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ABSTRACT
Amino acid permease-like (AAP-like) gene plays a critical role in absorbing amino acids
through roots in plants. A number of studies have been done on amino acids uptake in
plants but till date there is no report about the expression of  AAP gene in  Phaseolus
under field allied condition. The aim of this study is to measure the expression of AAP-
like gene  on  alanine,  glycine  and  proline  amino  acid  uptake  capacity  in  Phaseolus
vulgaris at  field  relevant  concentrations.  Amongst  three  amino  acids,  a  drastic
significant increase of 63.15 fold in expression of  AAP-like gene is observed in 50 µM
alanine at 2 hr. At 50 µM of proline and 25 µM of alanine, AAP-like gene expression also
shows high expression of 43.71 fold at 2 hr and 42.50 fold at 1 hr respectively.  This
study elucidated the dose dependent relationship of glycine, alanine and proline with
the expression of AAP-like gene in amino acid transport in natural conditions in roots of
P. vulgaris. Additionally, this research is also useful in identification of plants needing
less surplus nitrogen additions and helpful in optimizing fertilizers by tailoring  AAP
gene expression to match plant uptake capacities in agriculture.

Introduction

Plant growth and development are dependent on the
attainment  and  distribution  of  nitrogenous
compounds throughout the plant body. Application of
nitrogen  fertilizers  seems  to  be  the  only  solution
despite  of  being  costly  and  non-ecofriendly,  making
this an important issue. Several compounds essential
to  plant  development  that  includes  nucleotides,
hormones, chlorophyll and secondary metabolites are
synthesized  from  amino  acids  (1).  Amino  acids  are
also  the  building  block  elements  for  enzymes  and
proteins that make the skeleton and give fuel through
metabolism  to  the  plant.  Plants  absorb  amino  acids
right  from  the  soil  in  the  form  of  nitrate  and
ammonium  and  thereby  assimilate  them  to  amino
acids (2, 3). Most of the amino acids are synthesized in
plastids,  cytosol,  mitochondria  and  peroxisomes  of
roots  and  leaves  and  available  immediately  to
metabolic  processes.  Compartmentalization  and
proper channelization of the amino acids throughout

plant  body  are  performed  by  several  transporters
present in the membrane (4–6).

A number of transporters are already well-known
and has been grouped into different families. Amino
acid  permease1  (AAP1/NAT2)  was  identified  first  in
plant a long ago in Arabidopsis (7–9). Near about 6500
transmembrane  proteins  were  identified  in
Arabidopsis  using  bioinformatic  tools  and
programming  (10).  Amino  acid  transporters  are
mainly  belonging  to  amino  acid  permease  (AAP),
lysine/histidine-type  transporter  (LHT),
proline/compatible  solute  transporter  (ProT),
aromatic-neutral  amino  acid  transporter  (ANT1),
γ-aminobutyric  acid  transporter  (GAT)  and  cationic
amino  acid  transporter  (CAT)  families.  Transporters
generally  differ  in  substrate  selectivity  and  affinity
when analyzed  in  yeast  or  Xenopus oocytes,  and  in
tissue  or  cellular  localization.  LHT1,  AAP1,  AAP5,
ProT2 and CAT6 transporters are involved in amino
acid uptake into root cells whereas LHT, AAP8, AAP1,
AAP6 and AAP2 imports amino acids into mesophyll
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cells,  endosperm,  embryo,  xylem  parenchyma  and
transport  phloem  respectively.  Cellular  influx  of
glutamine and histidine, and uptake of aspartate and
glutamate  is  performed  by  SIAR1  while  glutamate/
malate  exchange  across  chloroplast  membrane  is
done  by  DT2.1  transporter.  Yet,  studies  have  been
restricted  to  the  physiological  role  that  includes
absorbance through root,  water  conducting  system,
mesophyll cells of leaves and seeds (6, 9, 11, 12). 

Phaseolus  vulgaris  is  well-known  for  high
nutritive  value  and also  for  increasing  soil  fertility
(13, 14) but very limited study has been conducted to
characterize  AAP gene  in  Phaseolus (15).  In  this
present  study,  we  have  amplified  an  amino  acid
permease-like  gene  (AAP-like)  (NCBI  accession
number  MH704902)  from  Phaseolus  vulgaris  L
‘Seville’  and  analyze  its  expression  pattern  at
different  concentration  of  amino  acids,  glycine,
alanine  and  proline  under  different  incubation
period at transcriptome level using RT-qPCR.

Materials and Methods

Plant material and growth condition

Seeds were surface sterilized using HgCl2  (0.1%) and
sown  on  sterile  vertical  agar  plates  comprising
nitrogen  free  Murashige  and  Skoog  (MS)  medium
(16), 3 mM NO3

-, 1% (w⁄ v) agar and 0.5% (w⁄ v) sucrose
and  set  to  pH  5.8  by  7.7  mM  MES.  After  seed
germination,  they  were  incubated  in  the  growth
chamber  maintaining  16/8  photoperiod  at  24±2 °C
temperature  and  78%  humidity.  All  plants  were
allowed to grow for seven days.

Amino acid uptake

Seven  days  old  seedlings  were  removed  from  the
agar plate and the root of the seedlings were blotted
gently with tissue paper and then directly immersed
into  three  aliquots  of  0.5  mM  CaCl2 to  preserve
membrane  integrity.  The  solution  in  excess  was
blotted with tissue paper after dipping third time and
right away the roots of intact plants were allowed to
submerge in 25 ml of a solution of glycine,  alanine
and  proline  at  a  25  µM  and  50  µM  concentration
separately  for  2  hr  in  50  ml  vials.  The  roots  of
untreated plants submerged with water for 2 hr were
treated as control.

RNA isolation and cDNA synthesis

Total RNA was extracted from ~800 mg of roots  by
Total  RNA  isolation  kit  (Macherey-Nagel)  following
manufacturer  instruction at  30 min,  1 hr  and 2 hr
from the time of submerging in amino acid solution.
Integrity was checked on 1% formaldehyde agarose
gel  and  purity  were  checked  in  Nanodrop
spectrophotometer  (JENWAY).  First  strand  cDNA
synthesis  was  performed following  the  instructions
directed in  Revert  Aid  First  Strand cDNA Synthesis
Kit (Thermo Scientific).

Primer designing

Using ExPASy tool (17),  the  AAP-like gene sequence
was  translated  to  amino  acid  sequence.  RT-qPCR
primers were designed using PRIMER3 (18) from the
long stretch of open reading frame obtained from the

translation of the amino acid sequence. The primers
for  Insulin  degrading  enzyme  (IDE)  was  as  per
standard (19).

Gene Forward primer Reverse primer

Amino acid
permease-like gene

GCTTCTACAACCCATAC
T

CACTGTCTGGGAATCT
AC

Insulin degrading
enzyme

GCAACCAACCTTTCATC
AGC

AGAAATGCCTCAACCC
TTTG

Quantification of AAP gene by RT-qPCR

RT-qPCR reactions were standardized with IDE as an
internal  control  (19)  using  Bio-Rad  iQ  SYBR  Green
Supermix in a Bio-Rad CFX96 Real-Time PCR system.
Standard  curve  was  done  with  five  different
concentrations of cDNA in triplicates with a twofold
dilution. cDNA of 100 ng concentration was found to
give least CT value. The reaction mixture contains 1X
SYBR Green Supermix, 3.2 μM of each gene specific
forward and reverse primers and 100 ng of cDNA. It
was  then  incubated  at  95  °C  for  2  min  for  initial
denaturation which was then followed by 40 cycles of
denaturation at 95 °C for 10 s and annealing at 60 °C
for 20 s.  Each amplicon specificity  was checked on
analyzing melt curve. Each reaction was performed
in triplicate and the occurrence of a single peak in
melt  curve,  specify  the  specificity  of  the  amplicon
being tested. Expression pattern of  AAP-like  gene at
different concentrations of three amino acids namely
alanine,  glycine and proline at  different  incubation
time, 30 min, 1 hr and 2 hr, was quantitated taking
IDE as normalizer.

Statistical analysis

The  data  obtained  are  presented  as  means  ±  SD.
Analysis  of  variance  (ANOVA)  was  done  using  SAS
software  9.4  Copyright  2002–2012  by  SAS  institute
Inc. to analyze the data considering each variable at
particular treatment and incubation time at the 5%
level of significance.

Results

Total RNA isolation and cDNA synthesis

Total  RNA  was  isolated  and  visualized  on  1%
formaldehyde agarose gel. Distinct bands of 28S and
18S  rRNA  were  found  that  confirmed  its  integrity.
The  purity  was  checked  in  Nanodrop
Spectrophotometer (JENWAY). The ratio of 260/280 of
total RNA was found 2.0 and 260/230 between 2–2.2.
A smear of cDNA was found on 2% agarose gel.

Relative quantification of AAP gene

Relative quantification study was performed by RT-
qPCR. Specificity of the designed primers was set by
analyzing melt curve. RT-qPCR was done for AAP-like
gene and expressions were analyzed using IDE as a
normalizer.  The  relative  quantity  of  AAP-like gene
was  expressed  in  percentage  and  was  carried  out
using the formula 2-ΔCT at 25 µM and 50 µM of glycine,
alanine, proline and in control (20) (Fig. 1–4). For this
study, three incubation time points, i.e., 30 min, 1 hr
and 2 hr were taken to check expression level of AAP-
like gene in presence of  three amino  acids  glycine,
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alanine and proline separately. At 25 µM and 50 µM
of  glycine,  proline  and  alanine,  there  is  significant
increase (p ≤  0.05) in  AAP-like  gene expression with
the progression of time till  2 hr, except at 25 µM of
alanine where a gradual decrease of expression has
been noticed. The highest AAP-like gene expression of
63.15 fold was found at 50 µM of alanine and high
expression  of  43.71  fold  was  found  at  25  µM  of
proline  at  2  hr.  Additionally,  the  AAP-like  gene
expression was high in presence of 50 µM of glycine
and  alanine  at  2  hr  than  at  25  µM  concentration
except  in  presence  of  proline  where  the  AAP-like
gene expression was high  at  25 µM than at  50 µM
(Fig. 1). The  AAP-like  gene expression was 1.86 fold
and 1.65 fold low at 25 µM and 50 µM of glycine at 2
hr respectively than in control (Fig. 2A, 2B). While on
comparing the expression of AAP-like gene, there was
no significant difference between 25 µM and 50 µM of
glycine (p ≤ 0.05) at 2 hr (Fig. 2C). In the presence of
alanine, the expression of AAP-like gene was 4.28 fold
low at 25 µM and 3.84 fold high at 50 µM at 2 hr than
in  control  (Fig.  3A,  3B)  but  showing  highest
expression of  AAP-like  gene at 1 hr and 2 hr at both
concentrations  (Fig.  3C).  The  AAP-like gene
expression was different in presence of proline from
both  glycine  and  alanine.  The  AAP-like  gene
expression was 2.66 fold high at 25 µM and 2.89 fold
low at 50 µM of proline at 2 hr than in control (Fig.
4A, 4B) whereas the expression of AAP-like gene was
found to be highest at 25 µM at 1 hr and 2 hr (Fig. 4C).

Fig. 1. Relative quantification of AAP-like gene after glycine, alanine
and proline addition at 30 min, 1 hr and 2 hr in 25 µM and 50 µM
concentration of each separately using IDE as internal control. Each
column is the average of the three independent measure ± SD. Small
alphabets  notation  on  each  error  bars  indicated  significant
differences  and  same  alphabet  notation  indicated  no  significant
differences at the 5% level  of significance in between incubation
time of a particular treatment.  AAP-like-  amino acid permease-like
gene; IDE- Insulin degrading enzyme.

Discussion
A  different  variety  of  organic  nitrogenous
compounds including amino acids may be present in
agricultural  land.  Amino  acids  amount  to  an
important nitrogen supply to plants. The amino acids
in  the  soil  in  general  vary  from 0.1  to  60 μM that
make sum total of soluble nitrogen up to 10–40% (11,
21, 22).  Different  kinds of ecosystem have different
amino acid concentration in the soil based on their
structure.  In an alpine region the free amino acids

are present in range of 13–158 μM (23) and in boreal
forests it is 57–73 μM (24). In grasslands overall soil
amino  acid  varies  between  20–60  μM  whereas
individual amino acids are in the range of 0.3–10 μM
(21).  Despite  of  the  occurrence  of  very  low  micro
molar concentrations of amino acid in soil, majority
of the  studies  have been done at  significantly  high
concentrations (23, 25–27). Very limited studies have
been  reported  close  to  0.1–10  μM  amino  acid
concentrations present in the soil (28–30).

Amino  acids  are  the  important  fraction  of
nitrogen  being  absorbed  by  plants  in  terrestrial
ecosystems,  particularly  in  low  nitrogen
concentration  (31–34).  There  are  many  amino  acid
transporters reported that uptake amino acid directly
from  soil  in  plants  (35).  Three  amino  acid
transporters namely AAP1, AAP5 and LHT1 already
have been reported playing  a  major  role  in  amino
acid absorption from Arabidopsis roots (12). 
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Fig.  2. Relative  quantification  of  AAP-like gene  after  Glycine
addition. A: 25 µM; B: 50 µM; C: Comparison between 25 µM, 50 µM
and  control  using  IDE  as  internal  control.  Each  column  is  the
average of the three independent measure ± SD. Small alphabets
notation on each error bars indicated significant differences and
same alphabet notation indicated no significant differences at the
5% level  of  significance  in  between treatment  and  control  of  a
particular  incubation  time.  AAP-like-  amino  acid  permease-like
gene; IDE- Insulin degrading enzyme.



Based on the great  significance of  AAP gene in the
agriculture,  localization  along  with  functional
characterization has been done (15). Very recently it
has  been  cloned  and  its  protein  is  structurally
characterized in Phaseolus vulgaris (36). Additionally,
AAP6  has also  been explored to  play  a  key role  in
export of nitrogen and its fixation in nodule in pea
(37).  Therefore,  it’s  imperative  to  check  on  AAP
transporters present naturally in other vital plants.

We  addressed  question  in  our  study  whether,
plants  can  obtain  amino  acids  through  AAP
transporters  in  the  presence  of  amino  acids  at  or
close to field allied concentrations for roots. The high
relative  expression  of  AAP-like  gene  in  50  µM  of
alanine, glycine and proline but at 1 hr and 2 hr for

alanine; 2 hr for glycine and 30 min for proline (Fig.
1). From this observation it is obvious to say, more
the  concentration  of  amino  acid,  more  will  be  the
expression of AAP-like gene. However, 7.68 fold AAP-
like gene expression in 25 µM proline then in 50 µM
of proline indicates that the AAP-like gene expression
is dependent on the presence of specific amino acid.
Another  important  observation is  that  the  AAP-like
gene expression gradually  increases  as  time passes
from 30 min to 2 hr, regardless of the concentrations
of amino acids (Fig. 2–4).

Conclusion

This  is  the  first  study  showing  the  involvement  of
AAP transporter  in  acquiring  amino  acids,  glycine,

Fig.  3.  Relative  quantification  of  AAP-like  gene  after  Alanine
addition. A: 25 µM; B: 50 µM; C: 25 µM, 50 µM and control using IDE
as  internal  control.  Each  column  is  the  average  of  the  three
independent measure ± SD. Small alphabets notation on each error
bars indicated significant differences and same alphabet notation
indicated no significant differences at the 5% level of significance
in between treatment and controlof a particular incubation time.
AAP-like-  amino acid permease-like gene;  IDE- Insulin degrading
enzyme.
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Fig.  4.  Relative  quantification  of  AAP-like  gene  after  Proline
addition. A: 25 µM; B: 50 µM; C: Comparison between 25 µM, 50 µM
and  control  using  IDE  as  internal  control.Each  column  is  the
average of the three independent measure ± SD. Small alphabets
notation on each error bars indicated significant differences and
same alphabet notation indicated no significant differences at the
5% level  of  significance  in  between  treatment  and  control  of  a
particular  incubation  time.  AAP-like-  amino  acid  permease-like
gene; IDE- Insulin degrading enzyme.
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alanine and proline and establish a dose dependent
relationship with the expression of AAP at field allied
concentrations for root. Additionally, the necessity of
more  information  on  the  twinning  of  uptake,
stimulus,  metabolic  pathways,  soil  properties  and
plant  growth in  the  presence of  other  amino  acids
along  with  organic  nitrogenous  compounds  are
required. Based on this knowledge, we can stop the
wasting  of  excess  nitrogen  fertilizer  applied  in  the
field that will halt eutrophication along with leaching
through roots in the surrounding environment. The
identification  and  breeding  of  plants  showing  high
ability  in  absorbing  nitrogen  could  also  bring  a
breakthrough in agricultural  system  leading  to low
fertilizer usage in the field. 
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