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ABSTRACT

The enzymatic and non-enzymatic antioxidant levels in the released salt tolerant Pokkali, (vytilla, VTL 1-
9) varieties were studied under different NaCl concentrations (0-150 mM NaCl). The specific activity of
superoxide  dismutase  (SOD),  catalase  (CAT)  and  ascorbate-glutathione  cycle  enzymes  and  non-
enzymatic  antioxidants  like  superoxide  (O2

-),  hydrogen  peroxide  (H2O2),  malondialdehyde  (MDA),
glutathione (GSH) and ascorbic acid (AsA) was determined in plants exposed to salt stress. IR-28 was
used as positive control and the VTL varieties were used as negative control. The H 2O2 and superoxide
(O2

-) contents were higher in IR-28 at all the applied concentrations of NaCl. The VTL varieties without
salt  treatment  did  not  evoke  any  response  substantiating  the  role  of  salt  priming  in  antioxidant
signalling.  The MDA contents  were higher  in  the positive and negative control.  MDA content  was
reduced in the NaCl treated VTL varieties. In the positive and negative control varieties, the quantity of
ascorbate and glutathione contents were lesser and upregulated in salt treated VTL varieties. Highest
H2O2 content was observed in 150 mM NaCl treatment. The H2O2 contents decreased with the increase
in all concentrations of NaCl and lowest H2O2 contents was observed in VTL-1 and highest in VTL-2 and
VTL-8 treated with 150 mM NaCl. Superoxide contents varied in all the nine varieties depending on the
salt concentration. The SOD levels in all the varieties showed a positive correlation with the superoxide
and H2O2 content. Lesser quantities of SOD, CAT and the ascorbate - glutathione cycle enzymes were
expressed  in  the  positive  and  negative  control.  The  increased  NaCl  concentration  (25-150  mM)
upregulated antioxidant and ascorbate-glutathione cycle enzymes in the VTL varieties. The APX activity
was lower in the control and salt treated plants. The GR activity increased linearly in all the varieties
with respect to salt concentrations. The MDHAR and DHAR activities showed marginally linear increase,
with all concentrations of NaCl. The APX activity was similar or lower to MDHAR activity while DHAR
activity was similar to MDHAR activity. The results of the present study reveals the higher levels of
enzymatic and  non-enzymatic antioxidants  under  salt  stress  reflect  the  salt  tolerance  potential  of
pokkali varieties mediated by the up regulation of ROS scavenging enzymes.

Introduction

Rice (Oryza sativa L.)  is one of the important cereal
crops  throughout  the  world.  The  global  climate
change  is  reducing  the  productivity  by  increasing
salinity in agricultural land by about 50% (1). In this
context,  food  security  issues  can  be  addressed  by
developing salt tolerant varieties of rice suitable for
arid, semi-arid and waterlogged regions. Kerala has
a  long  coastal  area  of  about  580  km,  which  has
several  lagoons  and  backwaters  covering  a  very

large area linked to the sea. The deltaic regions are
either  at  the  sea  level  or  below  affecting  the
intrusion of sea water to agriculture lands (2).  The
salt tolerance mechanism is obscure in most of the
salt  tolerant  rice  varieties  developed  through
conventional  breeding  techniques.  The  survival  of
plants  in  high  salt  habitat  is  depending  on  the
production  of  reactive  oxygen  species  (ROS)  and
highly  efficient  scavenging  of  this  anion  by  the
antioxidant  and  ascorbate-glutathione  cycle
enzymes. The production of ROS, the by-product of
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oxidative  metabolism  in  plants  causes  damage  to
DNA,  proteins  and  chlorophyll  etc.  (3-5).  It  is
enhanced  in  response  to  abiotic  stresses  like
drought  (6,  7),  elevated  temperature  (8)  and
xenobiotics (9).

Studies  suggest  that  antioxidant  enzymes  are
upregulated in plants exposed to abiotic stress (10).
Charged  superoxide  radical  cannot  move  freely
across  the  membranes,  hence  the  subcellular
compartmentalisation of the antioxidant system is
necessary for efficient quenching of this anion and
its  immediate  product  H2O2,  at  the  site  of
production.  Synchronous  action  of  superoxide
dismutase  (SOD),  catalase  (CAT)  and  ascorbate-
glutathione  cycle  enzymes,  ascorbate  peroxidase
(APX), monodehydroascorbate reductase (MDHAR),
dehydroascorbate  reductase  (DHAR),  glutathione
reductase (GR) is responsible for quenching of AOS
(11,  12).  APX  uses  the  reduced  ascorbate  as  a
reductant  in  the  first  reaction  of  ascorbate  –
glutathione cycle, is the most important peroxidase
in  detoxifying  H2O2 (13).  Correlation  between  the
ascorbate-glutathione  cycle  enzymes  and  salt
tolerant is compared in the sensitive and resistant
varieties  of  rice  (14).  However,  the  salt  tolerance
capacity  of  the  pokkali  rice  variety,  vytilla  (VTL)
with  respect  to  the  antioxidant  and  ascorbate-
glutathione  cycle  enzymes  is  not  investigated  so
far. The present study was undertaken to evaluate
the  salt  tolerance  capacity  and  the  levels  of
antioxidant  and  ascorbate-glutathione  cycle
enzymes  in  the  released  pokkali  rice  varieties,
vytilla  (VTL)  1-9  (negative  control)  and  IR-28
variety  (positive  control)  under  different  salt
concentrations.  This  study  will  help  in
understanding the ROS scavenging mechanism and
the  adaptation  to  salt  stress  in  these  released
varieties.

Materials and Methods

Plant materials

Seeds of the released Pokkali rice varieties (VTL 1-
9),  were  collected  from  Rice  Research  station,
Kerala Agriculture University, Vytilla, Kerala while,
IR-28  seeds  were  obtained  from  Rice  Research
Station, Pattambi, Kerala.

Experimental design 

The  experiment  was  set  up  in  a  completely
randomized design in 7 tanks filled equal  volume
of  water  containing  NaCl  concentrations  of  0,  25,
50,  75,  100,  125  and  150  mM.  The  seeds  were
germinated  in  seed  beds.  Twenty-one  day  old
seedlings  were  planted  in  pots  containing  a  soil
mixture  comprising  of  loam  soil  and  cow  dung
mixture  in  the  ratio  1:1.  Three  replications  were
performed,  each  containing  10  seedlings.  NaCl
treatment  started  on  25th day  of  germination  by
incrementing  25  mM  per  day  to  attain  a  final
concentration of 150 mM. One set of plantlets were
kept  as  control  without  NaCl  application  and
watered  with  tap  water.  Leaf  samples  for  the
enzyme  assay  were  harvested  after  21  days  (46

days from seed germination) of salt application and
frozen in Liquid Nitrogen (LN2) and stored at -80 oC.

Quantification  of  ROS  and  non-enzymatic
antioxidants 

The superoxide radical (O2
-) was determined (15). A

standard curve was prepared with nitrogen dioxide
(NO2) to calculate the O2

- generation rate. Hydrogen
peroxide (H2O2)  content  was determined (16).  The
lipid  peroxidation  was  determined  using
malondialdehyde  (MDA)  content  as  per  standard
method  (17).  The  concentration  of  the  MDA/TBA
(malondialdehyde/thiobarbituric  acid)  complex
was calculated and the level of lipid peroxidation
was determined.

Ascorbic acid (AsA) content was assayed using
the protocol  (18).  Optical  density  was recorded at
525  nm.  A  standard  curve  was  prepared  using  a
gradient concentration of AsA.

Total  and  reduced  glutathione  were
determined  using  previously  described  protocol
(19). The GSH concentration was calculated using a
standard  curve  prepared  using  gradient
concentrations  of  GSH.  The  spectrophotometric
reading was taken at 412 nm. The quantity of GSSG
is determined using the formula, GSSG = Total GSH
– GSH. 

Quantification of enzymatic antioxidants

Superoxide  dismutase  (SOD)  and  catalase  (CAT)
was  extracted  from  the  frozen  sample  (0.5  g),
homogenized in LN2 by adding 100 mM phosphate
buffer (4 ml, pH 7.0), 1 mM EDTA (16 µl) and 1% (w/
v)  polyvinyl  pyrrolidone  (PVP).  The  homogenate
was  centrifuged  at  10000  rpm for  15  min  at  4  ˚C
and  the  supernatant  was  collected  for  further
studies. Ascorbate peroxidase (APX) was extracted
from  the   leaf  sample  (0.5  gm)  homogenized  in
extraction  medium  containing  50  mM  potassium
phosphate  buffer  (pH 7.0),  1  mM EDTA,  2% (w/v)
PVP and 1 mM ascorbic acid. The homogenate was
centrifuged at 15000 rpm for 20 min at 4 ˚C. For the
glutathione  reductase  (GR)  assay,  the  sample  (0.5
gm) was powdered in LN2, homogenized in 100 mM
potassium phosphate  buffer  (pH 7.8)  containing  2
mM  EDTA  and  1%  (w/v)  PVP-40  at  4  ˚C.  The
homogenate  was centrifuged  at  15000 rpm for  20
min  at  4  ˚C  and  the  supernatant  was  collected.
Monodehydroascorbate  reductase  (MDHAR)  and
dehydroascorbate  reductase  (DHAR)  was  assayed
using powdered plant sample (0.5 g) homogenized
in 50 mM potassium phosphate buffer (pH 7.8) and
1 mM EDTA. Homogenate was centrifuged at 14000
rpm for  20  min  at  4  ˚C  and  the  supernatant  was
used for enzyme assay. 

Superoxide  dismutase  (SOD,  EC  1.15.1.1)
activity  was  measured  according  to  the  modified
protocol (20).  One unit  SOD was calculated as the
enzyme activity  required  for  50% photoreduction
of nitrobluetetrazolium to blue formazan. 

Catalase  (CAT;  EC  1.11.1.6)  activity  was
measured  (21).  Change  in  absorbance  at  240  nm
due to the degradation of H2O2  was recorded at an
interval of 15 s for 2 min. 
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Ascorbate  peroxidase  (APX;  EC  1.11.1.11)
activity  was  measured  (22).  The  decrease  in
absorbance  due  to  ascorbate  oxidation  was
recorded at 290 nm at 15 s intervals for 2 min. The
specific activity was calculated and expressed as µ
mole mg protein-1 min-1.

Glutathione reductase (GR; EC 1.11.1.9) activity
was  determined  (23)  with  some  modifications.
Change  in  absorbance  at  412  nm  due  to  the
oxidation of NADPH was recorded in 15-s intervals
for  2  min and  the  specific  activity  of  the  enzyme
was calculated and expressed as µmole mg protein-

1 min-1. 

Monodehydroascorbate reductase (MDHAR; EC
1.6.5.4)  and  Dehydroascorbate  reductase  (DHAR;
EC,1.6.5.4)  activities  were  assayed  (24).  The
decrease in absorbance in MDHAR was monitored
at 340 nm owing to the oxidation of NADH while,
DHAR  activity  was  determined by  monitoring  the
rate of AsA formation at 265 nm. 

Total  protein  from  the  experimental  samples
was  determined  (25).  The  absorbance  was
measured  at  660  nm  using  a  UV-VIS
spectrophotometer and the protein were quantified
using gradient concentrations of BSA (1.0 mg/l).  

Statistical analysis

All the enzymatic  and non-enzymatic  assays were
repeated  thrice  and  the  data  was  subjected  to
analysis of variance (p ≤ 0.05) and the mean values
were compared using ANOVA. 

Results

Quantification of ROS contents

The superoxide (O2
-) contents  in the VTL varieties

increased proportionate to the NaCl concentration
(Fig.  1A). In  the  positive  control  IR-28,  the  O2

-

content  was  8-10  times  higher  compared  to  the
tolerant  varieties.  Among  the  Pokkali  varieties,
VTL-4 showed lesser  O2

-  content and VTL-9 showed
the highest levels of O2

-  in all the concentrations of
NaCl  used.  The  varieties  VTL-4,  VTL-5,  VTL-6  and
VTL-7  showed  a  decrease  in  O2

-  content  with
increase  in  NaCl  concentration.  All  the  other
varieties  showed  a  steady  increase  in  O2

-  content
proportionate  with  NaCl  concentration.  The
positive  control  IR-28  produced  3-4  times  higher
H2O2 (0.789±0.08  mMol  g-1)  compared  to  salt
tolerant  Pokkali  varieties  (Fig.  1B).  The  H2O2

content in the negative control  VTL varieties were
lesser  compared  to  salt  treated  VTL  varieties.
During  NaCl  treatment  the  highest  H2O2  content
was  observed  in  VTL-2  (0.267  mMol  g-1) and  the
lowest quantity was observed in VTL-4 (0.188 mMol
g-1) in 150 mM NaCl. All the other varieties showed
an increase in the H2O2 content  upon exposure to
NaCl,  however,  the  response  was  dependent  on
NaCl concentration and time of exposure.

MDA content 

The MDA quantity was higher (0.712 mMol g -1) in the
positive control IR-28 (Fig. 1C). The salt tolerant VTL
varieties  used  as  negative  control  produced  lesser

quantity  of  MDA  in  150  mM  NaCl.  Higher  MDA
content  was  observed  in  the  salt  treated  VTL
varieties  comparing  to  IR-28  and  a  maximum
quantity  was  observed  in  VTL-9  (0.502  mMol  g -1).
The lowest quantity in VTL-3 (0.323 mmolg -1) treated
with 150 mM NaCl on the 21st day. 

Ascorbic acid (AsA) content 

The  AsA  content  in  the  positive  control  IR-28,
sharply  declined  with  increasing  in  NaCl
concentration  and duration  of  NaCl  exposure  (Fig.
1D).  In  the  negative  control,  the  VTL  varieties
produced higher AsA, while VTL varieties under salt
stress  maintained  steady  level  of  AsA.  Among  the
VTL varieties, the highest AsA content was observed
in  VTL-2  (0.928  mmolg-1)  and  the  lowest  in  VTL-8
(0.667  mmolg-1).  The  AsA  content  decreased
proportionate  with  the  increase  in  NaCl
concentration and the duration of exposure. 

GSH contents and GSH/GSSG ratio

The GSH contents in the positive control IR-28 was
lesser  compared  to  the  negative  control  VTL
varieties  (Fig.  1E).  In the salt  treated varieties,  the
higher  quantity  of  glutathione  was  measured  in
VTL-1 treated with 150 mM NaCl on the 21stday. The
GSH/GSSG ratio (Fig. 1F) decreased with increase in
NaCl  concentration  suggesting  the  presence  of  a
higher quantity of oxidised glutathione. 

SOD activity 

The  SOD  activity  was  upregulated  on  exposure  to
different  concentrations  of  NaCl.  The  highest  SOD
activity was expressed in 150 mM NaCl treated VTL-
2 with 43.99±4.36 U SOD mg protein -1. In rest of the
varieties  the  SOD  activity  was  upregulated  and
showed  consistent  increase  with  increase  in  salt
concentration.  In  the  control  experiment,  the
variety  VTL-9  showed  the  highest  SOD  activity  of
21.34±1.38 U SOD mg protein -1 followed by VTL8 >
VTL7 > VTL6 > VTL1 > VTL5 > VTL2 > VTL4 > VTL3
(Fig.  2A). In  the  positive  control  IR-28,  the  SOD
expression  decreased  with  increasing  NaCl
concentration and duration of exposure.

Catalase activity 

Catalase  activity  in  the  salt  treated  VTL  varieties
followed  the  same  pattern  of  SOD,  though  the
expression level varies, the highest enzyme activity
was observed in VTL-1 treated  with  150 mM NaCl
with  a  specific  activity  of  0.506±0.0087  µmole  mg
protein-1  min-1  and in the negative control plants, the
CAT  activity  was  lesser  than  the  salt  treated
varieties.  The  salt  treated  varieties  showed  an
increased CAT activity  in  all  the  concentrations  of
NaCl  used,  though  the  enzyme  activity  varied
slightly in salt treatment (Fig. 2B). The CAT activity
in the positive control IR-28, was approximately 4-6
times lesser than the salt treated varieties.

APX activity 

In  the  control  experiment,  highest  APX  specific
activity  was measured in VTL-6  (0.249±0.018  µmole
mg protein-1 min-1). The other varieties showed almost
similar APX activity upregulated in response to salt
concentration  and  the  specific  activity  increased
proportionate  with  the  salt  concentration.  The
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highest  specific  activity  (0.527±0.018 µmole  mg
protein-1min-1) was observed in 150 mM NaCl treated
VTL-3 and the lowest in VTL-7. The specific activity of
APX  in  all  the  varieties  treated  with  different
concentrations of NaCl is shown in (Fig. 2C). The APX
activity in the positive control  (IR28) showed lesser
activity of APX in all the concentrations of NaCl used.

GR activity

The  highest  GR  activity  (0.274±0.006  µmole  mg
protein-1  min-1)  was observed in VTL-1 compared to
the other varieties in the negative control. Among the
salt  stressed  varieties  the  highest  GR  activity  of
0.553±0.008 µmole mg protein-1 min-1 was observed in
VTL-1, grown in 150 mM NaCl. All the other varieties
expressed  an  increased  GR  activity  expressing
concentrations and varietal  differences  (Fig.  2D).  In
the  positive  control  IR-28  the  GR  activity  was  5-7
times lesser than the VTL varieties.

MDHAR activity

In the negative control, the variety VTL-3 showed the
highest  MDHAR  activity  of  1.19±0.02  µmole  mg
protein-1  min-1.  In  the  salt  treatments  the  highest
MDHAR  activity  was  observed  in  VTL-2  with  a
specific activity of 1.67±0.49 µmole mg protein-1 min-1.
The MDHAR activity in the salt stressed and control
did not show much difference, except in VTL-2 and
VTL-6 suggesting that the Pokkali  varieties used for
the  study have high  inherent  MDHAR activity  (Fig.
2E).  The  positive  control,  IR-28  showed  2-3  times
lesser MDHAR activity compared to the VTL varieties
treated with different concentrations of NaCl.

DHAR activity

In the negative control, the variety VTL-2 expressed
the  highest  DHAR  activity  of  1.19±0.08  µmole  mg
protein-1 min-1. The DHAR activity was upregulated in
salt  treated varieties and the highest DHAR activity
was observed in 150 mM NaCl treated VTL-6 variety
with  an  enzyme  activity  of  1.30±0.015  µmole  mg
protein-1  min-1  (Fig.  2F). The  positive  control  IR-28
showed 2-3 times lesser DHAR activity compared to
the salt treated VTL- varieties.

Discussion

The  salt  tolerant  Pokkali  varieties,  (Vyttila-1-9)
developed  through  conventional  breeding  methods,
were capable  of  constitutive  activation  of  peroxide
scavenging pathways in order to adapt to salt stress.
This  suggests  that  the  salt  tolerant  pathways  were
initiated by scavenging the stress related compounds,
thus maintaining a stable Na+/K+  ratio in plants (26).
Under salt stress conditions, VTL varieties produced
lesser  quantity  of  H2O2 compared  to  other  pokkali
varieties  like  CSR-1  (27)  and  positive  control  IR-28
suggesting the adaptability of the VTL varieties to salt
stress. The reduced H2O2 in the salt tolerant varieties
is related to the upregulation of SOD and CAT activity
that  assist  in  scavenging  the  generated  H2O2.  The
increased O2

- contents in the negative control plants
suggest  the  inherent  capacity  of  the  salt  tolerant
Pokkali  varieties in alleviating salt  stress.  However,
the superoxide radical emissions were dependent on
NaCl concentration.  Over production of ROS during

salt stress leads to the toxicity in cells causing cellular
damages.  The  incidence  of  salinity  stress  in  plants
produces ROS and several adverse effects that have a
destructive  influence  on  different  plant  processes
(28).  In  accordance  with  the  prevention  from
oxidative  damage caused due to lipid peroxidation,
plants have developed specific strategies comprising
upregulation  of  specific  enzyme  pathways,
metabolite  production  and  gene  expression  (29).
Plants  strongly  control  the  production  and
elimination  of  ROSs  by  many  enzymatic  and  non-
enzymatic  processes  to  the  alleviation  of  their
damages (30).  These non- enzymatic  and enzymatic
antioxidants play a vital role by interacting with each
other  in  order  to  scavenge  the  reactive  oxygen
species mediated by the over expression of different
genes and thus helping the  plants  to acclimatise  to
the adverse environmental conditions (31, 32). MDA
content  is  considered  as  a  sign  of  the  extent  of
oxidative  damage  under  stress  conditions  (33).
Higher quantity of MDA in the negative and positive
control  during  salt  stress  suggested  membrane
peroxidation and the MDA content did not show any
upregulation, thus preventing the lipid peroxidation;
congruent  results  are  reported  in  Beta maritima,  a
salt tolerant variety during salt stress (34). Ascorbate
content  in  the  positive  and  negative  control  were
upregulated,  whereas  in  the  salt  tolerant  varieties,
the  AsA  content  decreased  in  the  VTL  varieties
attributing  the  up  regulated  activity  of  the  APX
enzyme which utilises ascorbate. It may also possible
that  the  reduced  AsA  content  can  be  due  to  the
increased  catabolism  of  the  reduced  or  oxidised
ascorbate.  The two fold increase in GSH content in
the salt stressed VTL varieties is related to the higher
levels of GSH synthesis and the considerable increase
in  GR  activity  that  assists  in  maintaining  the
GSH/GSSG ratio, the decrease in the GSH/GSSG ratio
specifies  the  oxidative  stress  related  cellular  redox
buffer under salt stress. 

The upregulated SOD and CAT activities  in the
VTL  varieties  suggests  that  the  superoxide  radical
generation due to salt stress is also alleviated by the
participation  of  NADPH  and  the  signalling  cascade
involving  the  ascorbate  glutathione  cycle  enzymes
that  help  to  scavenge the  ROS.  Combined action of
SOD and CAT in alleviating the stress responses were
reported  in  other  plant  species  (35).  The  H2O2

dependant oxidation of AsA is active in the tolerant
varieties and the upregulation of APX specific activity
suggest that, the H2O2 produced in the tolerant plants
during salt stress is effectively scavenged through the
ascorbate-glutathione  cycle  enzymes.  The
upregulated  activity  of  CAT  and  APX enzymes also
suggests that the competition for the substrate H2O2 is
not  affecting  the  activity  of  these  enzymes  as
reported earlier (14). 

Catalase is one of the H2O2 detoxifying enzymes
which  is  mostly  associated  with  peroxisomes  and
helps  in  removing  H2O2  formed  during
photorespiration. The differential behaviour of these
cultivars  on time scale  indicates  the  early  adaptive
potential  of  Pokkali  in  terms  of  CAT  activity.  The
upregulation of  H2O2 and CAT activity  is  correlated
with  the  increased  protection  from  the  damage
associated  with  oxidative  stress  (4,  36).  This

344   SIMON & YUSUF 



corroborates  the  significant  differences  in  the  CAT
activity of the salt tolerant and salt-sensitive cultivars
of  pea  reported  during  salt  stress  (37).  The
upregulated  APX  activity  suggests  that  the  VTL
varieties  develop  inherent  characteristics  for
protection against salt stress by maintaining the H2O2

concentration inside  the cell  to a non-toxic level as
the  combined  activities  of  APX  and  CAT  are
responsible for H2O2 scavenging (38).  APX is  one of
the  most  important  antioxidant  enzymes  in  plants
that  detoxify  H2O2 using  ascorbate  as  reductant.  It
exists in several isoforms in various compartments of
plant  cells  and  shows  differential  expression  and
regulation under environmental stress factors. In the

VTL varieties, the APX activity decreased without salt
treatment, however, the SOD to APX activity differed
significantly in the different VTL varieties. The higher
ratio of SOD to APX correlate with H2O2  scavenging,
suggesting that in the VTL varieties the H2O2 produced
is actively detoxified.

Glutathione reductase  (GR) is  essential  for the
elimination  of  ROS  and  for  the  maintenance  of
reduced  glutathione  (GSH)  by  the
ascorbate/glutathione  cycle.  The  enzyme  GR
mediates  the  reduction  of  oxidized  glutathione
(GSSG)  produced  by  the  action  of  DHAR,  which  in
turn produced by the APX during the peroxidation of

Fig. 1. A) Superoxide content, B) Hydrogen peroxide content, C) MDA content, D) Ascorbate content, E) Glutathione content, 
F) GSH/GSSG ratio in the IR-28 and VTL varieties treated with different concentrations of NaCl on the 21st day. The values are the mean of

three independent experiments and are subjected to one-way ANOVA. The values are significant at p= > 5.
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ascorbate, to the reduced GSH pool using NADPH as
an  electron donor.  Thus,  a  highly  reduced  state  of
GSH/GSSG  ratio  is  maintained  at  the  intracellular
level by this reaction during oxidative stress.  It was
observed that the activity of GR increase linearly to
the  salt  concentration  in  all  the  VTL  varieties
compared to  negative  control  VTL varieties.  These
results are in corroboration with the earlier results
that  GR activity  increases during  salt  treatment  in
order to generate glutathione, an intracellular non-
enzymatic  antioxidant  that  protects  the  plant
membranes  and  prevents  the  oxidative
denaturation of proteins under stress by protecting
their thiol groups (39).

MDHAR is  the major enzyme in AsA-GSH cycle
contributing  to  ASC  generation  and  the  APX  and

MDHAR activities are higher or the MDHAR activity is
one order of magnitude lower than the APX activity
and the DHAR activity one order lesser than MDHAR
activity under salt stress in most of the plant species
(40). The results obtained in VTL varieties under salt
stress suggest that the capacity to regenerate ASC was
similar or higher than the capacity of APX to oxidise
MDA. The lower activities of GR and DHAR support
this view. The increased MDHAR activity in the salt
stressed VTL varieties compared to negative control
VTL  varieties  suggest  the  higher  capacity  of  ASC
generation under salt stress conditions. As observed
in some other plants, the decreased MDHAR activity
in the negative control suggests the level of ascorbate
regeneration  can  be  correlated  with  salt
concentration  among  VTL  varieties  (41,  42).
Furthermore,  the  higher  activity  of  various

Fig. 2. A) Superoxide dismutase activity, B) Catalase activity, C) Ascorbate peroxidase activity, D) Glutathione reductase activity, 
E) Monodehydroascorbate reductase activity, F) Dehydroascorbate reductase activity in the IR-28 and vytilla varieties treated with different

concentrations of NaCl on the 21st day. The values are the mean of three independent experiments and are subjected to one-way ANOVA.
The values are significant at p= > 5.
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antioxidant enzymes (SOD, CAT, APX, MDHAR, DHAR
and GR) in a coordinated manner in the salt tolerant
cultivars  suggests  that  they  are  the  major
determinants in elucidating salt tolerance.

The  Pokkali  varieties  (VTL-1-9)  could  not
withstand NaCl concentration above 150 mM as the
NaCl treated plants turn yellow from the 25th day of
salt  treatment,  indicating the tolerance threshold of
150  mM  for  these  varieties.  Most  of  the  studies
conducted  on  salt  tolerance  in  rice  varieties  were
based  on  salt  treatment  for  24-48  hrs  (14,  43),
however, the present study, the salt tolerance upto 30
days  in  75  day  old  plants  with  25-150  mM  NaCl
provide  conclusive  results  on  the  salt  tolerance
potential of these varieties. The negative control VTL
varieties, the quantity of antioxidant enzymes match
with the salt treated varieties, demonstrating that the
salt  tolerant  varieties  have  inherently  higher
expression of antioxidant enzymes. 
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