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Abstract   

This study focuses on predicting surface soil temperature (ST) at a 5 cm 

depth, which significantly influences agricultural decisions such as sowing 

time, irrigation management and soil-plant-atmosphere dynamics. Machine 

learning (ML) algorithms were used to predict ST using above-ground weather 

variables viz., air temperature (T), relative humidity (RH), wind velocity (WV) 

and sunshine duration (SS) measured at 15-min intervals. Six regression-

based ML models (Ensemble, Gaussian Process Regression, Support Vector 

Machine, Tree, Neural Network and Kernel) were trained and tested for 

predictive accuracy. The Ensemble Bagging Tree model showed the highest 

precision, with RMSE values of 2.04 and 1.9 for validation and testing, 

respectively. Various combinations of the weather variables were tested and 

the model performed best when using above mentioned variables. Among 

the predictors, T had the greatest impact on ST prediction, as indicated by 

mean absolute Shapley values. The Shapley values of the variables revealed 

that T had a critical role in the model output, with time, SS, RH and WV 

following in importance. Additionally, as a model explainable artificial 

intelligence (xAI) metrics, SHapley Additive exPlanations (SHAP) were 

analysed and found that SHAP dependency had a defined relationship 

between the predictors and ST at a 5 cm depth. This study highlights the 

effectiveness of machine learning in predicting soil temperature and 

emphasizes the role of weather variables in agricultural decision-making. 

decision-making. 
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Introduction   

Soil temperature (ST) plays an important role in the entire earth system 

process, which regulates the exchange of energy between atmosphere and 

the terrestrial land surface. ST also influences the climatic process, eco 

system functioning, land surface process, agricultural ecosystem and the 

energy balance of the planet earth (1). With respect to the agriculture 

ecosystem, the ST influences the seed germination process, establishment of 

seedling growth and development of crop plants. For instance, crops such as 
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corn, soybeans and spinach exhibit marked temperature 

thresholds that influence germination rates and subsequent 

seedling development. It also influences crop yield by way 

of its influence on plant respiration, metabolic activity, 

photo synthesis process and below ground plant 

parameters viz., root growth, root development and root 

expansion etc., which facilitate the uptake of required 

nutrients by the plant from the soil (2). The ST aids various 

agricultural decision-making process in agriculture land use 

management, identification of plant stress, selection of 

suitable crop variety, decisions regarding the timing of 

sowing and planting, scheduling of irrigation, precision 

farming and many other soil management strategies (3, 4). 

In addition, many earth system models viz., hydrology, 

atmospheric and numerical weather prediction models use 

the ST as one of the important predictor variables for 

increasing its model efficiency. 

 Keeping the above importance of ST for specific 

purposes, it is believed that, in the future, the accurate 

availability of ST will play a critical role in agriculture for 

making informed decisions related to productive agriculture.  

However, the availability of information on ST is very scarce 

across the agricultural production system and the countries 

worldwide, irrespective of their advancement (5). This is 

attributable to the instrumentation cost, maintenance and 

performance of sensor network in the real agricultural 

production system (5). Conventionally, the ST is being 

modelled through statistical techniques using historic 

weather data aided by the time series statistical model viz., 

ARIMA, SARIMA etc. Although these physical models predict 

ST, they depend on highly sensitive, real-time ST 

measurements obtained via costly sensor, making them 

impractical for widespread use in the real-world agricultural 

production systems. Due to recent advances in soft 

computing technologies and data driven machine learning 

techniques and artificial intelligence, decision makers can 

predict the ST with less computation cost, in comparison to 

physical models that require high-cost input data and time. 

During the past decades, scientists has developed different 

soft computing algorithm for prediction of ST by inputting 

various meteorological parameters viz., ST, relative humidity 

(RH), wind velocity (WV), solar radiation (SR), precipitation 

(P), atmospheric pressure (p) etc. throughout the world. 

Weather stations across the world normally record above 

ground weather parameters for prediction of different 

interrelated variables. However, majority of these weather 

stations lack the observation on the important micro 

climatic parameters of ST.  

 The use of regression learner-based machine learning 

approaches for soil temperature prediction offers several 

advantages, particularly when applied to sub-hourly 

timescales using meteorological data. First, these methods 

can effectively capture non-linear relationships and complex 

interactions among variables, enabling more accurate 

predictions compared to traditional linear regression models. 

Additionally, ensemble-based approaches, such as bagging 

trees, combine predictions from multiple models, reducing 

overfitting and improving generalization performance. These 

algorithms also allow for high temporal resolution, making 

them suitable for sub-hourly soil temperature prediction. By 

leveraging weather parameters like air temperature, 

humidity, wind velocity and sunshine duration, machine 

learning models can provide real-time or near-real-time 

estimates of soil conditions, which is critical for agricultural 

applications such as irrigation management and sowing time 

decisions. Furthermore, the ability to train models on 

different resamples of data enhances robustness and 

stability, even in the presence of noise or variability in input 

variables. This capability ensures reliable predictions under 

uncertain conditions, making machine learning approaches a 

valuable tool for soil-plant-atmosphere system dynamics 

analysis. Overall, these advantages underscore the potential 

of regression learner-based methods in advancing our ability 

to model soil temperature with high precision and relevance 

to environmental and agricultural research. 

 

Materials and Methods 

The meteorological weather parameters were obtained from 

historical records of Tamil Nadu Agricultural University, 

specifically for Pudukottai district of Tamil Nadu, India. The 

dataset consists of T, RH, WV, sunshine duration and ST with 

a 15-min time scale resolution recorded through an 

automatic weather station. The data set consist of all the 

above parameters from 08.10.2021 to 03.11.2023. Each 

variable has 29229 data points and in total about 175374 

data were used for the entire process. For model training 

purpose 75 % of the data were used, accounting about 

21922 data per variable and 25 % of the data points were 

used for testing the model that accounted for 7307 data 

points per variable. The used data points were recorded at 

15 min time interval, ensuring 96 data points per day. The 24 

hr of a day with 15 min time interval was converted into 0 to 

1 time scale automatically by the model for its algorithm 

compatibility with an incremental value of 0.01 for each 15 

min for training and testing the machine learning model. The 

unit of weather variables were 15 min interval for time, 

temperature in 0C, wind velocity in m/s and sunshine 

duration in accumulated min. The data were subjected to 

different machine learning algorithm for the prediction of 

soil temperature using the rest of variables as an input 

component. This study trained six machine learning models 

for prediction of soil temperature and the performance of all 

the trained models were compared using the statistical 

parameters, to select the best using the soft computing 

models with software MATLAB 2024b. 

 The regression learner-based machine learning 

algorithm used in this study for the prediction of ST were 

Ensemble Bagging Tree (ETB), Support Vector Machine (SVR), 

Gaussion Process Regression (GPR), Neutral Network (NN), 

Decision Tree (DT) and Regression Tree (RT).  All the above 

models were trained, tested and its performance were 

interpreted based on the statistical metrics as defined in 

Equation 1 to 5 as detailed below. 

i) Mean Absolute Error (MAE)                                          

 

   (Eqn. 1) 
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The MAE is always positive and like the RMSE, but less 

sensitive to outliers. Look for smaller values of the MAE. 

Where. 

Yi =  represents the actual or observed value for the ith  data          

point. 

= represents the predicted value for the ith data point. 

 

ii) Mean Squared Error (MSE)                                                

                                    

 

 

The MSE is the square of the RMSE. Look for smaller values 

of the MSE. 

iii) Root Mean Squared Error (RMSE)                             

            

 

The RMSE is always positive and its units match the units 

of the response. Look for smaller values of the RMSE. 

iv) Relative Squared Error Score (R2) or Coefficient of 

determination                                                                            

                      

 

 

Where. 

SSR - sum of squared residuals between predicted and 
actual values 

SST - total sum of squares, which measures the total 

variance in the dependent variable 

 

 

 

 Coefficient of determination. The app calculates 

ordinary (unadjusted) R2 values. R2 is always smaller than 1 

and usually larger than 0. It compares the trained model with 

the model where the response is constant and equals the 

mean of the training response. Look for an R2 value close to 1. 

  The RMSE metrics is used as a tool to assesses the 
performance of different models during its training and 

testing phase. The data sets were trained with fivefold cross 

validation. The above models were trained and best 

performing model was selected for further data processing, 

model training, validation and model testing. Different input 

combination of weather variables was trained, tested and 

their performance evaluated. The best input combination of 

weather variables was selected for further evaluation of the 

model performance to fine-tune the model to achieve a high 

degree of prediction accuracy.  

 Ensemble Tree Bagging is a type of ensemble learning 

technique used to improve model performance by creating 

multiple replicas (or bootstrap samples) of a training dataset. 

For a given weak learner, such as a decision tree, the process 

involves generating numerous bootstrap replicas, each 

created by randomly selecting N out of N observations with 

replacement, where N is the total number of observations in 

the dataset. This method helps to reduce variance in 

predictions and often improves accuracy. Furthermore, 

random forests, which involve an additional step where each 

tree randomly selects predictors for decision splits, are 

known to enhance the predictive power of bagged trees (6). 

By default, the number of predictors selected at each split is 

typically set to the square root of the total number of 

predictors for classification tasks and one-third of that 

number for regression tasks. This configuration often 

achieves optimal predictive performance. After training a 

model, predicting new data involves taking an average over 

predictions from all individual trees in the ensemble using 

the predict function. The default minimum number of 

observations per leaf for bagged trees is 1 for classification 

and 5 for regression. Trees with these settings are usually 

deep and tend to be close to optimal in terms of predictive 

power (7). Increasing the leaf size can reduce training and 

prediction time, as well as memory usage, without 

significantly compromising performance. 

 The ‘MinLeafSize’ parameter in templateTree or 

TreeBagger allows users to specify the minimum number of 

observations per leaf, providing flexibility in balancing 

computational efficiency with model performance. 

Additionally, out-of-bag (OOB) observations, which are 

omitted on average 37% of the time for each decision tree, 

play a crucial role in enabling properties like variable 

importance analysis and highlighting outliers in the data. A 

notable feature of TreeBagger is the proximity matrix, 

accessible via the Proximity property. This matrix measures 

how close two observations are based on their placement in 

the same leaf across different trees in the ensemble. By 

normalizing these proximities over all trees, a symmetric 

matrix with diagonal elements of 1 and off-diagonal values 

ranging from 0 to 1 is obtained. This matrix can be used for 

tasks such as identifying outliers and uncovering clusters 

through techniques like multidimensional scaling (8). 

 SHapley Additive exPlanations (SHAP) is an 

explainable artificial intelligence (XAI) technique that uses 

Shapley value from the concept of cooperative game theory 

(9, 10).  SHAP is a groundbreaking methodology aimed at 

enhancing model interpretability. Consider a group of 

players working together to clear a game. How would the 

final reward be split if each player contributed differently? 

Shapley value can be used in this situation to guarantee that 

the allocation of rewards to each player is fair by calculating 

the marginal contribution of each player (11). Shapley values 

satisfy the four axioms for calculating each player’s marginal 

contribution viz., 1. Efficiency: the final reward must be 

shared among the players in cooperation, 2. Symmetry: 

players who made the same contribution as each other will 

receive the same amount of reward, 3. Dummy: players who 

did not contribute to the game clearance are known as 

dummy players and will receive no reward and  4. Additivity: 

if the game has multiple parts, the player’s reward allocation 

must consider the individual contribution to each part rather 

than the collective contribution to the game as a whole (12). 

Its primary objective of using SHAP is to provide a clear 

framework for making complex models, such as those based 

 (Eqn. 5) 

(Eqn. 4) 

(Eqn. 3) 

(Eqn. 2) 
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on machine learning or deep learning, more accessible for 

researchers to understand. In the field of explainable AI (XAI), 

one of the most challenging tasks has been selecting the 

most appropriate algorithm for a specific model type. To 

address this challenge, Lundberg and colleagues developed 

SHAP, an innovative framework that assigns importance 

values to individual features in the context of a particular 

prediction. By providing these importance scores, SHAP 

helps researchers identify which factors have the greatest 

influence on a given outcome, thereby supporting the 

identification of key drivers of predictions. This 

advancement contributes significantly to our ability to 

understand how complex models operate and make 

decisions.  As a result, SHAP has the potential to be used in 

predicting ST by analyzing the contribution different 

weather parameters.  a) Shapley importance: Shapley 

importance plot, by utilizing Shapley values across a series 

of query points, we can assess which predictors have the 

greatest or least impact on regression model predictions. For 

each query point, the Shapley value of a predictor quantifies 

how that variable contributes to deviations in the model’s 

predicted output from its average baseline prediction. The 

sign of this value indicates whether the effect is positive or 

negative, while the absolute value reflects the magnitude of 

the influence. Calculating the mean of these absolute 

Shapley values across all query points provides a 

comprehensive measure of each predictor’s significance in 

shaping model predictions, enabling a deeper 

understanding of their individual contributions to the 

regression model’s outcomes. b) Shapley summary: For 

regression models, Shapley values can be used on a set of 

query points to assess the influence of individual predictors 

on model predictions. At each query point, the Shapley value 

for a predictor quantifies the deviation in the predicted 

response from the average prediction. The sign of this value 

indicates whether the effect is positive or negative, while its 

absolute value reflects the magnitude of the impact. 

Consequently, Shapley values near zero suggest that the 

specific predictor has minimal influence on the model’s 

predictions for that query point. c) Shapley dependency: For 

regression models, Shapley values can be employed on 

query points to analyze the influence of individual predictors 

on predictions. The value explains how much a prediction 

deviates from the average due to each predictor. The sign of 

the Shapley value indicates whether the effect is positive or 

negative, while its absolute value represents the magnitude 

of impact. Therefore, when Shapley values are close to zero, 

it suggests that a particular predictor has minimal influence 

on the model’s predictions for that specific query point. 

Results and Discussion  

ST plays an important role in agricultural ecosystem as a 

vital variable in controlling the soil-plant-atmosphere 

continuum. In general, majority of the meteorological 

observatory located in a particular agricultural eco system 

region normally records the weather variable viz., air 

temperature, RH, WV, sunshine duration, rainfall and other 

above ground weather parameters. Using these above 

ground weather parameters the meteorologists used to 

predict the future value of the above ground variables using 

historic weather data. When measure ST datasets is 

available along with above ground weather parameters, it is 

possible to model the data sets and ST can be predicted for 

future using machine learning algorithm by proper training 

and testing the data sets. Such trained models can be used 

for predicting the ST in different locations, were only above 

ground historic weather data available.   

 Application of machine learning for the prediction of 

ST was assessed using data training, validation and testing 

process. In this study six regression learner-based machine 

learning algorithm were trained, tested and evaluated for 

their performance and its metrics were presented in Table 1. 

Upon scrutinizing and evaluating the different models 

trained and tested, it was found that the regression learner-

based machine learning algorithm, called Ensemble-Bagged 

Tree, had the highest prediction accuracy compared to the 

five models. The least performance accuracy was observed 

for the trained and tested model of Kernel based regression 

learner. Hence, the Model Ensemble Bagged Tree was 

selected for further testing process and model performance 

evaluation. 

 The ST prediction process was divided into five 

components based on the number of input variables used 

for data training and testing. The particulars of input 

variable combinations used in training and testing phase for 

the prediction of ST is presented in Table 2, along with the 

corresponding data validation and testing metrics. From this 

model metrics, it is observed that the model performance 

accuracy improves with the addition of more predictor 

variables. The highest model prediction accuracy was 

observed for the predictor input variables used viz., time of 

observation, air temperature, RH, WV and sunshine duration. 

 This study refers the work of (13) which modelled the 

ST data using multi-layer perception, Radial Basis Neural 

Network and Generalized Regression Neural Network 

(GRNN) and concluded that the GRNN model performed well 

for the prediction of ST at 5 cm depth with a RMSE value of 

2.06. It is evident from the Table 1, 2 that the proposed 

Model          
Number 

Model Type RMSE        
(Validation) 

MSE        
(Validation) 

R Squared 
(Validation) 

MAE           
(Validation) 

MAE 
(Test) 

MSE       
(Test) 

RMSE         
(Test) 

R Squared 
(Test) 

1 Ensemble Bagged 
Tree 

2.04 4.15 0.70 1.46 1.4 3.96 1.99 0.72 

2 Gaussian Process 
Regression 

2.23 4.96 0.64 1.68 1.63 4.8 2.19 0.66 

3 Support vector 
machine 

2.31 5.35 0.61 1.65 1.6 5.19 2.28 0.63 

4 Tree 2.42 5.83 0.58 1.61 1.52 5.41 2.33 0.61 
5 Neural Network 2.4 5.75 0.59 1.83 1.8 5.58 2.36 0.6 
6 Kernel 2.49 6.21 0.55 1.94 1.93 6.16 2.48 0.56 

Table 1. Evaluation of different regression learner machine learning algorithms using different model metrics 
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Ensemble Tree Bagging machine learning algorithm-based 

model has successfully modelled the ST at 5 cm depth with a 

relatively smaller RMSE as presented in Table 2. ST at 5 cm 

depth was predicted (14), using daily weather parameter 

viz., maximum temperature, minimum temperature, 

average temperature, atmospheric pressure and solar 

radiation and found that the ELM model performed well with 

a performance metric RMSE value of 1.22 for training data 

set and 1.23 for testing data set at Bandar Abbas Station. For 

SAE-ELM, the corresponding value was 1.20 and 1.18, 

respectively. Whereas the same author conducted a study 

for Kerman Station and the RMSE value for training and 

testing data sets were 2.1 and 2.2 respectively for the ELM 

model and 2.1 and 2.1 for the SAE-ELM model. ST was 

modelled at different soil depth using four different models 

(15) viz., Random Forest, Extreme learning machine, 

generalized regression neural network and Back 

propagation neural network and reported the RMSE values 

as 2.31, 2.36, 2.48 and 2.39, respectively, for each model. 

Another study modelled the daily ST at ISFAHAN and Urmia 

Stations at five different soil depths using the Bi-linear (BL 

model) for training and testing and reported RMSE values of 

1.72 and 1.75 for Isfahan and 1.43 and 1.33 for Urmia Station, 

respectively (16). The same author reported a RMSE value of 

1.45 and 1.49 for Anfis model for ST at 5 cm depth in a 

different study reported a range of RMSE value for various 

input parameters and reported a RMSE value of 2.19 for 

training and 3.47 for testing data set using the input variable 

temperature, dew, evapo-transpiration, radiation, WV and 

humidity at 10 cm depth (17). ST was modelled based on the 

look back period (18). The author used Bagging Regressor, 

Random Forest Regressor, Ada Boost Regressor using air 

temperature, WV and RH and reported that the variable air 

temperature has the highest variable importance weights 

followed by WV and RH. The ST was modelled using Artificial 

neural network model over the training and test modelling 

phases and reported a RMSE value of 4.40 and 4.88 

respectively at 5 cm depth (19). The ST was modelled using 

GANs-LSTM model and predicted the ST at 5 cm depth at 

Change Bai Mountain and HaiBai Stations and reported an 

estimated RMSE value of 2.71 and 2.40 for respective 

stations (20). Another study predicted the ST using 

Convolutional Neural Network and reported a range of RMSE 

value for using different sub models which ranges from 0.46 

to 0.74. (22) estimated the ST using Novel Genetic based 

negative correlation learning algorithm and reported the ST 

prediction at 5 cm depth with a RMSE value of 1.98 and 2.07 

for training and testing data respectively (21).  

 ST was modelled by (23) using climatic parameters 

and employed various models viz., Gaussian Process 

regression, M5P model, Random Forest and Multi-layer 

perception model, with the aim to identify the best 

performing model. Previous study predicted the ST using 

Tree based hybrid data mining models (Gradient Boosted 

Trees (GBT), Decision Trees (DT), Hybrid (DT-GBT) found that 

GBT model performed well with the RMSE value of 3.12 (16). 

The ST was modelled using Gaussian Process Regression 

(GPR), Multilayer Perception Artificial Neural Network 

(MLPANN), Random Forest Regression (RFR), Support Vector 

Regression (SVR) and evaluated the performance based on 

RMSE and found that GPR model produced more accurate 

value at 5 cm soil depth with RMSE value of 1.81 (24). 

Previous study predicted the ST dynamics at hill slope using 

four machine learning algorithm and found that Extreme 

Gradient Boosting System (XGBOOST) performed better for 

hill slopes followed by Random Forest Regression, Multi-

layer Perception and Support Vector Regression (25). 

 After training the model for the prediction of ST, 

response plots were generated for each input variables viz., 

data set number, time of observation, air temperature, RH, WV 

and sunshine duration. The response plots were generated 

along with residual bars and presented in Fig. 1. The above 

prediction was done after model validation without providing 

the corresponding soil temperature observation. The 

prediction was done using the trained model only. The 

residuals are the difference between actual and predicted 

values and standard error over the residuals were computed 

and plotted against target versus predicted values. 

 Fig. 2A shows the predicted response between 

observed and predicted ST after validating the model and 

Fig. 2B showed the corresponding information after testing 

the model. Both response plots obtained during validation 

and testing phases showed that a significant number of data 

points were centred on the 1: 1 line. It is also observed that 

there is a reasonable presence of outliers, which scattered 

away from the 1: 1 line. A similar trend was observed in these 

scattered plots obtained by testing the model. When 

comparing the two scattered plots, the response obtained 

during the test phase has slightly improved compared to the 

same observed during the data validation process. 

 The model performance was evaluated using residual 

plots over the true response, predicted response and the 

record number of input data set and depicted in Fig. 3. The 

residual plots depict the difference between the predicted 

response and true response.  

Model Predictor 
RMSE 

(Validation) 
MSE       

(Validation) 
R Squared 

(Validation) 
MAE         

(Validation) 
MAE 

(Test) 
MSE 

(Test) 
RMSE       
(Test) 

R Squared 
(Test) 

M1 Time 3.40 11.54 0.17 2.85 2.87 11.71 3.42 0.16 

M2 Time+T 2.74 7.50 0.46 2.12 2.11 7.44 2.73 0.47 

M3 Time+T+RH 2.42 5.87 0.58 1.82 1.82 5.86 2.42 0.58 

M4 Time+T+RH+WV 2.41 5.79 0.59 1.81 1.77 5.56 2.36 0.59 

M5 Time+T+RH+WV+SS 2.03 4.13 0.70 1.46 1.41 4.02 2.01 0.72 

Table 2. Evaluation of regression learner Ensemble Tree Bagging Algorithm using various input variable combinations for the prediction of soil temperature 
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 The application of residual plots enhances model 

evaluation and guides subsequent modelling decisions, 

ultimately improving the reliability of predictions in studies 

like soil temperature assessments (26, 27). These plots provide 

insight into the differences between predicted and actual 

temperature values over a range of conditions, helping to 

identify patterns that might suggest improvements in model 

specifications. It is observed that most of the residuals are 

scattered around the value zero symmetrically. A clear pattern 

is observed in the residual plots for the true response, 

predicted response and record number against the residuals 

of ST.  

 Similarly, the residual plots for the predictor variables 

were generated and presented in Fig. 4. With respect to time 

variables most of the residuals over ST were centred around 

the zero value throughout the period (Fig. 4A). The highest 

residuals, which are away from the zero value ranges 

between 11 to -09. The residuals of ST vs T are depicted in 

Fig. 4B. Most of the residuals are centred around the 

desirable residual value of zero and the extreme residual 

values were ranges between 11 to -09. The highest data 

points which centred around zero value were observed at 

data ranges between 20 to 38 °C. With respect to RH, 

majority of the residuals over the ST were centred near the 

desired value of zero. However, there exists a trend pattern 

as whenever the RH is low, the residual against ST is also 

low. When RH increases, the residual values over ST deviate 

away from the desired value of zero in both positive and 

Fig. 1. Model predicted response for soil temperature, ST (ºC) for different model input variables; A) Data set Nos, B) Time, C) Air temperature, T(ºC), D) Relative 
humidity, RH (%), E) Wind Speed, WS (m/s) and F) Sun Shine duration, SS (Minutes). 
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negative residual values (Fig. 4C). The residuals of WV over 

ST are depicted in Fig. 4D. It is observed that most of the 

residuals were centred around the desirable value of zero. 

Whenever the WV is low, the residuals of ST are very high, 

which ranges from 11 to -09. 

 The residual values of sunshine duration over ST are 

depicted in Fig. 4E. It is observed that much of the data set 

were cantered around the desired residual value of zero. The 

observed residual value was ranged from 11 to -09.  

 This approach aligns with findings from related 

agricultural research, such as the positive effects of organic 

amendments on soil properties and productivity, like those 

observed with sugar beet residual and vinasse treatments 

(28). Furthermore, similar methodologies used in herbicide 

bio-efficacy studies underscore the importance of residual 

analysis in understanding soil dynamics and microbial 

interactions, further enhancing the robustness of soil 

temperature predictions (29). 

 

Fig. 3. Residual plot for predicted ST Vs True response (A), Predicted response (B) and Record number (C). 

Fig. 2. Observed and predicted ST after data training and validation (A) and model testing (B). 

A B 

A B 
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 After training the model, using the training and 

validation data set SHAP (Shapley Additive Explanation) 

importance was computed based on the mean of absolute 

Shapley value against the predictor and presented in Fig. 5A. 

For regression models, Shapley values can be used on a set 

of query points to assess the influence of individual 

predictors on model predictions. At each query point, the 

Shapley value for a predictor quantifies the deviation in the 

predicted response from the average prediction. The sign of 

this value indicates whether the effect is positive or negative, 

while its absolute value reflects the magnitude of the 

impact. Consequently, Shapley values near zero suggest that 

the specific predictor has minimal influence on the model’s 

predictions for that query point. It is observed that the input 

variable air temperature has the highest absolute Shapley 

value, followed by time, SS, RH and WV. 

 The SHAP values, which explain the output of the 

trained machine learning model, were calculated for each 

input variable and its impact on the model output was plotted 

and presented in Fig. 5B. The SHAP value explains how each 

input variable affects the final prediction value. It also explains 

the interaction between different input variables. 

 Shapley values are based on game theory and assign 

a value for each input variable. It is observed that the 

Shapley value for each input variable ranges from positive to 

negative values. The positive value impacts the prediction of 

the model positively and vice versa. The air temperature has 

a wide range of positive and negative values, followed by a 

narrow range for the input variables time, sunshine duration, 

RH and WV.  

  

Fig. 4. Predictor residual plots for individual input variables. (A) Time, (B) Air temperature T(ºC), (C) Relative humidity RH (%), (D) Wind Speed WS (m/s) and (E) 
Sun Shine duration, SS (Minutes). 

 

A C 
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 Shapley values are used to interpret the impact of 

each individual predictor on model prediction. The sign of 

the Shapley value is used to identify the direction of the 

Shapley value deviation from zero and the absolute Shapley 

value indicates its magnitude. Fig. 6A depicts the Shapley 

dependency of the variable over its Shapley value. The 

value deviates from zero on both the positive and negative 

sides, with ranges from 2.2 to -3.8. This value exhibits 

diurnal variation over 24 hr time. Fig. 6B depicts the Shapley 

dependency of air temperature, which has both positive 

and negative Shapley values. Only a very small number of 

data points had a value near zero. When the air temperature 

is less than 28 °C, the Shapley value tends to decrease on 

the negative side. If the value is more than 28 °C, the 

Shapley value tends to increase its magnitude positively. 

Fig. 6C shows the Shapley dependency of RH. The Shapley 

value scatters over both positive and negative sides. When 

the RH is less than 65 %, Shapley value tends to decrease 

towards negative value and vice versa. When the RH 

reaches very high levels beyond 95 %, the Shapley value 

returns to the negative side.  

 Fig. 6D depicts Shapley dependency of WV. The 

values range between positive and negative sides and it 

always has smaller Shapley values across different WV. Fig. 

6E depicts the Shapley value of sunshine duration. It was 

observed that sunshine values scattered both positive and 

negative values. When accumulated sunshine duration 

increases, the value of Shapley become positive and its 

magnitude increases. A similar observation was reported 

by (30) while testing the predicted ST using Explainable AI 

(Ex AI) and LSTM and integrated that the model 

performance Shapley Additive Explanation (SHAP), 

Permutation Importance (PI) and Partial Dependence 

Plots (PPP) and stated that the temperature of air at 3 m 

above surface has a greater influence on ST and SHAPLEY 

value varies significantly over different seasons.  

 

Conclusion 

Surface ST, particularly at a 5 cm depth, plays an important 

role in agricultural decision-making, influencing actions 

such as time of sowing, water management and precision 

agriculture practices. Predicting the ST at 15 min interval 

provides essential support for timely decision making. In 

this study, we applied machine learning approach to predict 

surface ST using above ground meteorological parameters 

viz., air temperature, RH, WV, sunshine duration and the 

respective time scale of 15 min interval. This study 

employed six machine learning algorithm for the prediction 

of surface ST viz., Ensemble, Gaussian Processor 

Regression, Support Vector Model, Tree, Neural Network 

and Kernel based algorithm for the prediction of ST at 5 cm 

depth at the time scale of 15 min interval and found that the 

superiority of Ensemble (BT) in the prediction of ST with a 

RMSE value of 2.04 and 1.99 respectively for the validation 

and test data sets. Further, it was found that temperature 

plays a critical role in the prediction of ST as indicated by 

the absolute Shapley value, followed by time, sunshine 

duration, RH and WV. The impact of different input variables 

on the model output followed the same trend as the mean 

absolute Shapley value of these variables. The Shapley 

dependency analysis revealed a distinct pattern, which is 

consistent with findings reported in recent studies. 

 The analysis revealed that the Regression Learner-

Based Ensemble Tree Bagging Machine Learning Algorithm 

demonstrates a significant capacity for accurately 

predicting soil temperature by utilizing weather data. The 

findings indicate that this algorithm not only outperformed 

traditional predictive models but also exhibited greater 

resilience to variability in the input data, suggesting its 

potential utility in diverse agricultural and environmental 

contexts. Furthermore, this research highlights the 

importance of integrating advanced machine learning 

techniques into environmental studies, which could 

enhance predictive accuracy and inform better decision-

making in agricultural practices. Future research should 

explore the algorithms adaptability across different 

climates and soil types to ascertain its generalizability. 

Additionally, the implications for practice include the 

necessity for ongoing collaboration between data scientists 

and agronomists to refine the model further and develop 

user-friendly applications that farmers and environmental 

managers can readily incorporate into their planning 

processes.  

 

Fig. 5. Shapley importance value for the various input variables (A), Shapley summery swarm plot for different input variables for the prediction of soil 
temperature (B). 

A B 
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