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ABSTRACT

Vanilla planifolia is an economically important orchid, which is being commercially exploited by the
food industry for the highly valued secondary metabolite vanillin. WUSCHEL-related homeobox (WOX)
gene family encodes for WUSCHEL-related homeobox (WOX) transcription factors that participate in
embryogenesis, organogenesis and florigenesis and in diverse plant developmental processes as well.
In  the  present  study,  we  analysed  V.  planifolia transcriptome  and  identified  6  WOX (VpWOX)
transcripts,  that encode putative WOX (VpWOX) transcription factor proteins. Domain analysis  was
done which indicates the presence of helix-loop-helix-turn-helix which is identifying feature of  WOX
gene  family  proteins.  We  executed  phylogenetic  clustering  for  the  VpWOX  proteins  with  their
counterpart  from the  model  plant  Arabidopsis  thaliana (AtWOX)  and  other  closely  related  orchid
species, Phalaenopsis equestris (PeWOX), Dendrobium catenatum (DcWOX) and Apostasia shenzhenica
(AsWOX) and established their clade specific grouping. Spatio-temporal expression profile for VpWOX
genes was analysed for different plant developmental stages which shows that VpWOX13 is expressing
uniformly in all the developmental stages whereas, other genes have tissue specific expression. Based
on gene expression patterns, we selected four VpWOX proteins and carried out secondary and tertiary
structural analysis which indicates the presence of alpha helix and beta turn in the protein structure.
The present study provides basic understanding of the functioning of WOX gene family in V. planifolia
and  paves  the  path  for  functional  characterization  of  selected  VpWOX genes  in  planta and  in
heterologous system in future for commercial utilization.

Introduction

Industrial mass production of several orchids depends
on  fine-tuned  controlling  of  somatic  embryogenesis
and  organogenesis. WUSCHEL-related  homeobox
(WOX)  proteins  are  plant-specific  homeobox
transcription  factors  encoded  by  WUSCHEL-related
homeobox  (WOX)  gene  family  members.  WUSCHEL
(WUS) gene was first identified in Arabidopsis thaliana
(AtWUS)  and  plays  a  critical  role  in  meristem
maintenance in shoot and floral apices (1).  WUS gene
with  a  role  in  promoting  ectopic  morphogenesis,
somatic embryogenesis and organogenesis have been
validated in Arabidopsis thaliana (2), Coffea canephora
(3)  and  Gossypium hirsutum (4).  Vanilla  planifolia is

the  source  orchid,  producing  one  of  the  most
important flavour compounds vanillin. The molecular
cues  in  embryogenesis,  organogenesis  and  somatic
embryogenesis  in  the  recalcitrant  V.  planifolia are
poorly understood. The vanillin biosynthesis depends
on phenylpropanoid pathway (5). However, WOX gene
family  characterization  in  economically  important
orchids such as  Vanilla planifolia will help in further
understanding of  orchid somatic  embryogenesis  and
eventual  industrial  mass  production. WOX  proteins
are characterised with 60-66 amino acid (aa) residues
long homeobox domain of  helix-loop-helix-turn-helix
structure  and  DNA-binding  property  (6,  7).
Phylogenetically  WOX protein family members were
sub-grouped into  three  clades  as  WUS,  intermediate
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and  ancient,  the  classification  represents
evolutionary  ancestry  (8).  The  ancient  clade  is
present  across  the  green  lineage  from  unicellular
algae to angiosperms, whereas the intermediate clade
emerged  later  and  is  present  in  pteridophytes,
gymnosperms  and  angiosperms,  while  the  lately
emerged WUS clade is found only in angiosperms (9).
WOX genes  plays  a  critical  role  in  zygote  and
embryonic  patterning,  embryogenesis,
organogenesis, florigenesis and plant development by
stem  cell  maintenance  and  is  involved  in  stress
response as well (8, 10).

The  size  of  WOX genes  family  varied  across
plants, the model plant  A. thaliana carries 15 genes,

Phalaenopsis  equestris carries  14  genes,  while  the
other  closely  related  orchid  species  Dendrobium
catenatum and Apostasia shenzhenica carry 10 genes
each (8, 11, 12). In the present study, we analysed the
V.  planifolia transcriptome  and  identified  six
transcripts  encoding  WOX  transcription  factors.
Sequence  similarity  analysis  indicated  that,  two
transcripts  are  probable  isoforms.  Putative  VpWOX
proteins  were  characterised  for  their
physicochemical  properties.  Phylogenetic
relationships  for  VpWOX proteins  were  established
with  WOX  proteins  of  A.  thaliana (AtWOX),  P.
equestris (PeWOX),  D.  catenatum (DcWOX)  and  A.
shenzhenica (AsWOX). Spatio-temporal expression of
identified VpWOX genes  analysis  suggested  their
critical  role  in  plant  development. No  gene
duplication event was predicted within VpWOX gene
family. Secondary and tertiary structural analysis for
four  selected  VpWOX  proteins  each  representing
their  respective  clade  were  performed.  The  results
provide insights  into  the  functional  role of  VpWOX
genes in embryogenesis, florigenesis and other plant
development processes. 

Materials and Methods

Identification of WOX family transcripts and WOX
proteins domain analysis

To  identify  VpWOX transcripts,  WOX  protein
sequences from Arabidopsis thaliana (8) were used as
query sequences and tblastn was carried out against
transcriptome of  Vanilla planifolia in Orchidstra 2.0
database  (13).  The  VpWOX  putative  protein
sequences  obtained  using  VpWOX transcripts  were
analysed  and  confirmed  for  the  presence  of
WUSCHEL-related homeobox domain (pfam00046) by
using the online SMART server, and Expasy - Prosite

tool (14). MultAlin tool (15) was employed to identify
the  DNA-binding  helix-turn-helix-loop-helix  region.
MEME  suite  online  server  (16),  with  preset
parameters  (maximum  number  of  motifs  -  05,
number of repetitions - any, optimum motif width -
≥6  and  ≤  200)  was  used  to  identify  the  conserved
motifs.

Physicochemical characterization

The  Expasy  -  ProtParam  server  (17)  was  used  to
determine  the  putative  physicochemical  properties
such as molecular weight, aliphatic index, instability
index,  pI  and  grand  average  of  hydropathicity
(GRAVY).  Sub-cellular  protein  localisation  was
predicted  using  online  tools  CELLO  v.2.5  (18)  and

WoLF PSORT (19). Protein sequences were analysed
with online tools, Signal P.4.0 (20) and TMHMM v.2.0
(21) for the presence of signal peptide sequences and
transmembrane helix regions respectively.

Phylogenetic analysis and ortholog prediction

The  full-length  sequences  of  putative  VpWOX
proteins  were  pre-aligned  with  inbuilt  MUSCLE
program and further analysed with MEGA7 tool (22)
to  establish  the  phylogenetic  relationships  between
all  the VpWOX proteins.  The phylogenetic  tree was
constructed by maximum-likelihood method by using
the  Jones-Taylor-Thornton  (JTT)  model  with  1000
bootstrap  value.  Orthologs  for  VpWOX  protein
sequences  in  model  plant  A.  thaliana and  closely
related orchid species  P. equestris,  D. catenatum and
A. shenzhenica  were identified  by  performing  local
NCBI  BLASTp  search,  with  each  candidate  WOX
protein  sequences  (AtWOX,  PeWOX,  DcWOX  and
AsWOX respectively) (8, 11, 12).

Gene duplication event prediction and expression
analysis

VpWOX CDS  sequences  were  subjected  to  multiple
sequence  alignment  using  the  online  MUSCLE  tool
(23), and the sequences sharing ≥80% identity were
considered  as  duplicate  genes  (24).  BLASTn  search
was  carried  out  using  VpWOX CDS  sequences  as
query  sequences  against  high  throughput  RNA-seq
data available for different developmental stages of
V.  planifolia,  aerial  root  (SRX648209),  leaf
(SRX648194),  vegetative  bud  (SRX469302),
reproductive bud (SRX469303), mix bud (SRX469304)
and seeds of six week old pod (SRX634907) and ten
week old pod (SRX634909) in NCBI SRA database and
the hit counts were noted. The RPKM values (Reads
per Kilobase per Million)  were calculated using the
formula RPKM = (C x 109) / (N x L). N stands for total
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Table 1. Ortholog prediction for VpWOX proteins

V. planifolia P. equestris D. catenatum A. shenzhenica A. thaliana

Protein Orthologs

VPTC010726 VpWOX11.1 PeWOX11 DcWOX11 AsWOX11 AtWOX11

VPTC010727 VpWOX11.2 PeWOX11 DcWOX11 AsWOX11 AtWOX11

VPTC026011 VpWOX9 PeWOX9A DcWOX9 AsWOX9 AtWOX9

VPTC018583 VpWOX13 PeWOX13A DcWOX13 AsWOX13 AtWOX13

VPTC015507 VpWOX4 PeWOX4 DcWOX4 AsWOX3A AtWOX4

VPTC003788 VpWUS PeWUS DcWOX7 AsWUS AtWUS
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Fig. 1. Multiple sequence alignment, domain and motif analyses of VpWOX protein sequences. a Multiple sequence alignment of
VpWOX sequences showing DNA-binding helix-loop-helix-turn-helix region. b VpWOX sequences showing homeobox domain. c Conserved

motifs in VpWOX sequences, marked in coloured boxes. d Sequence logo of conserved motifs in VpWOX sequences, showing degree of
conservation at each aa position.

Fig. 2. Phylogenetic analysis of WOX proteins. WOX protein sequences of V. planifolia (VpWOX), P. equestris (PeWOX), D. catenatum
(DcWOX), A. shenzhenica (AsWOX), and A. thaliana (AtWOX), are clustered phylogenetically. The ancient clade (A), the intermediate clade

(I) and the WUS (W) clade are marked respectively in green, blue and red.



mapped reads in the RNA-seq experiment concerned,
while the L stands for the base-pair  length of  gene
and the C stands for number of hits for the candidate
gene  (25).  The  heat  map  was  generated  using
Hierarchical Clustering Explorer 3.5 (26).

Molecular modelling

Selected  VpWOX  protein  sequences  were  analysed
using SOPMA secondary structure prediction tool (27)
to  predict  secondary  structures;  alpha  helices,
random  coils,  beta  turns  and  extended  strands.
VpWOX  protein  sequences  were  analysed  with  I-
Tasser  online  server  (28)  to  predict  the  tertiary
structure  using  top  10  homologous  PDB  templates.
DNA binding site in the protein was predicted based
on similar binding sites in homologous proteins. The
parameters BS-scores with value of >0.5, TM-scores,
IDEN  coverage  of  the  alignment  by  TM-align  were
considered for simulated models and binding site.

Results and Discussion

Identification of VpWOX transcripts  and protein
domain and motif analyses

Bioinformatics  has  revolutionised  and  put  the
biological research on fast-track mode. Genome and
transcriptome  sequencing  enable  researchers  to
identify  economically  important  gene  family
members and to  characterize  them  in silico and to
further  functionally  characterize  selected  genes  for
commercial  application.  Recently  V.  planifolia
transcriptome  has  been released  by  Orchidstra  2.0
database.  In  the  present  study  we  analysed  WOX
gene  family  with V.  planifolia transcriptome  data.
WOX genes  are  involved  in  plant  developmental
stages,  particularly  embryogenesis,  organogenesis
and florigenesis (8, 9, 10).  Extensive tBLASTn search
using  AtWOX  proteins  identified  6  VpWOX
transcripts  VpWOX11.1 [VPTC010726],  VpWOX11.2

[VPTC010727],  VpWOX9 [VPTC026011],  VpWOX13
[VPTC018583],  VpWOX4 [VPTC015507]  and  VpWUS
[VPTC003788]  from  V.  planifolia transcriptome,  and
the  naming  was  done  depending  on  closest  A.
thaliana AtWOX homolog protein (Table 1). Pairwise
sequence  alignment  analysis  identified  the
transcripts  VpWOX11.1 and  VpWOX11.2 as isoforms
with difference in C-terminal protein sequence. The
size of  WOX gene family is  relatively smaller in  V.
planifolia [5]  than  the  orchids  P.  equestris [14],  D.
catenatum [10] and A. shenzhenica [10] (11, 12).

Putative  VpWOX  protein  sequences  were
generated  and  naming  was  done  based  on
phylogenetically  closest  AtWOX  homologs.  Multiple
sequence alignment indicated the occurrence of DNA-
binding  helix-loop-helix-turn-helix  in  all  the  six
putative  VpWOX  protein  sequences  (Fig.  1a)  and
carried  WUSCHEL-related  homeobox  domain  (Fig.
1b). The analysis indicated that the WOX gene family
was highly conserved. A total of five conserved motifs
were  identified  in  VpWOX  proteins.  The  motif  1
represents  the  helix-loop-helix-turn-helix  motif,
present in all  the VpWOX proteins which shows its
highly  conserved  nature,  which  is  similar  to  P.
equestris and D. catenatum (11) (Fig. 1c, d).

Phylogenetic analysis and ortholog prediction

Phylogenetic  analysis  of VpWOX [6] sequences with
PeWOX [14],  DcWOX [10],  AsWOX [10]  and  AtWOX
[15] sequences clearly grouped the WOX proteins into
three clades (Fig 2). Phylogenetical clustering of the
six VpWOX proteins along with their counterparts in
other plants (AtWOX, PeWOX and DcWOX) into their
respective  clades;  VpWOX13 represents  the  ancient
clade,  VpWOX9,  VpWOX11.1  and  VpWOX11.2
represents the intermediate clade, while the rest two
VpWUS and VpWOX4 fell in the advanced WUS clade
and also indicates the conserved nature of this gene
family. Orthologs for VpWOX protein sequences were
identified by performing independent local BLASTp
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Table 2. Physico-chemical characterization of VpWOX proteins

Protein AA MW IP Ins AI GRAVY Loc SP TH

VpWOX11.1 251 27.2 5.84 66.90 63.31 -0.441 Nucleus No 0

VpWOX11.2 210 23.0 9.11 64.69 53.43 -0.693 Nucleus No 0

VpWOX9 354 38.4 7.23 62.25 73.39 -0.522 Nucleus No 0

VpWOX13 254 28.9 5.49 57.64 69.45 -0.735 Nucleus No 0

VpWOX4 160 18.4 6.97 66.31 61.00 -1.005 Nucleus No 0

VpWUS 201 22.0 6.83 58.61 65.17 -0.457 Nucleus No 0

Sequence Id (Seq Id) from  Orchidstra 2.0 database,  peptide length (AA),  protein molecular weight (MW) in kDa,  isoelectric  point (pI),
instability index (Ins), aliphatic index (AI), grand average of hydropathy (GRAVY), localization (Loc), signal Peptide (SP), transmembrane
domain (TMD)

Table 3. Sequence similarity index within VpWOX CDS

Genes VpWOX13 VpWUS VpWOX4 VpWOX9 VpWOX11.1 VpWOX11.2

VpWOX13 100 46.34 48.65 45.08 48.07 50.42

VpWUS 46.34 100 52.75 49.91 53.19 53.39

VpWOX4 48.65 52.75 100 50.98 55.17 54.84

VpWOX9 45.08 49.91 50.98 100 62.55 63.93

VpWOX11.1 48.07 53.19 55.17 62.55 100 92.07

VpWOX11.2 50.42 53.39 54.84 63.93 92.07 100



against AtWOX, PeWOX, DcWOX and AsWOX protein
sequences (Table 1). 

Physicochemical characterization of proteins

Physico-chemical properties for the VpWOX proteins
were  estimated  and  listed  (Table  2).  The  average
peptide  length  of  VpWOX proteins  was 238  aa,  the
longest VpWOX9 being 354 aa long and the shortest,
the VpWOX4 was with 160 aa. The molecular weight

of VpWOX proteins ranged from 18.4 kDa to 38.4 kDa,
averaging 26.3 kDa. The isoelectric point averaged 6.9
and  the  average  aliphatic  index  was  64.3.  The
instability index ranged between 57.64 and 66.90. All
the  VpWOX proteins  had a negative  GRAVY (grand
average  of  hydropathy)  value,  a  characteristic  for
nucleotide binding proteins. All the VpWOX proteins
were predicted to be localised in the nucleus (Table
2).
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Fig. 4. Structural analysis of VpWOX proteins. Secondary structures (a, b, c, d) and simulated three-dimensional structures (e, f, g, h)
with ligand-binding region (i, j, k, l) are shown for VpWOX proteins. VpWUS (a, e, i), VpWOX13 (b, f, j), VpWOX9 (c, g, k) and VpWOX11.1

(d, h, l) are marked. The ligands Osmium (III) hexamine (k) and Manganese2+ (l) are marked with arrow.

Table 4. Secondary structure and ligand binding sites in selected VpWOX proteins

Protein VpWUS VpWOX13 VpWOX9 VpWOX11.1
% (aa)

AH 29.35 (59) 49.61 (126) 15.54 (55) 15.14 (38)
RC 54.73 (110) 41.34 (105) 68.08 (241) 61.75 (155)
ES 11.94 (24) 5.51 (14) 12.15 (43) 16.33 (41)
BT 3.98 (8) 3.54 (9) 4.24 (15) 6.77 (17)
LI NU NU Os (III) H Mn2+

BS 6, 80, 83, 86, 87 156, 158, 159 72, 75 9, 42

Alpha helix (AH), random coil (RC), extended strand (ES), beta turn (BT), ligand (LI), binding sites (BS), nucleic acid  (NuASeq Id), Osmium
(III) hexammine (Os (III) H), Manganese2+ (Mn2+)



Gene  duplication  events  and  spatio-temporal
expression profile

Gene  duplication  events  are  responsible  for  the
formation  of  homologous  genes  as  orthologs  and
paralogos.  Pre-speciation  gene  duplication  results  in
orthologous genes within closely related species, while
post-speciation gene duplication results  in paralogous
gene  members  within  the  candidate  species.  The
sequence  similarity  index  analysis  suggested  that  V.
planifolia carry  no  gene  duplication  within  VpWOX
gene  family  (Table  3). Spatio-temporal  expression
profile  of  VpWOX gene  family  members  suggested,
VpWOX genes are involved in diverse functions.  The
VpWOX13 gene,  of  ancient  clade,  showed  high
expression  in  all  analysed  tissue  except  in  matured
seed.  The  expression  of  homologous  orchid  genes
PeWOX13A/B/C (P. equestris), DcWOX13 (D. catenatum),
AsWOX13 (A. shenzhenica) were very much similar to
VpWOX13 (11, 12),  as well as for  AcoWOX13 gene in
pineapple (29). AtWOX13 gene also had high expression
in floral buds, inflorescences, with weak expression in
leaves,   fruits,  in  embryo development,  primary and
lateral  root  development,  vegetative  and  fruit
development and floral transition (30, 31). However, the
PpWOX13 gene of  Physcomitrella patens was reported
to be involved in the reprogramming of leaf cells into
stem cells (32). The observed results suggest a diverse
role for VpWOX13 gene in plant development.

The  VpWUS gene  of  WUS  clade  had  specific
expression  only  in  mature  seed  and  developing
reproductive  bud (Fig.  3).  In related  orchids,  PeWUS
gene showed pollen specific  expression,  AsWUS gene
showed maximum expression in pollen and seed (11,
12). The A. thaliana AtWUS gene maintains meristem in
vegetative  and  floral  buds  and  regulates  floral
patterning  (1,  33,  34).  WUS gene  was  shown  to  be
involved in somatic embryo development in C. arabica,
C. canephora and  C. racemosa (35). Ectopic expression
of  WUS genes  promoted somatic  embryogenesis  and
organogenesis in  A. thaliana (2),  C. canephora (3) and
Gossypium  hirsutum  (4).  VpWOX4 gene,  another
member from WUS clade showed maximum expression
in  leaf,  high  expression  in  aerial  root  and  mild
expression in developing reproductive  bud.  DcWOX4
gene showed good expression in root and leaf (11). This
suggests  that  VpWOX4 gene might  have role  in root
development (Fig. 3).

Fig. 3. Expression profile of VpWOX genes. Developmental stages,
Arial root (Ar), leaf (Lf), vegetative bud (Vb), reproductive bud (Rb),

mixed bud (Mb) and seed stages of six week (6S) and ten weeks
(10S) are marked on top.

The  VpWOX9 gene  of  intermediate  clade  was
highly expressive in seed of 6 week and 10 week old
pod. The similar results were reported for  AtWOX8
and  AtWOX9 genes  which  are  involved  in  zygote
patterning  and  embryo  development  and  act
redundant  to  each  other.  Atwox8/Atwox9 double
mutant showed defect in embryo development (36).
This indicates  VpWOX9 gene perform similar role in
V.  planifolia.  The  VpWOX11 gene  (VpWOX11.1 and
VpWOX11.2), had moderate expression in developing
vegetative  bud.  The  expression  of  this  gene  is
comparable with the  AtWOX11 of  A. thaliana, found
to be involved in adventitious root initiation and  in
vitro callus  initiation (37, 38). Similarly,  in rice,  the
homologous  OsWOX11 gene  was  shown  to  be
involved in crown root development by controlling
cytokinin signalling and improves drought resistance
(39, 40). These findings from previous work suggest
VpWOX11 gene may have a role in vegetative growth.

Homology modelling of proteins

The  homology  modelling  plays  essential  role  in
resolving  protein  structure  which  in-turn  is
necessary  for  understanding  the  mechanism  of
protein  function. In  VpWOX  family  four  proteins
VpWUS (WUS clade), VpWOX13 (ancient clade),  and
VpWOX9 and VpWOX11.1 (intermediate clade) were
selected  based  on  the  expression  profile  and  were
analysed  for  structural  simulation  and  homology
modelling (Fig. 4, Table 4). The secondary structure
was  dominated  with  random coils  and  alpha  helix
regions.  (Fig.  4a-d,  Table  4).  The  VpWOX9  and
VpWOX11.1 of intermediate clade had the lowest of
alpha helix regions. As the WOX family members are
transcription factors,  WOX proteins are expected to
be  DNA  binding.  The  predicted  three-dimensional
structures and ligand binding on the bases of their
similarity  with  10  homologous  PDB  templates  of
different  homeodomain  proteins  indicates  the
conserved  nature  of  these  VpWOX  proteins.  The
prediction also depicts that, the VpWUS of WUS clade
and VpWOX13 of ancient clade both are nucleic acid
binding transcription factors (Fig. 4e, i, f, j), whereas
the VpWOX9 and VpWOX11.1 of intermediate clade
are  predicted  to  bind  Osmium  (III)  hexamine  and
Manganese2+ metal ion respectively (Fig. 4g, k, h, l). As
expected  VpWUS  and  VpWOX13  showed  DNA
binding.  The  prediction  of  binding  of  VpWOX9  to
Osmium (III)  hexamine is unexpected. The Osmium
(III) hexamine is known to bind with nucleotides, and
ribozymes  (41).  Similarly,  VpWOX11.1  binding
prediction  with  Mn2+ ion  is  also  unexpected.  To
further  confirm  the  metal  binding  properties  of
proteins, in-depth crystallization and  in vitro studies
are  required.  The  current  study  is  insufficient  to
convince  the  binding  predictions  of  VpWOX9  and
VpWOX11.1.

Conclusion

This  present  work  is  continuation  of  our  previous
works  in  model  orchid  Phalaenopsis  equestris and
closely  related  orchids  Dendrobium  catenatum and
Apostasia  shenzhenica. Our  analysis  of  protein
domain, motif, homology modelling and phylogenetic
relationship  depicts  that  the  VpWOX  members  are

PLANT SCIENCE TODAY  211



conserved in nature both at sequence and structural
levels.  The  expression  profile  suggests  that  the
VpWOX gene family  members  might  be  playing  an
important  role  in  embryogenesis,  vegetative  bud
development and floral organ transition, as observed
in other related orchids. This study will further help
us in selecting candidate  VpWOX genes for  in planta
functional  validation and to further  generate  crops
with desired traits for commercial exploitation.
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