (74, 75). The higher recorded efficacy for LEDs is
2.64 umol J*, compared to 1.72 umol J*for HPS lamps.

A key advantage of LED lighting is its ability to emit
specific wavelengths tailored to crop growth (Fig. 2).
Additional benefits include reduced electricity costs, lower
maintenance requirements, steady-state operation and
dimming capabilities. While the initial investment in LED
systems remains relatively high, the long-term cost savings
and increased profitability rationalize the expense. One study
documented that using LED lighting for indoor cultivation
reduces annual cost by $886.38 compared to conventional
HPS lighting (76). Although the upfront cost of LED systems
and installation are higher, the greater energy consumption
and frequent bulb replacement associated with HPS systems
significantly increase overall operational costs of indoor
cultivation. Moreover, as LED technology continues to
advance, both energy efficiency and purchase costs are
expected to improve, making LEDs an increasingly accessible
and cost-effective solution for protected cultivation (77).

Techniques to intensify LED lighting efficiency in crop
cultivation

The light use efficiency of LED lighting can be significantly
enhanced through various strategies such as inter-canopy
lighting, targeted lighting and precise control of
Photosynthetic Photon Flux (PPF). These approaches aim to
maximize photons capture by plants, thereby improving
both energy efficiency and plant productivity. A key
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Exact wavelength

Smaller in size

Longer lifespan

Higher efficiency

Lower thermal
radiation

Consume low energy

Photosynthesis

Stomatal opening

Flowering

Photomorphogenesis

Secondary
metabolites

Crop quality and yield

Nutritional quality

Fig. 2. Advantages of LED lightning in crop cultivation.

advantage of LEDs is their minimal radiant heat output, which
makes intercanopy lighting more feasible. By positioning
lights within the plant canopy, energy requirements are
reduced and desired PPF levels can be achieved with lower
energy input. For example, intercanopy lighting in cowpea
production achieved 50 % of the edible biomass with only
10 % of the energy input required for traditional top lighting
methods (78).

Additionally, intercanopy lighting prevents premature
senescence and maintains photosynthesis rates in lower
leaves, which are often underutilized in conventional lighting.
Targeted lighting, another efficient method, involves activating
LEDs positioned directly above individual plants. This method
deliver light precisely where it is needed, thereby minimizing
energy waste. Targeted, close-canopy LED systems have been
shown to reduce energy consumption per unit of dry mass
when compared to standard LED lighting systems. It is
facilitated through advanced control methods such as current
control, pulse-width modulation and duty cycle control (5, 6).

By integrating intercanopy lighting and targeted
lighting systems with advanced PPF controls, growers can
achieve substantial energy savings while maximizing crop
growth and productivity. It further makes LED-based
cultivation systems, an increasingly viable solution for
sustainable and efficient agricultural practices.

Conclusion

LED farming is an emerging technology that is transforming
agriculture by enhancing crop productivity and quality
through precise control of light spectra. Unlike conventional
lighting sources such as fluorescent, incandescent or HPS
lamps, LEDs provide selective light spectra along with
numerous advantages, including higher energy efficiency,
compact size, controlled photon flux density and exceptional
durability. Although, the initial investment in LED systems is
relatively high, the long-term benefits, including increased
yields and energy savings, make it a cost-effective solution.

The use of LED lighting in agriculture has demonstrated
numerous benefits, such as enhanced photosynthesis rates,
increased leaf area, biomass production, chlorophyll content,
secondary metabolite synthesis, protection against pathogens,
collectively resulting in enhanced crop quality and yield.
Additionally, LEDs influence key physiological processes such
as the modulation of ripening and the delay of senescence,
thereby extending the shelf life and enhancing the market
value of crops. Different spectra ratios and light intensities
produce varied responses, highlighting the need to optimize
LED settings for each crop or crop variety to achieve desired
outcomes.

Advancements in LED technology have led to the
development of smart lighting systems integrated with
wireless connectivity and software platforms. Modern LEDs
are equipped with cameras and sensors that enable real-time
monitoring and visual assessment of plant health, thereby
supporting precision agriculture practices. These innovations
facilitate better resource management, reduce energy
consumption and improve crop management strategies.

The future of LED farming will depend on
advancements in light spectra customization, luminous
efficacy, cost-effective manufacturing and energy efficiency.
As LED technology continues to evolve, its potential to
manipulate crop growth and development will play a crucial
role in addressing the global food and nutritional security
challenges.
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