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Abstract

This study investigates the stability of a bioprocess model that incorporates mass balance principles within a sequential reactor system
equipped with a recycling loop. The analysis employs one-dimensional partial differential equations, including integro-differential terms,
to evaluate exponential stability via a Port-Hamiltonian control mechanism. The proposed approach demonstrates how a simplified
structural framework, used to estimate the carbon dehydration process within a dynamic model, enables seamless integration ofcarbon
transfer control strategies across domains. Numerical examples are included to illustrate the model’s effectiveness and real-world

applicability.
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Introduction

Growing environmental concerns and global sustainability goals
have intensified the need for innovative solutions to manage solid
waste, particularly food and electronic waste. A port-Hamiltonian
system was recently developed using computational system to
identify carbon content and its composition and degradation
behavior (1, 2). Bioprocess systems have emerged as effective
frameworks for processing such waste through energy-efficient,
adaptive techniques. The boundary port variable method is one of
popular methods in physical network theory, enables a modular
representation of complex process systems (3). In this study, we
presented a stability analysis of a bioprocess model that
integrates mass balance principles with a sequential reactor
configuration featuring a recycling loop. This model employs a
one-dimensional partial differential equation (PDE) with integro-
differential terms to accurately describe the dynamic behavior of
the system under varying boundary conditions (4). The integro-
differential forms with the controller provide an estimate of
carbon dehydration and the tolerable rate of carbon transfer
between tankers.

Bioprocess systems have emerged as effective
frameworks for processing such waste through energy-efficient,
adaptive techniques (5). This approach, known as port-based
modeling, provides a unified method for analyzing multiple
physical domains, including mechanical, electrical, hydraulic and
thermal systems. It offers a systematic framework for modeling
complex physical processes. Continuous stirred-tank bioreactors
are often used to explore nonlinear adaptive control strategies in
anaerobic depollution processes. By using boundary port variables

and Dirac structures, the system is equipped with a boundary control
mechanism that preserves energy exchange and enhances
operational robustness. The design of linear input-output estimators
play a crucial role in maintaining exponential stability and ensuring
predictable system behavior under fluctuating load conditions.
Adaptive control mechanisms, including integrated state observers
and parameter estimation, are also introduced using nonlinear
process models (6). These mechanisms act as software sensors that
allow online monitoring of biological conditions and help
parameterize variables in dehydration techniques.

The sequential batch reactor-based wastewater treatment
processes using advanced control strategy is currently a major area
of practical interest (7). A primary motivation in engineering is to
apply control techniques to improve system stability and
production efficiency (8). Stability analysis of heat exchangers with
delayed boundary feedback have studied in (9). However, few
control models have been applied to measurement of liquid-gas
oxygen transfer rate tanker to tanker (10) and the decomposition of
food or electronic waste materials (11). The stability of Bioprocess
model with linear case recycle loop has developed in (12).
Bioprocess kinetics presents an advanced control method for
biotechnology-based wastewater treatment solutions. This study
addresses this gap by proposing a recursively structured, carbon-
responsive control model capable of adapting to varying input
loads.

Port-Hamiltonian modeling with adaptive control
system is particularly effective for processing food or electronic
waste materials dehydration, ionic polymer metal composites
(13, 14). It allows an adaptive fashion to dehydration and
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fermentation techniques used in using anoxic carbon- based
fluidized bed reactor (14). Prior applications of this modeling
approach include adaptive control of stirred-tank bioreactors,
where software sensors and parameter estimators have been
employed for online monitoring and optimization (15, 16).
Recent work has discussed adaptive control has focused on
despite progress in process control technologies, limited work
has addressed the stabilization of biodiesel process models
dealing explicitly with heterogeneous waste streams (16). Food
and electronic waste differ significantly in thermal properties,
moisture content and carbon composition, demanding a flexible
and scalable approach to treatment. This problem is addressed
using software sensors (3), we introduced and delineated the
carbon measurement process under dynamic model and it
readily seamless carbon transfer integration of control strategies
across domains, including biochemical reaction to be tolerable
the tanker, liquid-gas oxygen transfer rate tanker to tanker.

The exponential stability and feedback control of the
linearized basic bioprocess model are discussed using the spectrum
-determined growth assumption (17). Similar approaches are found
inK(18-24), which include analysis of the counterflow heat
exchange equation under zero boundary conditions, as well as
border feedback stability. In this paper, we discuss the stability of
carbon transfer rate measurement process (transfer rate tanker to
tanker) that incorporates mass balance and a sequential reactor
type recycling loop, governed by integro-differential equation with
Port-Hamiltonian control mechanism (25). The effectiveness of the
proposed system is demonstrated through numerical simulations
that validate the theoretical findings and showcase the models
practical applicability (26-28). The approach provides a foundation
for future integration with sensor-based monitoring and intelligent
control systems for scalable waste treatment operations, including
biochemical reaction to be tolerable the tanker, carbon transfer rate
tankerto tanker.

The paper is organized as follows: Section 2 is devoted to
the modeling of an anaerobic digestion bioprocess with recycle
loop of one-dimensional partial differential equations. Some
exponential stability and basic lemmas are proposed in section 3
and in section 4, the proposed results are verified both by
analytically and numerically. Conclusion will be given in section 5.

Formation of problem and basic notations

Consider bioprocess model of sequential reactor with carbon
dehydration measurement between tankers (aerator+settler
mass balance equation) is (5, 8, 29, 30).

An anaerobic biological wastewater treatment process is

F +F

in r

gxl (t,z)= —gx, (t,z)— x,(t,z)—a,x,(t,z) —a,x,(t,z)
ot 0z -

2 x,(t,z) = —g X,(t,z)— # X, (t,2) = Ay X, (8, 2) = Ay X, (1, 2) — Ay3X, (2, 2)
z

ot

% F +F
2 X(1,2) =~ xy(6,2) — T (1, 2) 4 3,3, (£ 2) + %y (£ 2) — 3, (1, 2),
ot Oz V

(t,z) € (0,0)x[0,1],
X, (t,0)=u, (1), x,(t,0)=u,(t), x;(t,0)=u,(t), t < (0,0),
X,(0,2)=x,(2), X,(0,2)=X,(2), X;(0,2)7x;,(2), z<€[0,1],
X (GD=y,(0), X, (L1D=y, (0, x;5(t1)=y;(1), te(0,0).

described in (11, 24). This system typically operates alongside a
sedimentation tank (settler), which separates solids from the

2

liqguid and an aerator, where biological degradation of
contaminants occurs. This arrangement allows for the separation
of biomass from the treated wastewater. Excess biomass is
removed from the system, while part of the settled biomass is
recycled back into the bioreactor. The variables xi(t, z) denote
the influent substrate concentration, x.(t, z) the oxygen feed rate
and x(t, z)the concentration of recycled biomass, respectively.
The process can be mathematically represented as a one-
dimensional partial differential equation as follows;

b
%x(t,z) =-G, ai[x(t, z)+ _[[ F(t,z)x(t, z)dt] +Gyx(t,z) 1

u(t) =Bx(t, 2), x(0, 2) =xo(2), t x 2 € (0, 20) x [0,1],
y(t) =Cx(t, 2), t xz€(0,%0) X [0,1],
x(t,2)
where the state x(,z)=| x,(1,z) | is take the values in R%, F(t, b) = Fin
X,(t,2)

and F(t, a) = F: is influent of recycle of waste flow rates and V is
an aerator and settler volume respectively. Let B, C, Go, Gy, F be

an nxn matrix, ¢ -c' satisfiesandV=1,then
100 -a, -a, 0
G=|010| and G,=|-a, -a, -a,
001

a3 a3p Ay

1o

I—F(t,z)x(t,z)dt )

The term denotes < oz carbon-responsive

control, which is recycling back into the bioreactor. The input
u, (2)

variable u()=|u,(t) |e R represents the amount of carbon,
NG

quantified based on equivalent weights of food or electronic

waste to be processed. Accordingly, we assume that the output

»(@®
»(@® =(y2(t)J s R’, is inked to the system's output feedback
(0

us(t) = kua(t), us(t) = kays(t) and us(t) = ksys(t). The state variables
are equivalent to xi(t,0) = kwa(t,1), x(t,0) = kax(t,1), x3(t,0) = kaxs
(t,1), t € (0,0) and ku, ko, ks are some feedback gain constant.
However, the process yields a higher output for a given input
while maintaining effective biological degradation of carbon
contaminants.

Remark 1

Anaerobic digestion is a complex bioprocess that can be modelled
as a dynamical system. From an engineering perspective, a
suitable reduced-order model can be used to represent this
system effectively. The singular perturbation method offers one
possible systematic approach for its control. Some of the
products generated in this process exhibit extremely low
solubility. It is also important to note that the quantified carbon
input corresponds to the equivalent weight of food or electronic
waste materials processed by the two microorganisms
F(t,b) = Finand F(t,a) = F..

Remark 2

[1] Consider the differential operator J of order N such that

Je, = 2\0“1\4 (i);’;(g, (2)+ j F(t,2)s,(t, z)dt},
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Where & € C((a, b): RY) and Mi(i), (1,2, .....,
matrix. If J& is skew symmetric then can be written as follows

N) isannxnreal

<&, JE>1<8,, JE>=0.
To verify the validity and stability of recycle loop for Eqn.
(1), the following lemmas are necessary.

Materials and Methods
Exponential stability

In this section, we demonstrate how Eqn. (1) can be applied to
stability analysis. Before presenting the main result, we
introduce several foundational lemmas. These lemmas show
that the port-Hamiltonian variables are linear combinations of
the boundary values, with a one-to-one correspondence.

Lemmal

Let & € H'((a, b): R"), i = 1,2 be an N times differentiable on the
Sobolve space at the interval (a; b) then for any J asin remark 2,

[ NENe)+ & (N e)Jar
(gL g @ - o @l

& (f)

A ) (F)- Fla) L )

Furthermore, A\ is a symmetric matrix such that A;=A

y 0, i+j>N,
Y AMkY=1)" i+ -1 =k

Proof: Let us choose Jbe asinremark 1,
[ et (X X2)+ &8 (X X=)]ar
[ gm0 L (@ [ Flos )
+ @00 (56 [ FE ) o
We assume that the restriction of our proof fori=1,
['ler ()& Xe)+ & ()&, Xe
SO (6 k) (6)

O L5 P2k e s

If Mi(i) = M(i)", by using integration by parts on the right-
hand side of the above equation,
[l Xo& o)+ & (X e)Jar

=’“2[(71)f¢.’(z)M.(ﬁil(é(zﬁI”F@’z)fz(z)‘”)

)+ Fle2)e (= ]}
F(2,2)&,(2) dt)ds

)iz ( :

5 (56

: ( F(t,2)&(2) dt)dv
-j=

After some manipulation and puti-1-j=k,

(#6004 (560 L"F(t,z)g,(z)d,jj]ds

3

The above inequality shows that, for any skew symmetric
differential operator J gives rise to a symmetric bilinear product
on the space of boundary conditions

a0 L) Pl

o) L) et
The coefficient of this symmetric product, where captured

in the matrix A are uniquely defined by the coefficients of the
skew-symmetric differential operator J.

&)

Therefore
M,(1) M,(2) M,3) M(N-1) M,(N)
-M,(2) -M,(3) -M,(4) -M,(N) 0
M,(3) M,(4) 0 0
A= ) 0
( 1)‘.‘—M,(N) 0 6
Lemma 2

Let H"(a, b): R"denote the sobolev space of N times differentiable
functions on the interval (g, b): The subspace D; of A defined as

(b)), =6 2+ [ SR -,
é(b)

del ’ N-2

—r €@+ (Fleb)=Flt.a))— 5 &la)

is a Dirac structure.

Proof: Let power of every element in Dj(A) is zero,

<SSl o WSl &s) =< & f > P < [LE> DP=< & [ > D= < f3,6,> I
=<&f>D+< f,E> -2 f,

[|& e[ Zalr [ rtana)
el 6 2460+ [ 2 Fleekslelar| s -2,

b L @ () Fla) D

£'(2)
< : —281f,
A @) Fla) ()|

—(f7er )Z(g’f j 2674,

R R s C) P

0 —-A
&)
o @+ (F(b)- Flea) &

-2&f,
r: (z)

=( ar,fz)z(g‘j]—zm -0,

GCS

using Lemma 1 we can concluded that D; is a Dirac structure.

Remark 3: The matrix Aex is in R¥™2™N and associated with
differential operator J; then

A O 1 (A —-A A 0 hold,
A, = R, =— d R
A5 Ot et ez

where 5-_ (0 _OAJ
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Lemma3

Let U be a full rank matrix of size 21N x k. If there exists, the
operatorAand D(A);

AE=JE (6)
where
D(A) ={¢ € L*((a, b): R"| The port variables are associate to ¢, (?J
feL?((a,b):R) and (f, 5, §, &) € Di}
If adjoint Ais equal to-f, then
D(A*) ={€ € L*((a, b): R"| The port variables are associate to ¢ (;J

isin ker Uy € L%((a, b): R"}

Proof: Let & be an element of L2 ((a, b): R") and its domain is
D(A*) if and only if & and &€ D(A),

<€, AE>= <&, &> (7

Where
A*é:z :gl‘ (8)
Let =G, %(x(t,z)-%—J.:F(t,z)x(t,z)dtj € H'((a,b): R”)and e D(A), we
compute 5
<&. 48 >=[ & (2)IE =)t (9)

Itis well known that, for every functionin HY((a, b): R") to be zero
at the boundaries is in the domain of A,

<&, AL >=[ & NENe)de + [ & (W& =) de - [ & (XI5 =)t
[ (z)[Gl %(52(t,z)+ [ fF(z)gz(t,z)dtﬂ ds

6] 6 2 (a0 [ FE0)ar) |as

~ [ &) (15 Xz)ar. (10)
By using Lemma 2,
<&.48>=(, 5)2(2] ~[[& G (6 =) (11)

f(“ul fa.:
Here (e‘mj and (,;ﬁ_zjare port boundary variables associat-
with & and &, then (g]zb for some r € R* and apply this
equationin (9),

<§,4¢, >:(§ar,1 ’é@T:l)ZUV +J‘j§2(z)r(_ Jé )(Z)dt' (12)

fm] € ker(U’Z)

Using condition (11) in (12), we can conclude that [é,
and A*E,1 = 'ng.
Lemma4

Let Jr is an infinitesimal generator of contraction semigroup and
its domain D(Jp). If there exists, the operator P has a full rank
matrix and satisfies PXP" >0 such that

pr = Jf
where

D(Up) = {€ € [X(a, b): R"| The port variable associated to

J3) isinker P and
2 @

fel%((a,b):R"), (f, 6, &, &) € Dy

Proof: The operator Jr is an infinitesimal generator of a
contraction semi group if and only if P has a rank nN and satisfies
PZPT = 0. The proof is smaller to Lemma 3. From that Lemma 3,

[;j lies within the kernel of U2 and we have that

(kerUTy)"3(kerU™3)=0, since Z has nN positive eigen values (see (1)).

Therefore, we conclude that A is an infinitesimal
generator of a contraction semigroup and combining the matrix
P and U, since the kernel of P is equals to the image of U, so we

can define that UZTU'*U'TU:S"["W’“"””UZ[&D Using Lemma 3,
one proves easily

D(A)={er'((a,b):R”) (13)

[?’XM] ekerP}.

.x(1)
Next, we examine feedback stabilization for a scattering
energy-preserving system. In this context, the closed-loop system
is modelled as a boundary control system, where the operator A
generates a contraction semigroup. Our goal is to determine
whether the closed-loop system exhibits exponential stability.

Definition 3.1

Assume that x € HY(a, b): RY). If there exists a boundary port
variable are associated with the system (1) and the vector

(fox o) ERY,

x(.b)
del dN—Z :
P11 (E 2| ) L () Fa))
(;}7[1 ,]d ) . (19)
)+ L () Flea(a)

where = is an n x n matrix (which is defined below). Furthermore,
let P; and P, be an n x 2n matrices and associated with Z

(“where” ¥ = [(1) ([)J inR"and P:(ﬁj such that

R\J(RY _(B=E
B)\p) \PZFR
is invertible and if and only if [ J is alsoinvertible,

R
P,
Where

PEP]
P3P

a) G0 6 G- 6w
G0 -6l -6 “G(x) 0
_la®) Gl 0 0
=7 -64) 0 0
Cream o - 0

Theorem 3.1

Assume that P; be an n x 2n matrix. If there exists a matrix P has

1

0 I
; o) N R"),
] such that the system (1) is associated with input

fﬁx(t)
u(t)=p[« |
fﬁ.x(r)

full rank and satisfies PXPT >0 (» where” ¥ = (
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Furthermore, if the infinitesimal generator A exists

A {q 2+ [ 2 o Gox(l,z)},

with domain
f x(1) L = =
NV

X : is in rank P},

D(4)={reH (a.b):R")

R
X(Z)
- : is in rank PTZ}’
dv1x(2)+(F(l‘b) Fta)d/\zx(z)

then D(A) and D(A") generates a contraction semigroup on X,

Proof: If P be a full rank of n x 2n matrix and [}[:‘] is invertible,

then =,, canbewritten as follows
T 7\
S A (16)
" \RIR P3P,

Let C be an operator associated with the system (1), then C is
mapping from C: L*(HY(a, b): R")>R"

fa‘X(t)j
Cx(t)=P
) [5a,x(z)

and the output
¥(t)=Cx(@)

If u € C¥0, o:R¥)and as per Lemma?2,
_ (u) po
L =30 5[ < [ 2 P2l G )

Moreover, port-controlled Hamiltonian ~systems are
described in terms of their energy balance rate, which is determined
by specific system dynamics. This energy balance plays a crucial role
in establishing exponential stability results for boundary control
systems. In recent years, several researchers have shown interest
in the study of boundary control systems (12, 18).

Theorem 3.2

Assume that Lemma 1-4 and Theorem 3.1 hold. If there exist

*Hx @)

u(t) = 0, for all 0 < T < t, the energy system S(¢)=
satisfies large enough on such z = that

S@)< @), Ixle.al,dt and S(r)< (@), [x(e.o) de.

where C is a positive constant that is depending on 7 and the
system (1) is exponential stable when

d d
ES( 7)< —k | (¢, a)HR and ES(T)S—kZHx(t,b)Hi

where ki, k; are positive constants.

Proof: The energy system is

s(t):% [/ (0.2)T()xle.2)r,

where [(z) is energy balancing constant, it could be less than
one. To prove the inequality, we need to employ the result (21-
23),

(17)

-0
K(z)= j x (¢, 2)T(2)x(t, z)dt,

9

(18)

Where 8>0,7>8=2(b-a)andforall z€ [a, b].

Therefore

K'(z)= I x" (t,z)l"(z)(a%x(t,z)dt + j. (% x(t,2) T(2)x(t, z))dt (19)
+Bx7(6,2)T'(2)x(8,z) + Bx" (r — 6,2)[(2)x(r - 0, 2).

Since Gy, Go are non-singular n x n matrices, then
0
x(t 2)==G,—| 2(t.2) +jF(t 2)x(t,2)dt |+Gyx(t,z) (20)
Substituting equation (20) into (19)
-0 0
K'(z)= j x’(z,z)r(z)%x(z,z)dua j ?F(z,z)fx(z,z)dz+G(,x(t,z))ds
) ) oz
+{f (5 x(t,2)+G, 'jﬁ(m, 2)x(t, 2)dt + G,x" (¢, 2)T(2)x(t, 2)ds + px" (t,2)[(2)x(t, 2)
v Ot 5 0z

0
+8x" (= 0,21 (2)x(z - 0,z) =—x" (t,2)[(2)G,x(t,2): 7’ + j X T(2)[F(t,b)x(t,b)
0

-F(t,a)x(t,a)+(F(t,b)x(t,b)-F(t,a)x(t,a))" + Gyx(t,z)]dt + Bx"(0,2)T(2)x(0,z)
+Bx"(r - 0,2)[(z)x(r - 0,z)

Since

M = Max{G,, (F(t,b)x(t,b)) - F(ta)x(t,a) +

K'(2)=-2"(. 2)G] T, 2) 5" + [ (e 2)M T(2)ele,2)ar

+8x"(8, 2)T(z )x(@ z)+ Bx" (- )F(z)xx(r—ﬁ,z).

By choosing Bis large enough and that [(z)<1,

K'(z)2-

Using Grownall’s inequality and that 7>2(b - a),
K(z)<e™ O a1, b))

If T- B >2(b - a), without loss of generality we may assume that
above inequality holds and

(r-2p5)S(z)<(r-2p)S(z - 2p)

F(t.b)x(0) - Fle.a)x(r.a)) ),

x(t, 2)G " x(t,z jgg—r ’ z)M" x(0,z)dt.

1 b pr—0
: ELJ.& xT(t,Z)F(Z)x(t, Z)dlds
< J.befM "lx(s b)) *dt
(b=a) o [ .
S ey LI
Since we observe that it is sufficient to prove the existence of
b— il
some time T>0 and some constant Co = 2((1'—;)ﬂ) oM (=0 5
then T
S(@)<C, [[[x(s.b)* ar o
is solution of system (1). Indeed, assume that 5(0)= % ve e
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. 2
$(z)-5(0)+ S(0)< C, [x(s.b)]_a. (22)
From equation (22) if C:=Max{S(0), Co} we can deduce that
as
d(t 2P G |x(e.bY, (23)

and system (1) is exponentially
stable with respect of semigroup operator Jp, Next, we will find a
relation between |x(t, b)|| and y(t) Using Theorem 3.1,

0)_ 1 (R)(E E=)(x(t.b)
v) 2B 1 1)((r.a)
Since = and [P‘J are non-singular matrix and also N* is
B

(24)

invertible such that N*||x|?* = €||x|[*for all €>0. Therefore taking
norm on both sides for the above equation

[IyIP=N*]ix(t, b= €]Ix(t, b)|F,

. 1[R)E
Where ¥ =ﬁ( j[l IJ This implies ||x(t, b)|[* = €*|ly|[* and hence

proved theorem

Results and Discussion
Examples

In this section, we demonstrate how to apply the results from
the previous section. By appropriately selecting the input (i.e.,
boundary conditions) and the output, we show that a simple
matrix condition can be used to establish exponential stability.

Example 4.1

(Bioprocess model): Consider the following bioprocess control
model

0 X, 1 00 5 X, 0 X,
b
—|x%|==]0 1 0| =|x|+ F, F) x, |dt
al ™ P _[62( 2 3) 2
X, 0 01 X, X,
-4, —a, 0 X
T —dy —ay a4y || X% (25)
T4y Ty Tdp )\N

Based on Theorem 3.1 and 3.2 our approach can be
applied for linear transformation, we select the state variable as

6 X \/a*“ 0 0
O, =y x, | withw=| 0 a, 0 | (26)
o, X 0 0 Lay,
From Eqn. (26) we can find matrix y*P,,
Therefore
a
— a4 ap \/j 0
ay
py=|_ \/7 _ 43
YV Ly =|—ay \/@ as ., 27)

—ay

—ay r — Ay
a3 as;

From (25), the integral function can be derived as

[20 F m[xl}dt—«mb)—ma» (Fb)- Fa)

X3

Ja, 00 )6, 9
x 0 Ja, 0 |6
0 0 Ja, |l

Substituting Eqn. (26-28) in (25),
) 1 00 2
6,|=-]0 1 0 2 0,
o) lo o 1)]la

9
a

a3, - asp \/@ —as; @
Va7 ay
and the boundary condition is
ky allxl(b)+ allxl(a):O
Ky a5, X, (b)+ A, (a) =0 (30)

ks a33x3(b)+ a33x3(a)=0

Therefore, the boundary conditions are associated with
boundary port-variables, which can write as

1 0 0) (-1 0 0
0100 -1 0
(f;w,,x)_ 1{loo1)lo o -1
&) A2l(1 00 100
010 010
00 1 00 1 a1

o

x,\b)—x,\a

xl(b) xl(a) (xs( ))

To obtain exponential stability with boundary port-
variables, we can select the matrix Q as follows

ay —kya, 0 vV kay, 0

1
Q:ﬁ —kyay, ay \/723 ky\ay, \/@ \/723-
\/Z —kyay, —ay \/Z k}@ \/Z

Let Q be an operator, which relates to the equation (1)
and generates a contraction semigroup satisfies the condition
(by using Theorem 3.1)

(F(b)-F(a) 0 0
j{”a’;( )iz + 050" [ 0 }

(32)
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and
w2 < BO)-Fla)+a)”
ap,
k22 < (Fz(b)_Fz(a))"'a;z/z +dy (34)
ay
kf < (F;(b)—}'}(a))+a§3/2 +4s
- ay
By using Eqn. (31-34) in (29),

b 1 00 X 5 X,
Alx, |=-lo 1 o]l 2| x Jr:’g(F1 F, F)x,|dt
X, 0 01 X, X,

—ay a 2o 0
all X
1
+ —ay al —dy Ay, & x| X,

with domain

D(4,)={reH" (a.b)

(?XJ e kerQ}

0,x

generates a contraction semigroup. This is turn implies that the
corresponding system (1), which generates uniformly bounded
and the infinitesimal generator Ar is satisfied Co semigroup,
therefore the system (25) is exponentially stable.

Example 4.2

To verify the validity of recycle loop, we executed the numerical
values. In this example, it shows that how much inputs can be
added to the bioprocess model during the time interval [0,1] and
it could be stabilized. We set as

i = o.l, an = 0.9’ A= o’ = 0.7’ an= 0.2
az=0.1,a2=0.1, a2 =08, a=-0.3

and k; = k, = ks = 1 are tolerable carbon transfer rate between
tankers, then existing Q matrix is given in last page. Therefore
Q>Q"=0, however, Theorem 3.2, the stability will depend on the
choice of input and the system (29) with boundary of the value
(30) is corresponding to the system (25). The following table
shows that how much of input values can be tolerated the output
values and shows how much error occurs (if ki = ko = ks = 1). It
shows Table 1, Table 2 and Table 3.

The boundary condition is exists in [0, 1] and the inputs are
(Fs(b) - F5(a)) = us(t), it shows that input values from (Fs(b) - F5(a)) = 0.5
to (Fs(b) - F5(a)) = 1.0 is stable and the remaining values are unstable,

(F(b)-F(a)+a, -a

a

if and only if less than 0.5 does not satisfies 2 <
and also input values greater than 1 is invalid, because
boundary values in [0 1]. If we consider (Fy(b) - Fx(a)) = ua(t), the
input values from (Fa(b) - F»(a)) =0.5  to (Fa(b) - F»(a)) = 1.0is stable,
then (F1(b) - F1(a)) = us(t) and stability is exist at (Fi(b) - F1(a))=0.5to
(Fib) - Fi(a)) = 1.0. In particular, if we choose the boundary
conditions are exist in [-10,10] and (Fs(b) - F3(a)) = us(t), (F2(b) - F2(a))
=uy(t), (Fu(b) - F1(a)) = u(t), simulating ki, k», ks in the ration of 0.1,
the response of ui(t),i=1,2, 3 is showed in Fig 1. The response of

error e(t) =ui(t)- yit) (where yi(t) = CXi(t, 1) fori=1,2,3and Cisnxn
are showed in Fig 2. In [14] has taken into an account of k; =k, =
ks = 1, which is indicated as recycle rates are maintained as a
constant value. But in our methodology, we have considered
different values for (Fi(b) - F(a)), i=1,2,3 while the
recycle rates are associated with carbon transfer between

tankers.

Table 1. The error value of k32 <

(Fy(b)-F(a)+ay _a33§2

as,

Input ((:?)(b) -Fs Output K< (F,(b)- Fy(a))+ay, —aly  error
as
0.5000 1.06891 0.06891
0.6000 1.08039 0.08039
0.7000 1.02053 0.02053
0.8000 1.03303 0.03307
0.9000 1.04553 0.04553
1.0000 1.04803 0.04801

Table 2. The error value of k22 <

(Fy(b) - F,(a) +ay, +ay;’

aZl

Input (F2(b) - Fz(a)) Output ;2 < (Fy(b)~F,(@) +ay+a"  error
ay
0.5000 1.05634 0.05634
0.6000 1.03277 0.03277
0.7000 1.02706 0.02706
0.8000 1.04934 0.04934
0.9000 1.05563 0.05563
1.0000 1.05589 0.0558
Fb)-F(a)+a"?
Table 3. The error value of £ < (5() - F(a) +a,
apy
_ 3/2
Input (F1(b) - Fi(a)) Output i’ < (F®)-F@)+a, error
a;
0.5000 1.07634 0.07634
0.6000 1.05262 0.05262
0.7000 1.03706 0.03706
0.800 1.02803 0.02803
0.9000 1.05513 0.05513
1.0000 1.05462 0.05462
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Fig. 2. The response of u(t).
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Conclusion

This study analyzed the stability of a bioprocess model that
integrates mass balance concepts with a sequential reactor
system and recycling loop, using onedimensional partial
differential equations with integro-differential terms. Exponential
stability was examined through a Port-Hamiltonian control
framework, in which boundary damping conditions applied to
input and output variables facilitated stabilization of the system’s
energy storage function. The structural framework supports
carbon dehydration measurement within a dynamic model,
while the controller maintains a tolerable carbon transfer rate
between tankers.
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