
  

Plant Science Today, ISSN 2348-1900 (online) 

Introduction 

The leading causes of postharvest losses are due to microbial 

and pathogenic attack.  Fruits are sensitive to fungal attacks 

because of their low pH, increased moisture content and 

highly nutritious nature. As per the NABARD Consultancy 

Services (NABCONS) study (2022), the postharvest losses of 

fruits constitute about 6.02-15.05 %. The insufficient practices 

in postharvest management can lead to softening, wilting, 

production of off-flavour, browning and quality deterioration. 

Fruits are generally classified as climacteric and non-

climacteric based on their ripening character. After being 

harvested, climacteric fruits hasten ripening and synthesize 

ethylene, which increases respiration rate and increases 

perishability. Inhibiting ethylene production is a useful 

approach for delaying ripening and increasing the shelf life of 

climacteric fruits. Non-climacteric fruits, on the other hand, 

do not increase in ethylene, but should be harvested at 

proper maturity. Time of harvesting, method of harvesting 

and maturity indices play a significant role in the postharvest 

quality of fruits. Fruit preservation, which includes a variety of 

techniques and procedures aimed at preserving fruit quality, 

improving shelf life and limiting losses, is a vital component 

of postharvest technology. The temperature and relative 

humidity during storage play a crucial role in maintaining the 

quality because they are positively correlated with 

transpiration and respiration of the fruits. Preservation 

technologies such as fermentation, dehydration, canning, 

refrigeration, edible coating and use of different packaging 

materials are involved. Novel preservation techniques 

include irradiation, electron beam acceleration, pulsed 

electric field, ozone technology and nano-preservation. The 

materials in which at least one dimension of the structure is 

nanoscale are referred to as nanomaterials (1). They can be 

prepared in two ways: "bottom-up," which involves 

assembling atoms or molecules to form nanostructures, or 

'top-down,' which refers to breaking down bulk materials into 

nanoscale structures using mechanical, chemical, or 

lithographic techniques. Studies have indicated that 

nanomaterials can increase animal feed digestibility and are 

suggested as a potential substitute for antibiotics to enhance 

feed safety (2). Owing to its advantageous characteristics, 
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Abstract  

Fruits and vegetables can lose their freshness after harvesting due to various factors, including physical damage during harvesting, moisture 
loss, unfavorable weather conditions and microbial infestations by pests, molds and bacteria. Fruits, particularly, are more prone to spoilage 

and loss than vegetables. Several preservation techniques are used to enhance the postharvest quality and extend the shelf life of produce. A 

key emerging method is nano-preservation, which involves advanced technologies such as nano-edible coatings, active packaging, 
innovative packaging, nanocomposites, nanofilms and nano-biosensors. These techniques aim to improve the preservation of fruits and 

vegetables, ensuring they stay fresh longer. One of the significant benefits of nanotechnology in food preservation is the design of functional 

packaging materials that offer superior mechanical properties, better gas permeability and lower bioactive component levels. These 

materials help extend shelf life while having minimal impact on the sensory attributes like taste, texture and colour of the produce. Compared 
to traditional preservation methods, nano-preservation provides a more controlled environment around the produce, preventing spoilage, 

reducing waste and maintaining nutritional value. Additionally, these technologies help reduce the use of chemical preservatives. This review 

focuses on various nano-preservation techniques and their applications, indicating that nanotechnology is revolutionizing food preservation, 

offering sustainable development. 
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which include a larger surface area per volume, broad-

spectrum antibacterial capabilities and high barrier to 

efficiency qualities, nanoparticles can be viewed as an effective 

means to get around the drawbacks of conventional 

preservation methods.  

Principles of nano-preservation 

Although each preservation technique has a unique focus, 

they all control three essential elements that are crucial to 

the preservation of quality: 1) managing the senescence 

process, which is typically accomplished by regulating 

respiration; 2) managing microorganisms, which is primarily 

accomplished by keeping of spoilage bacteria; and 3) 

controlling the evaporation of water within, which is primarily 

accomplished by managing the environment's relative 

humidity (3). Novel preservation techniques should be 

emphasized to ensure food security among consumers. Fruit 

preservation has generated an enormous amount of interest 

in nano-level detection techniques. The sections below 

provide extensive detail about the fundamental concepts 

behind shelf-life extension techniques related to 

nanotechnology.  

 Properties of nanomaterials used for nano-preservation 

Nanomaterials used in nano-preservation possess unique 

properties conducive to preserving materials at the 

nanoscale. These properties include mechanical, barrier, 

thermal, photocatalytic and antimicrobial properties. 

Mechanical properties 

The primary causes of the improved mechanical properties of 

nanocomposite materials are: 1) the positive interactions, 

such as hydrogen bonds and ionic interactions, between 

nanoparticles and matrix, as well as 2) the stress transfer's 

impact at the nanoparticle-matrix contact (4). Guar gum-

nanocrystalline cellulose film's hardness and elastic modulus 

may be strengthened by nanocrystalline cellulose (5). A 

detailed study on the effects of niobium carbide (NbC) 

addition to AlCrFeNi medium-entropy alloy (MEA) was 

performed. Hardness and wear resistance of the AlCrFeNi 

MEA are increased by the addition of NbC (6).  

Barrier properties 

Nanocrystalline cellulose increased the tensile strength of 
chitosan films by approximately 26 %, as measured by tensile 

testing methods such as ASTM D882 (7). Particulate 

nanomaterial-infused composites often offer superior 

"quantum mechanics" qualities, such as improved barrier 

properties, then the standard preservation materials (8). 

Nanocrystalline cellulose and guar gum were used to construct 

a degradable nanocomposite film. As more nanocrystalline 

cellulose (NCC) was added, the pore shape changed, improving 

the oxygen barrier and reducing oxygen transmission (5).  

Highly processed clay nanoparticles had a greater effect on the 

moisture and oxygen barriers of carboxymethylated CFRs (9). 

Thermal properties 

Thermal characteristics of the nanomaterial, which have a 

direct impact on its usage. Because of their intrinsic atomic 

structure and interatomic interaction, nanomaterials, which 

include materials doped to produce point defect scattering 

and nano-grain-sized materials, have poor heat conductivity. 

Gelatin-based nanocomposite films (ZnoCEo) were created 

by (10). Two and three weight loss phases were visible in the 

TGA curves for the thermal stability of the control film and the 

nanocomposite films. Reduced glycerol hydrated and 

hydrated water related to heat. Additionally, the thermal 

breakdown of larger proteins was linked to the second step, 

the primary stage of thermal degradation. The assertion was 

that adding ZnO nanoparticles to the gelatin matrix may 

serve as a thermal insulator for the volatile compounds 

generated during thermal degradation. Consequently, the 

thermal stability of the gelatin films was significantly 

enhanced by the ZnO reinforcement (11). 

Photocatalytic properties 

The most popular photocatalyst material for maintaining the 

freshness of fruits and vegetables is nano-TiO2 (12). 

Nanomaterials can postpone the deterioration of harvested 

fruits and vegetables and speed up the oxidative breakdown 

of ethylene and other gases produced during fruit and 

vegetable storage (13). Zinc oxide, both pure and doped, as 

well as ZnO-containing composite materials, are well 

recognized as effective photocatalysts with widespread 

applications (11, 14). 

Anti-microbial properties 

Nano antibacterial materials may be divided into two 
categories based on the antibacterial active ingredients: 

oxide photocatalytic type and metal ion type (15, 16). Adding 

a metal ion with an antibacterial property, such as Ag, Zn, Ni 

and Al, to different natural or artificial mineral nano-carriers 

is known as metal ionic nano-antimicrobial particles (17). 

According to the theory of metal ion dissolution, when nano-

antimicrobial materials are applied to protect fruits and 

vegetables from spoiling, antibacterial metal ions gradually 

disappear from the germifuga. These dissolved metallic ions 

prevent microbes from reproducing and prevent bacteria 

cells from metabolizing energy (18). 

Nanoparticles used in nano-preservation 

Chitosan 

A potential biopolymer, chitosan (CS), is a biodegradable, 
biocompatible and has antibacterial properties (19). Chitosan 

nanoparticles (CHNPs) have the same characteristics as 

chitosan biopolymer, including quantum size effects. They 

are used as antibacterial agents in various applications (20). It 

possesses malleable chemical and physical characteristics, is 

easily altered and is harmless to people. The chitosan coating 

improves gas exchange and preserves the quality of the fruit 

by reducing transpiration losses and delaying senescence 

and maturation (21). The grapes retained their sensory 

qualities and effectively extended the oxidation of vitamin C 

because of the edible chitosan nanoparticles. The chitosan 

nanoparticles act as a semi-permeable film on the grapes 

that reduces the oxidation and the microbial growth. A CS 

derivative with superior physicochemical characteristics, 

chitosan nanoparticles (CS-NPs) have more antioxidant and 

antibacterial activity than traditional chitosan. The enhanced 

biological activity of CS-NPs is attributed to their higher 

contact area and smaller particle size. For the same reasons, 

they can penetrate biofilms and eliminate harmful 

microorganisms (22). 
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Silver nanoparticles (AgNPs) 

Silver nanoparticles (AgNPs) are currently the most 

researched antibacterial nanoparticle due to their biocidal 

activity against a wide range of Gram-positive and Gram-

negative microorganisms, yeast, molds and viruses. The 

antibacterial action of silver nanoparticles is primarily 

attributed to Ag+ ion release, oxidative stress induction and 

disruption of bacterial cell membranes by reactive oxygen 

species (ROS) generation (23). Silver has been adopted as an 

antioxidant and antimicrobial material. The most recent 

innovation in the use and development of edible coatings for 

fresh fruit is the use of silver nanoparticles, which contain a 

wide range of chemicals that may be employed in forming 

edible coatings. Food processors were more interested in 

silver nanoparticles because of their potential as preservatives. 

The production of AgNPs by green synthesis is less 

complicated and requires fewer expensive and sometimes less 

dangerous ingredients. There are several benefits and 

drawbacks of using different bio-sources, including fungus, 

bacteria, algae and plants, for the environmentally friendly 

synthesis of AgNPs (24).  

Zinc oxide nanoparticles  

The US Food and Drug Administration (FDA) has properly 

approved the food safety of zinc oxide nanoparticles, which 

are classified as GRAS (Generally Recognized as Safe). These 

nanoparticles are used in many cutting-edge applications, 

including electronic devices, communications, sensors, 

personal care products, environmental protection, life 

sciences and the medical industry (25). Scientists have been 

interested in zinc oxide nanoparticles (ZnONPs) because of 

their exceptional mechanical qualities, barrier capabilities, 

biocompatibility and broad-spectrum antibacterial activities 

(26). Zinc oxide nanoparticles (ZnONPs) have strong 

antibacterial properties and hence are being explored as a 

potential addition to replace dangerous chemicals and 

physical antibacterial materials (27). 

Nano-edible coating 

The fruit's edible coating acts as a barrier to regulate loss of 

moisture and exchange of gases among the fruit and its 

surrounding environment, slows down respiration, delays 

physiological ripening and keeps naturally occurring volatile 

flavour compounds from being lost (28). The physical and 

chemical properties of their constituents significantly impact 

the mechanical and barrier qualities of these coatings. Edible 

coverings made of biopolymers have emerged as a new 

packaging technique to extend the shelf life of freshly cut fruits 

(29). The impact of coating on the quality and shelf life of 

minimally processed pomegranate arils at 5 °C storage (30). 

The best covering for increasing the shelf life and preventing 

unfavourable microbiological, physicochemical and sensory 

changes to pomegranate arils was CHNPs. When adding 

nanoparticles to an edible coating, fruit shelf life is significantly 

increased compared to when using a pure polymer. An 

experiment compared the effects of xanthan gum in 

combination with 0.2 % and 0.4 % chitosan nanoparticles to 

those of xanthan gum alone and uncoated. Combined with 0.2 

% Nano chitosan, xanthan gum and a substantial amount of 

chitosan nanoparticles (0.4 %), the combination prevented 

fruit deterioration, colour change and loss of firmness, vitamin 

C and flavour. The recent use of nanoparticles has encouraged 

the application of a lower amount of coating given in the form 

of nanoparticles to improve fruit quality and prolong fruit shelf 

life (31). Table 1 describes different nano edible coatings in 

fruits and their functions. Fig. 1 elucidates the nano-edible 

coating in strawberry. 

Nano-edible coating Fruit Function Reference 

Chitosan Strawberry Increased the shelf-life and colour of the fruit (Fig. 3).  (32) 

Copper oxide nanoparticles improved 
guava 

Papaya Increased shelf-life and freshness, imparting high quality 
fruit. 

 (33) 

Chitosan Apricot Maintenance of colour and quality, control of decay.  (34) 

Beeswax solid lipid nanoparticles (BSLN) Strawberry Increased shelf-life and anti-microbial  (35) 
Aluminium Dates Increases the quality  (36) 

Table 1. Nanoedible coatings in fruits and their functions 

Fig. 1. Antimicrobial film based active packaging of pomegranate. 
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Nano emulsion 

A mixture of more than two difficult-to-combine liquids is 

called an emulsion. Nano emulsions, or nano-sized 

emulsions, are made to improve the distribution of active 

medicinal substances. They are in the spectrum of nanoscale 

emulsions. These are thermodynamically resistant isotropic 

systems when an emulsifying agent, such as a surfactant and 

co-surfactant, combines two immiscible liquids to create a 

single phase (51). Excellent antibacterial properties make 

essential oils (EOs) widely accepted as safe for use as food 

preservatives. According to the study, kiwifruit soft rot 

pathogens were successfully suppressed by lemon essential 

oil (LEO) nano emulsions, which also increased reactive 

oxygen species production, antioxidant enzyme activity and 

cell death (52). According to the study, kiwifruit postharvest 

degradation may be reduced using LEO-based nano 

emulsions as green preservatives. To identify the most 

effective inhibitory components, further investigation is 

required. Compared to shellac, the carnauba nano emulsion 

coating produced reduced ethanol, gloss and water loss in 

coated "Nova" mandarins (Citrus reticulata) and "Unique" 

tangors (Citrus sinensis). Compared to traditional carnauba 

wax emulsion and commercial shellac, carnauba nano 

emulsion coating showed reduced alterations in the fruit's 

internal environment and volatile profile and as a result, 

improved flavour (53). Fig. 2 elucidates the process of nano 

emulsion dipping in mango.  A pullulan covering with a nano 

emulsion of cinnamon essential oil was developed  to 

preserve strawberries (54). When it came to lowering acidity, 

the loss of weight, its texture and regulating bacterial and 

fungal development during fruit storage, the nano emulsion-

based coating outperformed conventional coatings. Table 2 

describes about different nano emulsions used in fruits.  

Active packaging 

Active packaging is classified into two categories: active 

scavenging and active releasing systems. Active scavenging 

systems maintain quality and increase shelf life by eliminating 

unneeded substances like ethylene, moisture and oxygen. To 

stop microbial development and softening, moisture 

management techniques regulate the moisture level of 

packaged horticulture goods (37). Active packaging aims to 

guarantee superior food quality and a longer shelf life. Several 

instances of this dynamic use in food packaging consist of 

microbiological, temperature, quality, absorbance/scavenging 

qualities and features removal and release/emission (38). 

Freshly cut "Fuji" apples were effectively preserved for 12 days 

at 4 °C using a new nano-ZnO packaging film. The outcomes 

demonstrated that, comparison to standard packaging, the 

nano-ZnO coating was more advantageous in maintaining the 

preservation quality of fresh-cut items. Thus, fresh-cut fruits 

may be able to retain their freshness using nano-ZnO 

packaging, except refrigeration. Synthesizing polyethylene 

with nano-powder like nano silver, kaolin and titanium 

dioxide improved the preservation of fruits during storage at 

40 °C, resulting in a new technology of nano-packing 

materials with lower oxygen transmission rate and relative 

humidity (39). Comparing strawberry fruits packed in 

polythene bags with nano-packaging, the former may more 

effectively preserve the fruit’s chemical, physiological and 

sensory attributes. The anthocyanin and malondialdehyde 

degradation rates are reduced more quickly by nano packing 

than by standard polythene packaging. According to a study, 

fresh blueberries can have their shelf life increased by using 

active packaging (40). It is composed of polyethylene along 

with salicylate nano-carrier and modified atmospheric 

packing, which efficiently prevents the formation of mold 

Fruit Nanoemulsion Uses References 

Avocado Orange essential oil Encapsulation  (55) 

Pineapple Sodium alginate and citral Antimicrobial.  (56, 57) 

Red Delicious-Apple Tocopherol Encapsulant  (58) 

Table 2. Nanoemulsions used in fruits 

Fig. 2. Process of nanoemulsion dipping in mango. 
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while preserving the firmness, texture and nutritional content 

of the fruit. In addition to demonstrating adherence to food 

safety regulations, the active packaging displayed controlled 

salicylate dispersion, enhancing its antibacterial qualities. 

This offers a possible way to increase the quality and 

marketability of blueberries after harvest. 

Antioxidant films based on active packaging 

Recent studies have concentrated on nano-active antioxidant 

packaging; for example, a nano-biofilm was developed in 

which thymol served as the primary active ingredient (41). 

They looked at the nano-biofilm's mechanical, optical and 

thermal characteristics as well as how nanomaterials affected 

its antioxidant function. The investigation revealed that 

including thymol and montmorillonite (MMT) did not 

significantly alter the thermal degradation profile and that 

thymol may still function as an active component of the nano-

biofilm. Although the nano-mixtures' mechanical 

characteristics and oxygen resistance rate were improved, a 15 

% reduction in elastic modulus was noted. The activity of 

polyphenol oxidase and peroxidase linked to the deterioration 

of storage product quality might be inhibited by chitosan/nano

-silica coating (42). A previous work introduces a novel litchi 

peel extract, chitosan matrix and nano-TiO2-based antioxidant 

packaging material and also used as a coating in water cored 

apples (43). The CS film's mechanical strength, thermal 

stability and water vapor barrier capacity are all improved by 

adding nano TiO2 and/or LPE. It is verified that interactions 

exist between molecules among nano TiO2, litchi peel extract 

and chitosan matrix. The overall phenolic content and 

antioxidant capacity of the CS film are increased by the 

identification of 64 phenolic compounds in LPE by the LC-MS/

MS analysis. The respiration rate, weight reduction, softening 

and decay of fruits, PPO activity, loss of electrolytes and MDA 

build-up are all markedly inhibited by these coatings. Fruit 

preservation coatings and food packaging films show good 

prospective uses for the incorporation of nano-TiO2 and/or LPE 

into chitosan. 

Antimicrobial film-based active packaging 

An active coating based on nano-ZnO/carboxymethyl cellulose 

could suppress the mold and yeast growth while regulating the 

overall pomegranate microbial colonies to a manageable level, 

greatly extending the shelf life of fresh pomegranates 

represented in Fig. 3 (44). By combining peptide nisin or 

pediocin, they created a new starch-halloysite packaging film 

that has antibacterial properties (45). When compared to 

starch film alone, they discovered that the Young's modulus 

values of both starch-halloysite film adsorbed with 

bacteriocins were all at the most significant level and did not 

significantly differ. It was proposed that halloysite might 

improve the active film’s mechanical characteristics. 

Intelligent and smart packaging 

Fruit quality is monitored via intelligent packaging using 

indicators such as time-temperature, RFID indications, 

microbiological growth, product authenticity and pack 

integrity. These methods can be used to preserve 

commercially processed and packaged meals and fresh, 

minimally processed fruits with further development. 

Manufacturers of food and beverages employ clever packaging 

for their final products. This enables them to give information 

on the product's quality and storage life. Smart sensors play a 

crucial role in regulating and observing several factors, 

including food freshness, oxygen content, temperature and 

moisture (37). Electronic sensors can be used in innovative 

packaging.  A software solution, which is smart barcode 

packaging has been created that allows brand owners to use 

the GS1 IDs included in universal product codes (UPCs) to build 

digital identities for their products was described (46). This 

creates a standardized data format, enabling marketers to 

embed these IDs into other codes, such as NFC tags and QR 

codes. This strategy promises more smartphone interactions 

between businesses and customers and streamlined container 

design. Every product that has a barcode on it has an online 

address.  

Fig. 3. Nano-edible coating in strawberry. 
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 There are four types of intelligent systems: (i) data 

carriers, which include barcode, RFID, electronic article 

surveillance (EAS) and digital watermark; (ii) quality indicators, 

which include freshness and time-temperature indicators; (iii) 

sensors; and (iv) other devices, which include holograms and 

organic light-emitting diodes (OLED) (47). Intelligent packaging 

monitors and gives consumers high-quality information on 

packed items using the packaging as a smart system. 

Temperature, microbiological attack, product legitimacy and 

packaging integrity are important markers. Indicators for 

freshness and leakage are also provided (48). Microbial growth 

and irreversible metabolic processes are two reasons why food 

might deteriorate at high temperatures. Time-Temperature 

Indicators (TTIs) are intelligent sensors that monitor cumulative 

temperature exposure and provide a colorimetric or electronic 

response based on threshold exceedance.  If the fruits have been 

stored under unfavourable temperature circumstances, they 

offer an optical or electronic indicator that may indicate a risk of 

microbial development or quality degradation. This facilitates 

informed decision-making by suppliers and customers about 

the food's safety and freshness (49). Hydrogels can provide a 

certification enabling their integration into the packaging 

system to regulate the moisture produced by the meal items. 

Furthermore, adding nanomaterials can impart antibacterial 

activity to the hydrogels (50). 

 Nano biosensors 

Recently, food items have been using many nanotechnology-

related biodegradable sensors in the form of microchips 

known as electronic tongue technology sensors. When a 

product's pH fluctuates due to spoiling, it changes colour. 

Three parts make up a nano biosensor: a transducer that 

transforms biological vibrations into digital ones, a biological 

sensor that uses affinity-based material to study interactions 

between antibodies and antigens, enzymes and substrates, 

nucleic acids and cells and a data-capturing unit that stores 

and transfers the information (59). Since agricultural wastes 

are abundant in the environment and a cheap alternative, 

they may be employed as an innovative material for 

nanobiosensors. Nanocellulose fibers have been produced 

and have many uses (60). One development in nano biosensor 

technology is multiplex sensing, which enables the 

simultaneous detection of several analytes. A nanobiosensor 

can detect and measure the concentrations of several sweets, 

such as saccharin, glucose, sucrose and cyclamate (61). By 

identifying degradation markers like volatile organic 

compounds (VOCs) and the growth of microbes, nano 

biosensors also aid in quality assurance. Early identification 

reduces the possibility of faulty or dangerous items and allows 

for quick decision-making. Nano biosensors provide accurate 

and timely information on packaging conditions for shelf-life 

extension. It is necessary to create manufacturing-machinable 

processes, optimize material prices and streamline production 

to guarantee that manufacturing becomes economically 

viable on a broad scale (62). By integrating nano biosensors, 

fruit preservation and monitoring systems, these initiatives will 

make them accessible and financially feasible (63). 

Nanocomposites 

Nanocomposites are multi-layered structures made of 

different polymers with unique characteristics that are 

employed to provide the right physical, barrier and sealing 

capabilities. The employment of additional chemicals and 

adhesives (in the case of laminates) adds to the expense of 

these complicated constructions (64). Nanocomposites 

generally have low mechanical properties. Layer-by-layer 

(LBL) assembly was the method suggested employing to 

increase the barrier characteristics (65). In their study, they 

produced undetectable and highly organized oxygen 

transmission rates. Additionally, the number of deposited 

layers may be changed and different layers can be chosen 

appropriately to provide the required permeabilities. The 

electrostatic interaction of the charged nanoclay platelets 

with the polymer surface is the main factor involved in 

developing these formations. Even in 95 % relative humidity 

settings, a very low oxygen transfer rate may be maintained 

when paired with a strong moisture barrier. Antioxidants can 

prevent food products from oxidizing by slowing the 

development of off-flavours and enhancing the food's colour 

stability. Examples of ways to limit or eliminate oxygen in 

food products include using high-barrier packaging 

materials, creating an anaerobic environment and using 

oxygen scavengers in addition to active packaging (66). 

Cellulose nanocomposite 

Because of its huge specific surface area, plenty of hydroxyl 

groups on the surface to create hydrogen bonding, high aspect 

ratio and crystallinity and ecologically favourable cellulose 

nanostructures, or cellulose nanofibers (CNF), have gathered 

increasing attention recently as organic nano-reinforcement or 

nano-fillers. Many research on biopolymer-based 

nanocomposite films reinforced with carbon nanofibers (CNF) 

has been published recently and they have demonstrated that 

the inclusion of CNF enhances the films' mechanical, barrier 

and thermal characteristics (67). A soy protein isolate-based 

nanocomposite film incorporating CNF was created and the 

produced films showed improvements in their tensile strength, 

water resistance, oxygen and water vapour barrier qualities 

and thermal stability (68). Similarly, a previous work showed 

better mechanical and barrier characteristics for a 

nanocomposite film incorporating CNF that was built on 

polydextrose and whey protein isolate (69). 

Agar nanocomposite 

Agar nanocomposites, an elastic polysaccharide made up of 
agarose and agaropectin, are potential polysaccharides for 

food packaging due to their transparency and limited 

hydrophilicity, good film-forming capabilities, widespread 

availability and inexpensive price. Yet, their restricted 

utilization has been caused by inadequate mechanical 

qualities, thermal stability and antibacterial abilities. With the 

addition of nano-fillers such as metallic, bimetallic, nano clay 

and nanocellulose, agar films have been strengthened in 

recent studies to improve these characteristics (70). 

Zein and wheat gluten nanocomposite 

Zein nanocomposites are a naturally occurring protein 

derived from maize kernels that exhibit hydrophobic, 

biodegradable, biocompatible and film-forming 

characteristics (71). Zein often contains plasticizers such as 

ethers, aldehydes, long-chain fatty acids and glycerol. It is 

possible to improve functions, including water solubility, 
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foaming and emulsifying qualities, using physical, chemical, 

or enzymatic techniques. Zein can be processed to create 

glossy, oil-resistant, greasy films and coatings for food 

packaging. It can preserve food quality by functioning as an 

oxygen barrier and reducing oxidative damage since it 

naturally possesses antioxidant activity (72).  

 Coloured composite conducting sheets using a 
nanocomposite of polypyrrole (PP), wheat gluten and 

chlorophyll (CH) was made (73). According to their findings, 

WG film's physico-mechanical and antibacterial properties 

can be enhanced by adding polypyrrole and chlorophyll, 

which suggests using the film as an active and antibacterial 

packaging material. 

Active nanocomposite films 

By inhibiting enzymatic, oxidative and microbiological 

deterioration, the shelf lives of food items may be increased 

by nanocomposites with antifungal and antioxidant qualities. 

For antimicrobial packaging applications, metal oxide and 

metal nanoparticles, including titanium, silver, copper, zinc, 

MgO, ZnO and TiO2, have been described (74). Antioxidants 

may prevent some substances from oxidizing, such as lipids 

and proteins. Antioxidants enhance the food's colour stability 

and slow the emergence of off-flavours. In addition to active 

packaging, using an oxygen scavenger, the oxidation of food 

items can be minimized by eliminating or restricting the 

presence of oxygen (66). Table 3 describes the other 

nanocomposite films and their function in fruits. 

 Biopolymers are a new category of polymer materials 

that are biodegradable and sourced from renewable 

resources. Examples of biopolymers are agar nanocomposite, 

zinc oxide nanocomposite, etc. Table 4 describes different 

biopolymer nanocomposites and their functions.  The 

development of polymer nanocomposites using biopolymers 

as the main element has attracted a lot of attention due to 

their numerous uses and minimal environmental impact.   

Future perspectives of nano-preservation 

Nano-preservation offers an extended shelf life for perishable 

goods by inhibiting microbial growth and enzymatic 

reactions. Foods with bioactive chemicals are protected via 

nanoencapsulation, resulting in functional foods with 

improved nutritional benefits. To ensure consumers' 

acceptance of fruits, intelligent packaging materials such as 

time-temperature indicators (TTIs) can be used to address 

issues with food hygiene and losses. The safety and 

functionality of the entire packaging system in contact with 

food must be evaluated in subsequent research, with a 

preference for naturally occurring biopolymers. Regulations 

are required for intelligent food packaging to be both high-

quality and safe. Creating bioplastics and their functional 

alterations may help intelligent food packaging, but further 

research, testing and evaluation are needed. Customer 

confidence will increase due to technological advancements 

in safety, structure, connections and regulations. 

 

Biopolymer-nanocomposites Method of Coating Observation on quality of fruits Reference 

Denatured protein/ CaCl2 Dip-coating 
Fresh-cut mangoes retained firmness, color variations, sensory appeal 

and microbiological quality  (84) 

Gellan/ Pomegranate extract Dip-coating 
Did not alter sensory quality and greatly decreased the bacteria 

population during the period of storage. 
 (85) 

Sodium alginate/ CMC Dip-coating After 14 days of storage, the coated mango slices had the lowest 
microbiological count.  

 (86) 

Soy protein isolate Dip-coating 
Coating prolongs the shelf life of fresh cut pineapple by up to 14 days 

and prevents microbiological development and ripening.   (87) 

Agar/ZnO Dip-coating Extended shelf-life of Green Grapes up to 21days  (88) 

Table 4. Biopolymer nanocomposite 

Types of nanocomposite Function Reference 

Starch nanocomposite with glatin Enhancement of shelf-life and appearance in red-crimson grapes.  (75) 

Wheat gluten nanocomposite with 
chlorophyll and polypyrrole (PP) Improves the antibacterial or an active packaging film.  (73) 

Alginate/Thyme oil/Oregano oil. 
Coating increased antibacterial activity, decreased weight loss and respiration rate 

considerably.  (76) 

Chitosan and MMT nanocomposite 
Enhanced the oxygen barrier properties and decreased the water susceptibility in 

tangerine fruits.  (77) 

Carnauba wax 
Minimizing Indian jujube (plum) weight loss, rate of respiration, ethylene generation 

and softening at postharvest storage.  (78) 

Caesin nanocomposite with starch 
and gelatin Improved shelf-life and reduces moisture in guava.  (79) 

Caseinate-Whey protein isolate 
nanocomposite Significant antibacterial effects when storing strawberries.  (80) 

Bacterial cellulose based 
nanocomposites 

Enhances the water vapor permeability, thermal conductivity and tensile strength of 
fresh fruits .  (81) 

Beewax based nanocomposite with 
tapioca starch Decreased the gas exchange and moisture loss in blackberries.  (82) 

Xanthan gum based coating with               
a-tocopherol nanocapsules 

Coated apple slices retained more of the fruit's firmness and had a lower browning 
index.  (83) 

Table 3. Other types of nanocomposites and their function 
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Conclusion 

It should be stated that there are still many obstacles to be 

solved before widespread industrial applications for 

nanotechnology-related preservation techniques for 

extending the shelf-life of fruits. These techniques are now in 

the laboratory research stage. For example, it is feasible that 

nanoparticles might inadvertently enter fruits through 

absorption, dissolution and diffusion during fruit and 

vegetable contact; yet, the safety characteristics of 

nanomaterials remain incompletely known. Thus, future 

studies must include safety issues as well as legal 

considerations. Moreover, modelling studies might be useful 

in forecasting how nanotechnology would affect fruit and 

vegetable shelf life and product quality. Thus, more relevant 

research has to be done. Furthermore, because the mass 

manufacturing of nano-packaging materials is a complicated 

process requiring high levels of technological input, it will be 

necessary to refine the processing techniques and advance 

existing processing technologies. Furthermore, because the 

mass manufacturing of nano-packaging materials is a 

complicated process requiring high levels of technological 

input, it will be necessary to refine the processing techniques 

and advance existing processing technologies.  
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