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Abstract

This research was conducted to investigate the genetic variability, heritability and relationships among traits in F, populations of
Indian mustard (Brassica juncea L. Czern & Coss) to identify practical breeding approaches for improving yield. Considerable variation
was noted in traits associated with growth, yield and its components, highlighting the genetic diversity in the studied populations. Key
characteristics such as the number of primary and secondary branches per plant, siliqua per raceme, racemes per plant and seed yield
per plant exhibited high phenotypic and genotypic coefficients of variation (PCV and GCV), suggesting significant genetic vaiability.
Traits with high heritability and genetic advance, including primary and secondary branches per plant, racemes per plant, siliqua per
raceme and seed yield per plant, indicate a strong influence of additive genetic variance, making them ideal for direct selection.
Through correlation and path analysis, key traits such as primary and secondary branches per plant, siliqua per raceme, number of
racemes per plant and 1000-seed weight were identified as crucial for enhancing yield. The F, population from the cross TM-138-1 x
KMR(E) 16-1 demonstrated superior breeding potential, as evidenced by higher mean values, broader absolute and standardized
ranges, increased phenotypic coefficient of variation and a higher frequency of transgressive segregants compared to other crosses.
These results offer valuable insights for breeders seeking to improve productivity and adaptability in oilseed crops.
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Introduction Indian mustard oil is widely used for cooking (60-70
% of production), valued for its pungent flavor (from
glucosinolate-derived allyl isothiocyanate) and high smoke
point. Separately, 15-20 % is utilized in hair oil and
Ayurvedic medicine for its anti-inflammatory properties.
Industrially, 10-15 % is allocated to soap production,
lubrication and tanning. Mustard leaves (per 100 g) provide
~250-500 % DV of vitamin K, ~100-150 % DV of vitamin A and
flavonoid antioxidants. The oilcake byproduct (30-40 %
protein) serves as animal feed and manure (5, 6).

Brassicas are among the earliest domesticated crops
developed by humans. Historical records and ancient
scriptures indicate their cultivation began as early as 5000
BC. Evidence from the Neolithic age further supports this
assertion, with mustard seeds discovered at Chanhudaro, a
site of the Harappan civilization, dating to approximately
2300-1750 BC (1). Indian mustard (Brassica juncea L., Czern
& Coss) is a member of the Brassicaceae family (also known
as Cruciferae), which includes 3709 species and 338 genera
(2). Six Brassica species are commonly grown in India, they Mustard cultivation has gained importance in South
include 3 diploid species and 3 amphidiploid species of India, particularly in Karnataka (7). However, its productivity
which four species, viz. Brassica juncea, Brassica napus, in the state remains significantly lower than the national
Brassica carinata and Brassica rapa cvs. toria, yellow sarson ~ average, largely due to the widespread use of traditional local
and brown sarson are grown as oilseed crops. B. cultivars, poor performance of landraces and introduced
juncea covers more than 80 % of Indias’ total rapeseed and varieties, environmental fluctuations and the absence of pest

mustard cultivation area, owing to its adaptability and - and disease-resistant genotypes against major biotic threats
resilience to biotic and abiotic stresses (3, 4). such as diamondback moth (Plutella xylostella), white

rust (Albugo candida), Alternaria blight (Alternaria brassicae)
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and aphid infestations (Lipaphis erysimi). Mustard in
Karnataka is predominantly grown on marginal soils under
rainfed conditions, primarily for household consumption.
While mustard is the second most important oilseed crop in
India, cultivated across 91.83 lakh hectares with a production
of 132.59 lakh T and productivity of 1444 kg/ha, Karnatakas’
contribution remains minimal, with only 4000 hectares under
cultivation, producing 0.75 lakh T and a significantly lower
productivity of 188 kg/ha (8). This significant disparity
underscores the pressing need for targeted breeding
programs and improved agronomic practices to enhance
yields in Karnataka. Tackling these challenges is essential to
keep pace with the increasing demand for edible oil, which is
rising by 3-4 % each year, driven by population growth and
higher living standards. To address climate challenges and
elevate consumer engagement, it is essential to harness
mustards’ untapped industrial and medicinal value while
innovating resilient, high-yielding seed and oil varieties
tailored to thrive in Karnatakas’ unique agro-climatic
conditions, particularly in the Northern Transition Zone,
ensuring sustainable growth and agricultural prosperity. In
this context, the current study aims to evaluate the genetic
variability within mustard populations to identify the F
population with better breeding potential to develop
improved varieties tailored to this region.

Yield is a multifaceted characteristic shaped by
numerous genetic and environmental factors, making direct
selection for yield frequently inefficient. Consequently,
analyzing the variability, heritability and correlations among
traits that contribute to yield is essential. Key genetic metrics,
including genotypic and phenotypic coefficients of variation,
genetic advance and heritability, are vital for assessing
population variability. Early segregating generations offer
more significant genetic variability, enabling effective
selection for desirable traits such as days to first flowering,
days to maturity, plant height, primary branches per plant,
secondary branches per plant, racemes per plant, siliquae per
raceme, seeds per siliqua, siliqua length, 1000-seed weight
and yield per plant. The use of F, populations in this study
enables a comprehensive assessment of genetic variability
and trait heritability assessment, which is critical for
identifying superior genotypes.

Developing heterotic F1 hybrids or varieties relies on
inbred parents possessing desirable trait combinations and
strong general combining ability. To combine favourable
traits from various parents, breeders often design crosses
involving two, three, four, or multiple parents, producing
recombinant inbred lines (RILs) that can be used as hybrid
parents. Handling the early segregating generations from
these extensive crosses to identify promising RILs in later
stages requires significant resources. By eliminating
underperforming crosses in the initial generations, breeders
can prioritize potential crosses, optimize resource allocation
and increase the chances of obtaining desirable RILs from

Table 1. Parental material and their sources

large segregating populations of selected crosses (9-11).

The present study focuses on assessing genetic
variability, trait relationships and path analysis within the F,
generations of Indian mustard to gain deeper insights into
the direct and indirect influences of various traits on yield,
facilitating more informed selection choices. It also highlights
the breeding potential of these populations by examining the
emergence of transgressive segregants, which arise from the
favourable combination of alleles from both parental lines.
These outcomes offer valuable insights into genetic
variability and aid in identifying promising crosses for
developing high-yielding varieties, thereby enabling more
precise and effective breeding approaches.

Materials and Methods
Research material

The study employed five high-yielding cultivars: KMR(E) 16-1,
DRMR 4005, TM-210, TM-138-1 and TM-2776, along with three
F, populations developed from the crosses TM-138-1 x KMR
(E) 16-1, KMR(E) 16-1 x TM-210 and TM-2776 x DRMR 4005
(Table 1). These lines and crosses are selected based on their
higher mean value and GCA values based on our previous
work. In the crossing scheme, TM-138-1 and TM-2776 were
female parents, while TM-210 and DRMR 4005 were male
parents. KMR(E) 16-1 was utilized as a female and male
parent. The F, generation was produced from the crossed
seeds and F, seeds were subsequently generated through self
-pollination of the F, plants.

Methodology

The three F, populations derived from the crosses TM-138-1 x
KMR(E) 16-1, KMR(E) 16-1 x TM-210 and TM-2776 x DRMR 4005
consisted of 300 F, plants each and were evaluated at the
Agricultural Research Station, Nippani, Karnataka, during the
Rabi season of 2020-21.The experiment site is located in the
Northern Transitional Zone of Karnataka at 16.20 °N, 74.20 °E
and an altitude of 610 m above sea level. The F, populations
and their parental lines were evaluated in an unreplicated
experimental field trial with a row spacing of 0.45 m and an
intra-row plant spacing of 0.10 m. The trial comprised 300 F,
progeny plants and 50 plants from each parental line, all
maintained at this spacing for analysis. Recommended
agronomic practices and targeted pest and disease
management measures were followed consistently during
the crop growth period.

Data on eleven traits were collected from all the three
hundred F, progeny plants in each of the three populations,
along with ten plants from each parent, for eleven traits: days
to first flowering, days to maturity, plant height, primary
branches per plant, secondary branches per plant, racemes
per plant, siliquae per raceme, seeds per siliqua, siliqua
length, 1000-seed weight and yield per plant.

Sr. No. Parents Source
1 KMR(E) 16-1 ) )
2 DRMR 4005 Directorate of Rapeseed and Mustard Research, Bharatpur, Rajasthan
3 TM-210
4 TM-138-1 Bhabha Atomic Research Centre, Trombay, Mumbai
5 TM-2776
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The collected data was analyzed using a range of
statistical methods, including the calculation of variability
parameters such as phenotypic coefficient of variation (PCV),
genotypic coefficient of variation (GCV), broad-sense
heritability (h?) and genetic advance as a percentage of the
mean (GAM), following standard statistical procedures (12).
Correlation and path coefficients were computed using MS-
EXCEL and R Studio (13, 14). The mean values of the parents
for all traits were assessed for significance by comparing
them with the grand mean and critical difference values.
Transgressive segregants, characterized by trait values
surpassing the better parent by at least twice the standard
deviation of the F, population, were also identified.

Results and discussion
Evaluation of genetic variability

Genetic variability metrics were computed for the F,
populations derived from the three crosses and the results
are summarized in Table 2. The phenotypic coefficient of
variation (PCV) was higher than the genotypic (GCV) for all
traits, indicating that genetic factors and environmental
effects influenced the observed variation. High PCV and GCV
values were observed for characteristics such as yield per
plant, primary and secondary branches per plant and
racemes per plant across all F, populations, indicating
significant genetic variability. This variability can be
effectively utilized for targeted selection. These results align
with earlier research, including studies on secondary
branches and racemes per plant and investigations into
primary and secondary branches, siliquae per plant and seed

yield per plant (15, 16). Conversely, traits like days to first
flowering, days to maturity, plant height, seeds per siliqua
and length showed moderate to low PCV and GCV, indicating
its relatively lower genetic variability. This suggests limited
potential for enhancing such characteristics through a
selection process. The coefficient of variation quantifies the
degree of observed variability, whereas heritability and
genetic advance as a percentage of the mean (GAM) provide a
more comprehensive understanding of the genetic factors
influencing trait expression.

Heritability and genetic advance

High broad-sense heritability coupled with high genetic
advance as a percentage of the mean was observed for traits
such as primary and secondary branches per plant, racemes
per plant, siliquae per raceme, siliqua length and seed yield
per plant across all populations. This suggests that the
expression of these traits is predominantly governed by
additive gene action, rendering the selection process highly
effective for these characteristics. Similar findings have been
documented in previous studies for secondary branches per
plant and racemes per plant (15, 17), as well as for seed yield
per plant (17) and siliquae per plant (16).

In addition to the traits mentioned earlier, the F,
population from the cross TM-138-1 x KMR(E) 16-1 showed
high heritability along with high genetic advance as a
percentage of the mean (GAM) for plant height (16, 18).
Meanwhile, the other two populations demonstrated high
heritability and GAM for the trait '1000-seed weight' (16, 19).
Traits like days to first flowering and days to maturity displayed
low genetic advance as a percentage of the mean (GAM) across

Table 2. Variability, heritability and genetic advance as per cent of mean for yield and its attributes in three F, populations

Trait Crosses Mean MinRa"geMax GCV (%)  PCV (%) "'e”ti'z:'s?({,z)'“°ad GAM (%)

TM-138-1 x KMR(E) 16-1 31.27 26 36 5.28 6.33 69.63 9.07

Dﬁg;’te‘;if"gt KMR(E) 16-1 x TM-210 26.63 24 29 4.09 5.15 63.28 6.86
TM-2776 x DRMR 4005 33.06 26 37 4.59 5.66 65.66 7.65

Days to TM-138-1 x KMR(E) 16-1 82.05 76 86 2.12 2.41 77.56 3.85
maturity KMR(E) 16-1 x TM-210 83.43 80 86 1.25 1.74 75.22 2.7
TM-2776 x DRMR 4005 83.06 80 90 176 2.06 73.2 3.1

TM-138-1 x KMR(E) 16-1 139.87 90 225 11.82 13.1 81.39 21.97

Plant height (cm) KMR(E) 16-1 x TM-210 153.05 110 200 8.11 9.01 81.09 15.05

TM-2776 x DRMR 4005 145.73 105 200 7.69 9.24 69.25 13.18

. TM-138-1 x KMR(E) 16-1 6.69 2 12 33.33 36.47 83.52 62.74

'ﬁm‘z;;:;z:‘m:;‘t’ KMR(E) 16-1 x TM-210 5.54 3 13 31.45 33.78 87.12 60.34

TM-2776 x DRMR 4005 5.33 2 10 31.42 34.74 81.8 58.53

Number of TM-138-1 x KMR(E) 16-1 12.83 3 25 32.28 36.25 79.28 59.21

secondary branches KMR(E) 16-1 x TM-210 12.19 2 26 36.59 40.28 84.09 69.78

per plant TM-2776 x DRMR 4005 11.5 3 25 38.15 39.98 91.04 74.98

TM-138-1 x KMR(E) 16-1 25.61 10 40 26.21 27.82 88.79 50.88

N“mb‘:'r“l;f‘iemes KMR(E) 16-1 x TM-210 21.52 8 36 27.27 32.03 71.27 47.43

perp TM-2776 x DRMR 4005 23.89 10 40 23.98 27.31 77.1 43.37

- TM-138-1 x KMR(E) 16-1 28.46 12 54 24.54 27.34 80.55 45.37

N“m:f:a‘::fef:'eq"a KMR(E) 16-1 x TM-210 24.67 14 43 18.7 20.03 87.13 35.96

P TM-2776 x DRMR 4005 28.72 15 52 19.73 228 74.93 35.19

Seeds per TM-138-1 x KMR(E) 16-1 15.01 8 24 12.78 14.88 73.74 22.61

siliqua KMR(E) 16-1 x TM-210 14.43 6 24 20.57 22.98 80.89 37.95

TM-2776 x DRMR 4005 11.99 6 20 22.48 25.88 75.42 40.22

TM-138-1 x KMR(E) 16-1 5.49 35 8 16.43 16.65 97.59 33.38

siliqua length (cm)  KMR(E) 16-1 x TM-210 6.61 3 8.5 13.24 15.17 77.29 23.82

TM-2776 x DRMR 4005 5.35 3.5 8.5 15.17 17.39 76.04 27.25

. TM-138-1 x KMR(E) 16-1 461 3.6 5.6 10.17 11.06 85.12 19.27

1°°°'se(e°)' weight KMR(E) 16-1 x TM-210 476 3.8 5.8 1.7 13.62 73.81 20.72

g TM-2776 x DRMR 4005 423 3.2 5 13.59 15.03 78.37 24.81

TM-138-1 x KMR(E) 16-1 11.39 17 27 40.09 49.46 65.68 66.92

Yield per plant (g) KMR(E) 16-1 x TM-210 6.69 16 16.4 41.61 47.48 76.83 75.15

TM-2776 x DRMR 4005 7.12 2.8 17 37.78 41.16 84.28 71.45
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all populations, suggesting the influence of non-additive gene
action and significant genotype-by-environment interactions.
These factors limit the effectiveness of selection in early
segregating generations (15, 16, 20).

High genotypic coefficient of variation (GCV),
heritability and genetic advance as a percentage of the mean
(GAM) were recorded for traits such as yield per plant, primary
and secondary branches per plant and racemes per plant
across all F, populations. These traits, showing significant
genetic variation, could serve as excellent targets for
improvement by selecting high-performing genotypes, making
the selection process highly effective (21).

Correlation and path analysis

Correlation studies indicated a positive relationship
between seed yield per plant and traits such as primary
branches, secondary branches, racemes per plant, siliquae
per raceme, 1000-seed weight and siliqua length in all F,
populations (Fig. 1-3). These findings are consistent with
the results of previous studies, which emphasized the
critical role of these traits in improving seed yield (20, 22).
Negative associations were observed with days to first
flowering and days to maturity. Path coefficient analysis
further identified traits such as primary and secondary
branches per plant, siliqua per raceme, racemes per plant
and 1000-seed weight as positively affecting seed yield (23,
24) (Fig. 4-6). These traits are critical determinants of seed
yield. They should be prioritized in breeding programs, as
suggested by previous studies (25).

Breeding potential

Furthermore, based on the values obtained from path
analysis, we selected the traits with a higher positive direct
effect on yield. These traits' means varied significantly across
crosses, highlighting the influence of genetic background and
environmental condition in which they have studied (26). F;
plants derived from TM-138-1 x KMR(E) 16-1 showed higher
seed yield per plant and wider variability, as evidenced by the
high absolute and standardized ranges (Table 3). Similarly,
high PCV and transgressive segregation frequencies in
crosses like TM-138-1 x KMR(E) 16-1 and TM-2776 x DRMR

4005 underscore their breeding potential (Fig. 7 & 8). These
results align with previous findings, which emphasized the
importance of selecting crosses with high variability and
superior trait means (10).

Transgressive segregants, which combine favourable
alleles from both parents, were identified in all populations.
Notably, the cross TM-138-1 x KMR(E) 16-1 exhibited 31
transgressive segregants for seed yield per plant, while TM-
2776 x DRMR 4005 and KMR(E) 16-1 x TM-210 had 25 and 12
segregants, respectively. These transgressive segregants
present valuable genetic resources for developing superior
recombinant inbred lines (RILs) in subsequent generations
(Table 3). The importance of such segregants in expanding
the genetic base has been highlighted in earlier studies.

Crosses with high trait mean, wider ranges and high
PCV, such as TM-138-1 x KMR(E) 16-1, demonstrated more
significant potential for selecting superior RILs. Selecting such
crosses aligns with maximizing variability and genetic gain, as
recommended in earlier studies (10, 27). Similar strategies
have been successfully employed in mustard and groundnut
to identify crosses with enhanced breeding potential (23, 28,
29).

Conclusion

This study underscores the critical role of genetic variability,
heritability and trait correlations in evaluating the breeding
potential of Indian mustard. Crosses such as TM-138-1 x KMR
(E) 16-1 demonstrated superior agronomic traits, highlighting
their promise for developing high-yielding genotypes. These
findings provide actionable insights for breeders prioritizing
seed yield and component traits. However, since the study
was conducted at a single location, the results may reflect
site-specific environmental influences. Future multi-location
trials across diverse agroecological zones are recommended
to validate the genotype stability and adaptability of
advanced breeding lines derived from the selected superior
crosses.

Table 3. Estimates of mean, absolute range and standardized range of F, plants derived from different crosses

Absolute range Parental Means

Cross (P1 % P,) Trait - Standardized range
Min Max P, P
Number of primary branches per plant 2.00 12 1.49 4.33 6.30
Number of secondary branches per plant 3 25 1.71 6.50 13.70
TM-138-1 x KMR(E) 16-1 Number of racemes per plant 10 40 1.17 20.67 25.80
Number of siliqua per raceme 12 54 1.47 25.17 27.20
Yield per plant (g) 1.7 27 2.22 8.97 10.52
Number of primary branches per plant 13.00 1.80 6.30 5.29
Number of secondary branches per plant 26.00 1.96 13.70 14.00
KMR(E) 16-1 x TM-210 Number of racemes per plant 36.00 1.30 25.80 17.43
Number of siliqua per raceme 14 43.00 1.17 27.20 26.00
Yield per plant (g) 1.6 16.40 2.21 10.52 6.04
Number of primary branches per plant 2.00 10 1.50 5.17 4.29
Number of secondary branches per plant ~ 3.00 25 1.91 12.50 8.29
TM-2776 x DRMR 4005 Number of racemes per plant 10.00 40 1.25 20.50 23.57
Number of siliqua per raceme 15.00 52 1.28 25.83 22.86
Yield per plant (g) 2.80 17 1.99 8.32 7.49
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Fig. 2. Phenotypic correlation coefficient between yield and yield attributes in F, population of KMR(E) 16-1 x TM-210.

X1 -0.32"

X10 -0.10

X9 -0.21=

X8 -0.23*
X7 -0.23*
X6 -0.27=

X5 -0.24=

0.0
. -05

X4 -020% -1.0

X3 0.06
X2 0.14*
IS & £ & £ £ $ e 2 & g

* Significant at 0.05 probability level and ** Significant at 0.01 probability level.
Xi=Days to first flowering Xs=Number of secondary branches per plant Xo=siliqua length (cm)
Xo=Days to maturity Xe=Number of racemes per plant Xi10=1000-seed weight (g)
X3= Plant height (cm) X7=Number of siliqua per raceme Xi11=seed yield per plant (g)
X4= Number of primary branches per plant Xg= seeds per siliqua
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RESIDUAL EFFECT =0.14
X;= Days to first flowering Xs= Number of secondary branches per plant Xo= siliqua length (cm)
X,= Days to maturity Xe= Number of racemes per plant Xi10= 1000-seed weight (g)
Xs= Plant height (cm) X7= Number of siliqua per raceme Xi11= seed yield per plant (g)

X4= Number of primary branches per plant Xg= seeds per siliqua

Fig. 5. Direct (diagonal) and indirect effects of 10 characters on seed yield per plant at the phenotypic level in biparental F, population of KMR
(E) 16-1 x TM-210.

X10 —0.03 —0.04 0.03 0.10 0.12 0.12 0.12 0.01 0.08 0.21 -

X9 —0.01 —0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.03 0.01 0.40**
X8 —0.02 —0.01 0.01 0.02 0.02 0.02 0.02 0.09 0.05 0.01 0.32**
X7 —0.07 —0.06 0.03 0.09 0.10 0.11 0.29 0.07 0.10 0.17 Eﬂ-e((:;75
X6 =0.05 =0.04 0.03 0.11 0.12 029 0.13 0.04 0.05 0.11 - 0.50
X5  -0.04  -0.04 0.02 012 0.26 011 0.1 003 0.04 0.10 0.25
0.00
X4 —0.02 —0.02 0.01 0.22 0.09 0.07 0.08 0.03 0.03 0.06 025
X3 0.00 —0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16*
x2 =0.01 =0.04 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 =0.26*
X1 =0.08 =0.01 =0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.01 =0.32*
Phenotypic
+© g ] 4> el 4© Q) ® 2 *:\Q correlation with
seed yield
* Significant at 0.05 probability level and ** Significant at 0.01 probability level.
RESIDUAL EFFECT =0.192
X ;= Days to first flowering Xs= Number of secondary branches per plant Xo= siliqua length (cm)
Xo=Days to maturity Xe= Number of racemes per plant X10= 1000-seed weight (g)
X53= Plant height (cm) X7= Number of siliqua per raceme Xi1= Seed yield per plant (g)

X4= Number of primary branches per plant Xs= seeds per siliqua

Fig. 6. Direct (diagonal) and indirect effects of 10 characters on seed yield per plant at the phenotypic level in biparental F, population of TM-
2776 x DRMR 4005.
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Fig. 7. Graph depicting differences in estimates of phenotypic co-efficient of variance of Fz individuals.
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Fig. 8. Graphs depicting differences in frequency of transgressive segregants.
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