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ABSTRACT

In  the  present  study,  we report  identification and  characterization of  the plant-specific  WUSCHEL-
related homeobox (WOX) gene family in  Apostasia shenzhenica, a primeval orchid. WOX proteins are
DNA-binding WUSCHEL-related homeobox (WOX) encoding transcription factors that play critical role in
zygote patterning, embryo development, organogenesis, florigenesis, stress responses etc. Ten putative
AsWOX genes were predicted in the A. shenzhenica genome and were characterized by the presence of
DNA-binding helix-loop-helix-turn-helix motif. AsWOX proteins were grouped into three clades, ancient,
intermediate and WUS on the basis of sequence homology with Arabidopsis thaliana (AtWOX),  Oryza
sativa (OsWOX),  Phalaenopsis  equestris (PeWOX)  and  Dendrobium  catenatum (DcWOX)  and  their
phylogenetic relationship was established. Gene structure analysis revealed that three  AsWOX genes
had two introns, six genes had a single intron, and one gene was intron-less. Expression profiling in a
variety  of  tissue  (tubers,  seeds  and  pollens)  was  analysed  in  light  of  the  presence  of  specific  cis-
regulatory elements  in the promoter  region and their role in various developmental  processes  was
discussed.  Three  dimensional  structures  were  predicted  for  three  selected  AsWOX  proteins
representing the three clades. The present study provides insights to the role of AsWOX gene family in
various vital developmental processes, establishes phylogenetic relationships with related plant species
and provides a platform for functional validation of specific AsWOX genes.

Introduction

The WUSCHEL-related homeobox (WOX) gene family is
involved  in  plant  embryonic  patterning,  stem  cell
maintenance,  organogenesis,  florigenesis,  somatic
embryogenesis and stress responses (1-3). These genes
encode  plant  specific  DNA-binding  homeobox
transcription factors which are characterized by 60-66
amino acid (aa) residues long homeobox domain with
embedded  DNA-binding  helix-loop-helix-turn-helix
motif  (4,  5).  Based  on  sequence  homology,  WOX
proteins can be classified  into  three clades,  Ancient,
Intermediate and WUS (1). The Ancient clade evolved
earlier and can be found from algae to angiosperms.
The  Intermediate  clade  emerged  after  the  origin  of
pteridophytes and is absent in algae and bryophytes.
The WUS clade, on the other hand,  is found only in
angiosperms, indicating that  it  is the most advanced
clade (1).

WUS gene  was  first  identified  in  Arabidopsis
thaliana,  with  roles  in  shoot  and  floral  apices
development by maintaining the stem cell potency (6).
Later,  several  of  WOX  genes  were  functionally
characterized in other organism ranging from algae to
flowering  plants,  such  as  Ostreococcus  tauri,  O.
lucimarinus and  Physcomitrella patens (7),  Selaginella
kraussiana and  S.  moellendorffii (8),  Picea  abies (9),
Arabidopsis thaliana (7),  Populus  trichocarpa (10),
Solanum lycopersicum  (11),  Monotropa hypopitys (12),
Broussonetia papyrifera (13),  Prunus persica,  P. mume,
Pyrus  bretschneideri and  Fragaria  vesca (14),  Vitis
vinifera (15), Gossypium arboreum, G. raimondii and G.
hirsutum (16),  Cucumis  sativus,  C.  melo and  Citrullus
lanatus (17),  Oryza  sativa,  Zea  mays and  Sorghum
bicolour (10),  Ananas  comosus (18),  Phalaenopsis
equestris and  Dendrobium catenatum (19),  Salix
suchowensis (20), Camellia sinensis (21), Brassica napus,
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Brassica rapa and  Brassica oleracea  (22) and  Juglans
regia (23).

In  post-genomics  era,  genome-wide
characterizations  of  gene  families  are  prevalent  in
crop  plants,  however,  such  studies  are  scarce  in
orchids  as  only  a  few  orchid  genomes  have  been
sequenced  so  far  (24-26).  For  the  present  work,  A.
shenzhenica,  a  primeval  terrestrial  orchid,  was
selected because of its evolutionarily significance as it
represents  the  most  primitive  subfamily,
Apostasioideae  which  has  strong  divergence  from
Orchidaceae.  This  taxa  is  characterized  by
actinomorphic  flowers,  indistinct  labellum,

rudimentary  gynostemium,  absence  of  pollinia  and
non-resupinating ovary which are contrasting to the
general  characteristics  of  orchids  (27).  Thus,  it  is
important to study the plant in order to evaluate its
evolutionary status and relationship. In this report, a
genome-wide  analysis  was  done  to  study  physico-
chemical  characterization,  structure  prediction,
phylogenetic  relationships, analysis  of  cis-regulatory
elements and spatio-temporal expression profiling of
AsWOX gene family.  The study would pave way for
functional characterization of WOX genes and provide
insights  for  their  potential  role  in  growth  and
development of orchids.
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Table 1. Characterization of AsWOX protein sequences

Gene NCBI ID AA MW pI Ins AI GRAVY Loc SP TMD

AsWOX12 PKA61831.1 204 22.48 9.41 72.46 75.05 -0.375 Nuclear No 0

AsWOX11 PKA58526.1 148 15.83 9.5 67.26 72.43 -0.223 Nuclear No 0

AsWOX9 PKA48738.1 349 37.31 6.31 62.41 74.76 -0.351 Nuclear No 0

AsWOX13 PKA60098.1 245 27.74 8.2 46.17 58.49 -0.787 Nuclear No 0

AsWOX2A PKA63241.1 248 27.57 9.52 67.65 67.66 -0.697 Nuclear No 0

AsWOX2B PKA48554.1 258 27.26 5.99 66.67 50.08 -0.721 Nuclear No 0

AsWOX3A PKA49032.1 207 23.19 9.03 68.39 55.65 -0.757 Nuclear No 0

AsWOX3B PKA46270.1 215 23.86 7.11 60.11 66.84 -0.593 Nuclear No 0

AsWUS PKA53419.1 268 29.02 6.5 64.63 50.37 -0.724 Nuclear No 0

AsWOX7 PKA52499.1 137 16.13 10.44 72.83 67.59 -0.958 Nuclear No 0

Isoelectric  point (pI), protein molecular weight (MW) in kDa, instability index (Ins), aliphatic  index (AI) grand average of hydropathy
(GRAVY), localization (Loc), signal Peptide (SP) transmembrane domain (TMD)

Fig. 1. Domain and motif analyses in AsWOX proteins: a. Multiple sequence alignment of AsWOXs, the DNA-binding helix-loop-helix-turn-
helix region is marked; b. Representation of homeobox domain; c. Identified conserved motifs are marked in coloured boxes and sequence

logo of these motifs showing degree of conservation at each amino acid position.



Materials and Methods

Identification of WOX family proteins

The  WOX  protein  sequences  of  Arabidopsis  thaliana
(AtWOXs),  Oryza  sativa (OsWOXs),  Phalaenopsis
equestris (PeWOX)  and  Dendrobium  catenatum
(DcWOX) (1, 10, 19) were used as query sequences and
Blastp  was  carried  out  against  the  NCBI  derived
Apostasia  shenzhenica protein  database;
taxid:1088818). The retrieved AsWOX sequences were
then  analysed  for  the  presence  of  WUSCHEL-related
homeobox (pfam00046)  domain using  SMART server
(28)  and  the  domain  architecture  was  constructed
using Expasy - Prosite server  (29). To locate the DNA-
binding  helix-loop-helix-turn-helix  domain,  multiple
sequence  alignment  using  MULTALIN  tool  (30)  was

done.  The  conserved  motifs  were  identified  using
MEME  suite  server  (31),  with  preset  parameters
(maximum  number  of  motifs  -  05,  number  of
repetitions - any, optimum motif width - ≥6 and ≤ 200).

Phylogenetic analysis

Full  length  protein  sequences  (AsWOX,  PeWOX,
DcWOX,  AtWOX and  OsWOX)  were  initially  aligned
with MUSCLE program and the phylogenetic tree was
then constructed using MEGA7 tool (32) by maximum-
likelihood method at bootstrap value of 1000.

Physico chemical characterization

The  AsWOX  sequences  were  analysed  using  the
Expasy-ProtParam server (33) to calculate the physico
chemical  properties  such  as  molecular  weight,
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Fig. 2. Phylogenetic analysis of AsWOXs proteins: Phylogenetic tree with the sequences of AsWOX with PeWOX (P. equestris), DcWOX (D.
catenatum), AtWOX (A. thaliana) and OsWOX (O. sativa) showing grouping into three distinct clades, ancient (A), intermediate (I) and WUS
(W) marked in green, blue and red respectively.

Table 2. Gene scaffold and gene stretch region with NCBI ID of AsWOX genes

Gene Gene Scaffold Gene Stretch

1 AsWOX12 fragScaff_scaffold_40 KZ451923.1:2177800-2179273

2 AsWOX11 fragScaff_scaffold_68 KZ451951.1:c777337-775757

3 AsWOX9 original_scaffold_327 KZ452209.1:176088-178201

4 AsWOX13 fragScaff_scaffold_59 KZ451942.1:c2215404-2208264

5 AsWOX2A fragScaff_scaffold_26 KZ451909.1:307739-310274

6 AsWOX2B original_scaffold_431 KZ452313.1:c950380-948698

7 AsWOX3A fragScaff_scaffold_158 KZ452041.1:c426344-424274

8 AsWOX3B original_scaffold_2507 KZ454389.1:c500918-499419

9 AsWUS fragScaff_scaffold_115 KZ451998.1:c1564267-1563301

10 AsWOX7 fragScaff_scaffold_119 KZ452002.1:c793199-792786

The prefix ‘c’ in gene stretch region represents the presence of gene complementary strand



aliphatic index, instability index, pI and grand average
of hydropathicity (GRAVY). Online tools such as Signal
P.4.0 (34) and TMHMM v.2.0 (35) were used to detect
the signal peptide and transmembrane region CELLO
v.2.5  (36),  WoLF  PSORT  (37),  TargetP-2.0  (38)  and
Plant-mPLoc (39) were used to predict the sub-cellular
localization.

Gene  structure  and  cis-regulatory  elements
analyses

For each AsWOX protein sequence,  coding sequence
(CDS) and gene sequence were retrieved from NCBI
database. The gene structure with exon-intron display
was drawn using Gene Structure  Display  Server 2.0
(40). The promoter regions were retrieved from 1.5 kb
upstream sequences of the genes, from NCBI database
and  the  presence  of  cis-regulatory  elements  was
confirmed  using  PLACE  server  (41).  Promoter
elements were further analysed to identify  common
and specific promoter elements using Venn Diagram
tool.

Gene duplication events and ortholog prediction

The  sequence  similarity  index  among  AsWOX CDS
sequences were obtained using MUSCLE tool (42), and
the  genes  sharing  ≥  80%  identity  were  considered
duplicated.  To  predict  the  ortholog  proteins,  a local
NCBI  BLASTp  search  was  performed  with  each
candidate  AsWOX  protein  sequences  querying
independently against the WOX protein sequences of
target  species  i.e.  A.  thaliana (AtWOX),  O.  sativa
(OsWOX),  P.  equestris (PeWOX)  and  D.  catenatum
(DcWOX), and the orthologs were identified.

Expression analysis

The  AsWOX CDS  sequences  were  used  for  BLASTn
search against the high throughput RNA-seq data for
various developmental stages like tuber (SRX2938654),
seed  (SRX2938653)  and  pollen  (SRX2938652)  of  A.
shenzhenica available  from NCBI  database  (26).  The
hits  were counted  and the RPKM values  (Reads  per

Kilobase  per  Million)  were  calculated  using  the
formula  RPKM  =  (C  x  109)  /  (N  x  L),  in  which  C
represents number of hits for the candidate gene, N
represents total mapped reads in the concerned RNA-
seq experiment and L represents the length of gene in
base-pairs  (43).  The  heat  maps  to  visualise  the
differential  expression  of  were  generated  using
Hierarchical Clustering Explorer 3.5 (44).

Molecular modelling

The  secondary  structure  of  AsWOX  proteins  was
analysed  using  the  online  tool  SOPMA  secondary
structure  prediction  (45),  for  the  presence  of  alpha
helices,  random  coils,  beta  turns  and  extended
strands. For prediction of tertiary structure, I-Tasser, a
molecular modelling tool (46) was used by simulating
with top 10 closely related homologous templates in
PDB (Protein Data Bank) with the help of BS-scores,
TM-scores,  IDEN  coverage.  The  DNA-bindng  site
prediction was based on identification of analogs with
similar binding sites with BS-score value of > 0.5.

Results and Discussion

Identification and characterization of WOX gene
family proteins 

WUS gene was the  first  WOX gene family  member
identified  in  Arabidopsis thaliana (AtWUS)  and
characterized  to  be  involved  in  meristem
maintenance  in  shoot  and  floral  apices  (6,  47)  and
later  this  gene  was  shown  to  regulate  floral
patterning as well (48). In general,  WOX gene family
members regulate zygote and embryonic patterning
and  development,  organogenesis,  florigenesis  and
participate in stress responses (1, 3). To identify WOX
members  in  Apostasia  shenzhenica  (AsWOX),
extensive BLASTp was carried out and a total  of 10
AsWOX protein sequences were identified (Table 1).
No splice  variants  for  any of  the  WOX genes  were
identified.  The  size  of  the  WOX gene  family  in  A.
shenzhenica (10  genes)  was  comparable  with  the
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Fig. 3. Structural organisation of AsWOX genes: Exon-intron organization
showing exons marked as boxes and introns as lines. Intronic phases 0 1 and

2 are also represented. 

Fig. 4. Expression profile of AsWOX  genes: Spatio-
temporal expression of AsWOX genes shown in the Heat
map in various tissues, tuber (T), seed (S), and pollen (P)

Table 3. Secondary structure and ligand binding sites in selected AsWOX proteins
Protein Alpha helix Random coil Extended strand Beta turn Ligand Ligand binding sites

WOX13 32.24 (79) 52.65 (129) 8.98 (22) 6.12 (15) Nucleic acid 100, 101, 102, 103, 104, 106, 147, 150,
151, 154, 158

WOX9 22.92 (80) 61.60 (215) 11.17 (39) 4.30 (15) Nucleic acid 106, 109, 110
WOX2B 20.16 (52) 62.79 (162) 11.63 (30) 5.43 (14) Glycerol 82, 85
Values indicate: % of amino acids (No. of amino acids are shown in brackets)



related orchid species like Phalaenopsis equestris (14
genes, including 3 duplicated genes) and Dendrobium
catenatum (10  genes)  (19).  Multiple  sequence
alignment  indicated  that  all  AsWOXs  carry  DNA-
binding  helix-loop-helix-turn-helix  region (Fig.  1a).
Domain analysis  showed that  all  AsWOX sequences
consisted  of  WUSCHEL-related  homeobox  domain
(helix-loop-helix-turn-helix region) (pfam00046) (Fig.
1b).  MEME  Suite  server  identified  five  conserved
motifs,  with  reduction  in  evolutionary  clade
advancement (Fig. 1c). 

Phylogenetic  analysis  for  AsWOXs  was  carried
out with those of D. catenatum (DcWOXs), P. equestris
(PeWOXs),  A.  thaliana (AtWOXs)  and  O.  sativa
(OsWOXs), to establish the evolutionary relationships
(Fig.  2). Tight  clustering  of  AsWOX13  with
PeWOX13A,  PeWOX13B,  PeWOX13C,  DcWOX13  and
AtWOX13  revealed  that  it  is  a  member  of  ancient
clade.  Similarly,  rest  of  the  genes  clustered  in  the
other two clades, Intermediate and WUS, along with
the  respective  sequences  of  P. equestris,  D.
catenatum, O. sativa and A. thaliana (Fig. 2).

The peptide length of AsWOXs varied from 137
aa (AsWOX7) to 349 aa (AsWOX9),  with an average
length  of  228  aa (Table  1)  which  is  in  sync  with
reports  of  Dendrobium catenatum (19).  The average
molecular weight of AsWOX proteins was 25.03 kDa,
highest being 37.31 kDa in AsWOX9 and lowest being
16.13 kDa in AsWOX7. The isoelectric  point  ranged
from  5.99  (AsWOX2B)  to  10.44  (AsWOX7)  with  an

average of 8.2 and the aliphatic  index ranged from
50.08  (AsWOX2B)  to  75.05  (AsWOX12)  with  an
average of 63.89. The grand average of hydropathy
(GRAVY) value of all AsWOX proteins had a negative
value suggesting their  hydrophilic  nature  (Table  1).
No  signal  peptide  or  transmembrane  helix  region
was detected in any of the AsWOX protein sequences.
These were localised in the nucleus as expected for
DNA-binding transcription factors (Table 1) which is
in conformity with earlier reports (49). 

Gene  characterization  and  duplication  events
and ortholog prediction

Genomic  scaffold  regions  for  each  AsWOXs  were
identified from the NCBI database and listed  (Table
2). The exon-intron gene structure analysis of  WOXs
showed that three WOX genes (AsWUS, AsWOX9 and
AsWOX13)  carried  two  introns,  while  six  genes
(AsWOX2A,  AsWOX2B, AsWOX3A, AsWOX3B,
AsWOX11 and  AsWOX12) were mono-intronic genes
and  one  gene  (AsWOX7)  was  intron  less  (Fig.  3).
Multiple  sequence  alignment-based  sequence
similarity  index  among  AsWOX CDS  sequences
indicated  that  no  gene  duplication  event  occurred
within  WOX gene family  in  A. shenzhenica genome
(Supplementary Table 1) which is in conformity with
the results in a related orchid species,  D. catenatum
having 10 WOX genes (19).

The orthologs  for  each AsWOX were predicted
against  the  sequences  of  taxonomically  closest
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Fig. 5. Structural analysis of AsWOX13, AsWOX9, and AsWOX2B proteins: a,b,c. Secondary structures; d,e,f. Simulated three
dimensional structures; g,h,i. Ligand-binding sites.



species, P. equestris and D. catenatum, A. thaliana and
O. sativa (Table 2).

Cis-regulatory  elements  prediction  and
Expression analysis

Detailed  analysis  revealed  that  the  1.5  kb upstream
promoter sequences in all the WOX genes carried cis-
regulatory elements including core promoter elements
TATA-box  (TATABOX5)  and  CAAT-box  (CAATBOX1),
and  other  elements  that  direct  specific  expressions
such  as,  root-specific  (ROOTMOTIFTAPOX1,
OSE2ROOTNODULE),  mesophyll-specific
(CACTFTPPCA1),  pollen-specific  (POLLEN1LELAT52,
GTGANTG10),  dehydration-esponsive
(MYCCONSENSUSAT),  light-responsive  (IBOXCORE,
GT1CONSENSUS),  Dof  proteins  binding  domain
(DOFCOREZM),  WRKY  proteins  binding  W-box
(WRKY71OS)  and  wound  activating  W-box
(WBOXNTERF3).  In  addition,  the  AGL15  binding
element  (CARGCW8GAT)  and  scaffold  or  matrix
attachment  region  (1  MARTBOX)  were  predominant
(Supplementary Table 2). This reflects the diverse role
of WOX genes in plant development. In A. shenzhenica,
RNA-seq data was available for three developmental
stages  i.e.  tuber,  seed  and  pollen.  AsWOX13,  the
ancient clade member, showed high expression in all
the three developmental stages  (Fig. 4). The presence
of  pollen-specific  (POLLEN1LELAT52,  GTGANTG10)
promoter  elements  in  AsWOX13 suggests  a  role  in
anther  development,  the  expression  profile  of this
gene  also  confirms  the  same  (Fig.  4). This  has  also
been reported in A. thaliana, where, the expression of
AtWOX13 was found to be higher at floral transition
stage,  in  inflorescences,  floral  buds, gynoecium and
relatively  weak  expression  in  fruits  and  leaves
indicating  towards  its  role  in flower  and  embryo
development (7, 51). It is reported that  WOX13 from
Physcomitrella  patens (PpWOX13)  is  involved  in
reprogramming of leaf cells and protoplast cells into
stem cells (50). In A. thaliana, AtWOX14, a homologous
gene  of  AtWOX13 gene,  is  involved  in  gibberellin
synthesis,  vascular  cell  differentiation,  floral
transtition,  anther  development  and  lateral  root
development  (7,  52,  53).  The  WOX13 genes  from
Ananas  comosus (AcoWOX13),  D.  catenatum
(DcWOX13) and  P. equestris (PeWOX13A,  PeWOX13B
and  PeWOX13C)  had similar  expression pattern (18,
19). The  AsWOX9 gene  (Fig.  2)  had  maximum
expression  in  seed (Fig.  4).  The  promoter  region  of
AsWOX9 carried  cis-regulatory  elements
AACACOREOSGLUB1,  2SSEEDPROTBANAPA,
DPBFCOREDCDC3, for seed/embryo specific expression
(Table 3). The A. thaliana genes AtWOX9 and AtWOX8
which are phylogenetically  closest  to  AsWOX9,  have
been reported to play a role in zygote patterning, late
embryo development and apical growth (54, 55). This
suggests  that  the  AsWOX9 gene,  with  maximum
expression  in  seed  could  have  a  role  in  embryo
development. AsWUS showed significant expression in
pollen  (Fig. 4) which is comparable to the expression
profile  for  WUS gene  in  P.  equestris (19).  Earlier
reports  in  A.  thaliana,  indicated  the  role  of  AtWUS
protein as a repressor in stem cell regulation and an
activator  in  floral  patterning  (56).  AtWUS  also
promotes vegetative-to-embryonic transition (57) and
involves in somatic embryogenesis (58). Promoters of
AsWOX9 and  AsWUS carried  tuber-specific  element

(SP8BFIBSP8BIB)  and water stress regulated element
(MYB2AT). The AsWUS gene promoter carried element
(EVENINGAT)  for  circadian  rhythm  as  well.  These
observations suggest that AsWUS could possibly play a
role  in  flower  development.  Another  member,
AsWOX2B gene  (Fig. 2), had seed specific expression
(Fig. 4). AsWOX2B can be related to the AtWOX2 of A.
thaliana, which expresses downstream to AtWOX8 and
was shown to  be involved in zygote  patterning and
apical  growth  patterning  regulation  (54,  55).
AsWOX2B with  seed  specific  expression  might  be
playing  a  similar  role.  All  the  other  WOX genes
showed weak expression in  tuber,  pollen  and seed.
Promoters  of  genes  AsWOX2A,  AsWOX3A,  AsWOX9
and  AsWOX12 carried  elements  that  interacts  with
AGAMOUS gene target sequence WUSATAg of intron
and that are light-regulated (IBOX). A coupling element
(CGACGOSAMY3) for the G box element was found in
the  promoters  of  genes  AsWOX2A,  AsWOX7,
AsWOX11 and  AsWOX13.  Promoters  of  the  genes,
AsWOX2B, AsWOX3B, AsWOX9 and AsWOX13 carried
(gibberellic  acid)  GA-responsive  element  (GAREAT)
(Supplementary  Table  3). These  results  support  the
involvement  of  WOX gene  family  in  overall  plant
development. 

Protein structure and Homology modeling

AsWOX13 of  ancient  clade,  AsWOX9 gene  of
intermediate clade and AsWOX2B gene of WUS clade
were  selected  for  protein  structure  simulation  and
homology modelling, based on high expression profile.
These sequences were dominated with random coils
ranging  from  52.65%  (AsWOX13)  to  62.79%
(AsWOX2B)  and  alpha  helix regions  ranged  from
32.24% in AsWOX13 to 20.16% in AsWOX2B (Fig. 5a-c;
Table 3). The three-dimensional structure simulation
analysis predicted that AsWOX13 and AsWOX9 were
nucleic acid binding proteins (Fig. 5d, e, g, h; Table 3),
while AsWOX2B was predicted to bind with glycerol
(Fig. 5f, i).

Conclusion

The present study characterizes the WOX gene family
in  Apostasia  shenzhanica.  Ten  AsWOX genes  were
identified  and  grouped  into  three  clades,  ancient,
intermediate and WUS based on homology modelling
with  related  plants  and  establishes  phylogenetic
relationships amongst these. This study opens vistas
for functional characterization of AsWOX gene family
in various developmental pathways.
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