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Introduction 

Growing environmental concerns and global sustainability goals 

have intensified the need for innovative solutions to manage solid 

waste, particularly food and electronic waste. A port-Hamiltonian 

system was recently developed using computational system to 

identify carbon content and its composition and degradation 

behavior (1, 2).  Bioprocess systems have emerged as effective 

frameworks for processing such waste through energy-efficient, 

adaptive techniques. The boundary port variable method is one of 

popular methods in physical network theory, enables a modular 

representation of complex process systems (3). In this study, we 

presented a stability analysis of a bioprocess model that 

integrates mass balance principles with a sequential reactor 

configuration featuring a recycling loop. This model employs a 

one-dimensional partial differential equation (PDE) with integro-

differential terms to accurately describe the dynamic behavior of 

the system under varying boundary conditions (4). The integro-

differential forms with the controller provide an estimate of 

carbon dehydration and the tolerable rate of carbon transfer 

between tankers. 

 Bioprocess systems have emerged as effective 

frameworks for processing such waste through energy-efficient, 

adaptive techniques (5). This approach, known as port-based 

modeling, provides a unified method for analyzing multiple 

physical domains, including mechanical, electrical, hydraulic and 

thermal systems. It offers a systematic framework for modeling 

complex physical processes. Continuous stirred-tank bioreactors 

are often used to explore nonlinear adaptive control strategies in 

anaerobic depollution processes. By using boundary port variables 

and Dirac structures, the system is equipped with a boundary control 

mechanism that preserves energy exchange and enhances 

operational robustness. The design of linear input-output estimators 

play a crucial role in maintaining exponential stability and ensuring 

predictable system behavior under fluctuating load conditions. 

Adaptive control mechanisms, including integrated state observers 

and parameter estimation, are also introduced using nonlinear 

process models (6). These mechanisms act as software sensors that 

allow online monitoring of biological conditions and help 

parameterize variables in dehydration techniques. 

 The sequential batch reactor-based wastewater treatment 

processes using advanced control strategy is currently a major area 

of practical interest (7). A primary motivation in engineering is to 

apply control techniques to improve system stability and 

production efficiency (8). Stability analysis of heat exchangers with 

delayed boundary feedback have studied in (9). However, few 

control models have been applied to measurement of liquid-gas 

oxygen transfer rate tanker to tanker (10) and the decomposition of 

food or electronic waste materials (11). The stability of Bioprocess 

model with linear case recycle loop has developed in (12).  

Bioprocess kinetics presents an advanced control method for 

biotechnology-based wastewater treatment solutions. This study 

addresses this gap by proposing a recursively structured, carbon-

responsive control model capable of adapting to varying input 

loads. 

 Port-Hamiltonian modeling with adaptive control 

system is particularly effective for processing food or electronic 

waste materials dehydration, ionic polymer metal composites 

(13, 14). It allows an adaptive fashion to dehydration and 
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fermentation techniques used in using anoxic carbon- based 

fluidized bed reactor (14). Prior applications of this modeling 

approach include adaptive control of stirred-tank bioreactors, 

where software sensors and parameter estimators have been 

employed for online monitoring and optimization (15, 16). 

Recent work has discussed adaptive control has focused on 

despite progress in process control technologies, limited work 

has addressed the stabilization of biodiesel process models 

dealing explicitly with heterogeneous waste streams (16). Food 

and electronic waste differ significantly in thermal properties, 

moisture content and carbon composition, demanding a flexible 

and scalable approach to treatment. This problem is addressed 

using software sensors (3), we introduced and delineated the 

carbon measurement process under dynamic model and it 

readily seamless carbon transfer integration of control strategies 

across domains, including biochemical reaction to be tolerable 

the tanker, liquid-gas oxygen transfer rate tanker to tanker. 

 The exponential stability and feedback control of the 

linearized basic bioprocess model are discussed using the spectrum

-determined growth assumption (17). Similar approaches are found 

in (18-24), which include analysis of the counter-flow heat 

exchange equation under zero boundary conditions, as well as 

border feedback stability. In this paper, we discuss the stability of 

carbon transfer rate measurement process (transfer rate tanker to 

tanker) that incorporates mass balance and a sequential reactor-

type recycling loop, governed by integro-differential equation with 

Port-Hamiltonian control mechanism (25). The effectiveness of the 

proposed system is demonstrated through numerical simulations 

that validate the theoretical findings and showcase the model’s 

practical applicability (26-28). The approach provides a foundation 

for future integration with sensor-based monitoring and intelligent 

control systems for scalable waste treatment operations, including 

biochemical reaction to be tolerable the tanker, carbon transfer rate 

tanker to tanker. 

 The paper is organized as follows: Section 2 is devoted to 
the modeling of an anaerobic digestion bioprocess with recycle 

loop of one-dimensional partial differential equations. Some 

exponential stability and basic lemmas are proposed in section 3 

and in section 4, the proposed results are verified both by 

analytically and numerically. Conclusion will be given in section 5. 

Formation of problem and basic notations 

Consider bioprocess model of sequential reactor with carbon 

dehydration measurement between tankers (aerator+settler 

mass balance equation) is (5, 8, 29, 30). 

 An anaerobic biological wastewater treatment process is 

described in (11, 24). This system typically operates alongside a 

sedimentation tank (settler), which separates solids from the 

liquid and an aerator, where biological degradation of 

contaminants occurs. This arrangement allows for the separation 

of biomass from the treated wastewater. Excess biomass is 

removed from the system, while part of the settled biomass is 

recycled back into the bioreactor. The variables x1(t, z) denote 

the influent substrate concentration, x2(t, z) the oxygen feed rate 

and x3(t, z)the concentration of recycled biomass, respectively. 

The process can be mathematically represented as a one-

dimensional partial differential equation as follows; 

 

 

 

 u(t) = Bx(t, z), x(0, z) = x0(z), t × z ϵ (0, ∞) × [0,1], 

  y(t) = Cx(t, z), t × z ϵ (0, ∞) × [0,1], 

 

where the state is take the values in R3, F(t, b) = Fin  

       

and F(t, a) = Fr  is influent of recycle of waste flow rates and V  is 

an aerator and settler volume respectively. Let B, C, G0, G1, F be 

an            n × n  matrix,  satisfies and V = 1,then 

                                   

 

                                                                                                            

 The  term  denotes          carbon-responsive 

control, which is recycling back into the bioreactor.  The input 

                    

variable represents  the amount of carbon,  

               

quantified based on equivalent weights of food or electronic  

waste to be processed.   Accordingly,  we assume that the output 

                                

is  inked  to  the system's output  feedback      

                    

u1(t) = k1y1(t), u2(t) = k2y2(t) and u3(t) = k3y3(t). The state variables 

are equivalent to x1(t,0) = k1x1(t,1), x2(t,0) = k2x2(t,1), x3(t,0) = k3x3

(t,1), t ϵ (0,∞) and  k1, k2, k3 are some feedback gain constant. 

However, the process yields a higher output for a given input 

while maintaining effective biological degradation of carbon 

contaminants. 

Remark 1 

Anaerobic digestion is a complex bioprocess that can be modelled 

as a dynamical system. From an engineering perspective, a 

suitable reduced-order model can be used to represent this 

system effectively. The singular perturbation method offers one 

possible systematic approach for its control. Some of the 

products generated in this process exhibit extremely low 

solubility. It is also important to note that the quantified carbon 

input corresponds to the equivalent weight of food or electronic 

waste materials processed by the two microorganisms                                 

F(t, b) = Fin and F(t, a) = Fr.  

Remark 2 

[1] Consider the differential operator  J of order N such that 
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  Where εi ϵ C∞((a, b): RN) and M1(i), (i=1,2, ….., N)   is an n × n real 

matrix. If Jεi is skew symmetric then  can be written as follows 

  <ε1, Jε2>+<ε2, Jε1>=0.    

 To verify the validity and stability of recycle loop for Eqn. 

(1), the following lemmas are necessary. 

 

Materials and Methods 

Exponential stability 

In this section, we demonstrate how Eqn. (1) can be applied to 

stability analysis. Before presenting the main result, we 

introduce several foundational lemmas. These lemmas show 

that the port-Hamiltonian variables are linear combinations of 

the boundary values, with a one-to-one correspondence. 

Lemma 1 

Let ξi  ϵ HN((a, b): Rn), i = 1,2 be an N times differentiable on the 

Sobolve space at the interval (a; b) then for any J as in remark 2, 

Furthermore, Λ is a symmetric matrix such that Aij =A 

 

 

Proof: Let us choose J be as in remark 1, 

                                                                                                                                     

We assume that the restriction of our proof for i ≥ 1,   

 If M1(i) = M1(i)T, by using integration by parts on the right-

hand side of the above equation, 

 

 

 

 

 

 

After some manipulation and put i - 1 - j = k, 

 The above inequality shows that, for any skew symmetric 

differential operator J gives rise to a symmetric bilinear product 

on the space of boundary conditions 

 

 

 

 The coefficient of this symmetric product, where captured 

in the matrix Λ are uniquely defined by the coefficients of the 

skew-symmetric differential operator J. 

Therefore 

Lemma 2 

Let HN(a, b): Rn denote the sobolev space of N times differentiable 

functions on the interval (a, b): The subspace Dj  of A defined as 

is a Dirac structure. 

Proof: Let power of every element in Dj(A) is zero, 

using Lemma 1 we can concluded that DJ is a Dirac structure. 

Remark 3: The matrix Λext is in R2nN×2nN and associated with 

differential operator J; then 
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Lemma 3 

Let U be a full rank matrix of size 2nN × k. If there exists, the 

operator A and D(A); 

   Aξ = Jξ        (6) 

where 

D(A) ={ξ ϵ L2((a, b): Rn| The port variables are associate to       

f ϵ L2 ((a, b): Rn) and (f, f∂,  ξ, ξ∂) ϵ DJ} 

If adjoint A is equal to - f, then  

D(A*) ={ξ ϵ L2((a, b): Rn| The port variables are associate to 

                 

is in ker  UT∑ ϵ  L2((a, b): Rn)} 

Proof: Let ξ1 be an element of L2 ((a, b): Rn) and its domain is                   

D(A*) if and only if  and ξ2 ϵ D(A), 

  <ξ1, Aξ2>= <ξ1, ξ2>       (7) 

Where 

 

Let    we 

compute 

                                           

It is well known that, for every function in  HN((a, b): Rn)  to be zero 

at the boundaries is in the domain of A, 

 

 

 

 

By using Lemma 2, 

                                             

with ξ1  and ξ2, then       for some r ϵ Rk  and apply this 

equation in (9), 

 

                                                                                        

Using condition (11) in (12), we can conclude that  

and A*ξ1 = -Jξ1. 

Lemma 4 

Let JP  is an infinitesimal generator of contraction semigroup and 

its domain D(JP). If there exists, the operator P has a full rank 

matrix and satisfies PΣPT ≥ 0 such that  

   JPξ = Jξ   

 where  

D(JP) = {ξ ϵ L2((a, b): Rn|  The port variable associated to                                 

                 

is in ker P and  

 f ϵ L2((a, b): Rn), (f, f∂,  ξ, ξ∂) ϵ DJ 

Proof: The operator JP is an infinitesimal generator of a 

contraction semi group if and only if P has a rank nN and satisfies 

PΣPT ≥ 0. The proof is smaller to Lemma 3. From that Lemma 3,        

                   

lies within the kernel of UTΣ and we have that                           

                                                  

(kerUT∑)T∑(kerUT∑)≥0, since Σ has nN positive eigen values (see (1)).  

 Therefore, we conclude that A is an infinitesimal 

generator of a contraction semigroup and combining the matrix 

P and U, since the kernel of P is equals to the image of U, so we   

                               

can define  that  Using Lemma 3,              

             

one proves easily 

 

              

 Next, we examine feedback stabilization for a scattering 

energy-preserving system. In this context, the closed-loop system 

is modelled as a boundary control system, where the operator A 

generates a contraction semigroup. Our goal is to determine 

whether the closed-loop system exhibits exponential stability. 

Definition 3.1  

Assume that x ϵ H1((a, b): RN). If there exists a boundary port 

variable are associated with the system (1) and the vector                          

(f∂, x, ξ∂, x) ϵ Rn, 

where Ξ is an n × n matrix (which is defined below). Furthermore, 

let P1 and P2 be an n × 2n matrices and associated with Σ  

                                                        

(“where” Σ =  in Rn and  such that 

                                                    

                       

            

                        

is invertible and if and only if  is also invertible, 

Where 

Theorem 3.1 

Assume that P1 be an n × 2n matrix. If there exists a matrix P has 
                                                       

full rank and satisfies PΣPT ≥ 0 

              

such that the system (1) is associated with input 
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Furthermore, if the infinitesimal generator A exists 

with domain 

    

            

and the adjoint of A is equal to  

and 

then D(A) and D(A*) generates a contraction semigroup on X, 

                           

Proof: If P be a full rank of n × 2n matrix and       is invertible, 

then can be written as follows 

Let C be an operator associated with the system (1), then C is 
mapping from C: L-1(H1(a, b):  Rn)→Rn, 

 

                                    

and the output                 

    y(t) = Cx(t) 

If  u  ϵ  C2(0,  ∞: Rk)and  as per Lemma 2, 

 Moreover, port-controlled Hamiltonian systems are 

described in terms of their energy balance rate, which is determined 

by specific system dynamics. This energy balance plays a crucial role 

in establishing exponential stability results for boundary control 

systems. In recent years, several researchers have shown interest 

in the study of boundary control systems (12, 18). 

Theorem 3.2 

Assume that Lemma 1-4 and Theorem 3.1 hold. If there exist                
                                                        

u(t) = 0, for all 0 ≤ τ ≤ t, the energy system  

satisfies large enough on  such that 

  

                                                          

where C is a positive constant that is depending on τ and the 

system (1) is exponential stable when 

  

where  k1, k2 are positive constants. 

Proof: The energy system is 

  

            

where Γ(z) is energy balancing constant, it could be less than 

one. To prove the inequality, we need to employ the result (21-

23), 

Where β >0, τ > β = 2(b - a) and for all z ϵ [a, b]. 

Therefore 

               

Since  G1, G0 are non-singular  n × n matrices, then 

                      

Substituting equation (20) into (19) 

Since  

By choosing β is large enough and that Γ(z)<1, 

Using Grownall’s inequality and that τ > 2(b - a), 

                            

                             

If τ - β > 2(b - a), without loss of generality we may assume that 

above inequality holds and 

 

 

 

      

Since we observe that it is sufficient to prove the existence of 

     

some time τ > 0 and some constant 

then 

   

                                                                                              

is solution of system (1). Indeed, assume that  

 ( ) ( )( ) ( )

( )

( )

( ) ( ) ( )( ) ( )

,
,,

2

1
:,

2

2

1

1

,

,1*





















−+










 
=













=

−

−

−

−





T

N

N

N

N

tx

txn

Prankinis

zx
dz

d
atFbtFzx

dz

d

zx

II

f
RbaHxAD





 ( ) ( ) ( ) ( ) ,,,,, 01









+











+




=  ztxGdtztxztF

z
ztx

z
GAx

b

a

( ) ( )( ) ( )

( )

( )

( ) ( ) ( )( ) ( )

,

,,

2

1
:,

2

2

1

1

,

,1

Prankinis

zx
dz

d
atFbtFzx

dz

d

zx

II

f
RbaHxAD

N

N

N

N

tx

txn



















−+










 
=













=

−

−

−

−


















2

1

P

P

21PP


 
.

1

2212

2111

21

−


















=

TT

TT

PP
PPPP

PPPP (16) 

( ) ( )

( )













=





tx

txf
PtxC

,

,



( ) ( ) ( ) 











+




−  dtztxztF

z
ztx

z
G

b

a
,,,1

( ) ( ) ( ) ( ) ( ) ( ) .,,,
2

1

2

1
0

2

21
−




−








=  txtxGdtztxztF

zy

u
yutx

dt

d b

a
PP

TT

L

( ) ( ) 2

2

1
L

txtS =

21PP


(17) ( ) ( ) ( ) ( ) ,,,
2

1
 =
b

a

T dtztxzztxtS

 (18) ( ) ( , ) ( ) ( , ) ,       (18)TK z x t z z x t z dt

 



−

= 

( ) ( , ) ( ) ( , ) ( ( , ) ( ) ( , ))         (19)

          + ( , ) ( ) ( , ) ( , ) ( ) ( , ).

T T

T T

K z x t z z x t z dt x t z z x t z dt
z z

x z z x z x z z x z

   

 

       

− −
 

 =  + 
 

 + −  −

  (19) 

1 0( , ) ( , ) ( , ) ( , ) ( , )     (20)

        

b

a

x t z G x t z F t z x t z dt G x t z
t z

  
= − + + 

   
 (20) 

1 0

1 0

( ) ( , ) ( )( ( , ) ( , ) ( , ) x(t,z))ds       

          + ( ( , ) ( ( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( ) ( , )

          + x ( , ) ( )x(

T T

b

T T

a

T

K z x t z z x t z dt G F t z x t z dt G
t z

x t z G F t z x t z dt G x t z z x t z ds x t z z x t z
t z

z Z

   

 

 





    

− −

−

 
 =  + +

 

 
+ +  + 

 

−  −

 

 

1

0

, ) ( , ) ( ) ( , ) ( )[ ( , ) ( , )

         -F(t,a)x(t,a)+(F(t,b)x(t,b)-F(t,a)x(t,a)) ( , )] ( , ) ( ) ( , )

        + ( , ) ( ) ( , )

T z T

z

T T

T

z x t z z G x t z x z F t b x t b

G x t z dt x z z x z

x z z x z

 
 





  

    

−

= −

== −  + 

+ + 

−  −



( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )( ) ,,,,,,,,,,0

* T
atxatFbtxbtFatxatFbtxbtFGMaxM −+−=

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ).,,,,

,,,,' *

0

1

1

zxzzxzxzzx

dtztxzMztxztxzGztxzK

TT

Tz

z

T









−−++

+−= 
−

−=

=

−

( ) ( ) ( ) ( ) ( ) .,,,,' *

0

1

1 dtzxMzxztxGztxzK Tz

z

T 







−

−=

=

− −−

( ) ( ) ( ) ., 2*

btxezK abM −−

( ) ( ) ( ) ( ) 222 −−− SS

( ) ( ) ( ) dsdtztxzztx
b

a

T ,,
2

1
  

−



( ) ( )
−−

b

a

abM dtbsxe 2,
*

( )
( )
( )

( ) ( ) .,
22 0

2*

dtbtxe
ab

S abM


−−

−

−







( )
( )

( ) 0
22

*

0 
−

−
= −− abMe

ab
C



( ) ( ) dtbsxCS 



0

2

0 , (21) 

( ) ,1,
1

0 0

0

0 
+

= C
C

C
S

( ) ( ) ( )
T

R
dtatxCS

0

2
, ( ) ( ) ( ) ,,

0

2


T

R
dtbtxCS and 

( ) ( ) 2

1 ,
R

atxkS
dt

d
− ( ) ( ) 2

2 ,
R

btxkS
dt

d
−and 
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From equation (22) if  C1 = Max{S(0), C0} we can deduce that 

    

               (23) 

and system (1) is exponentially 

stable with respect of semigroup operator JP, Next, we will find a 

relation between ||x(t, b)||  and       y(t), Using Theorem 3.1, 

   

        (24) 

Since Ξ and  are non-singular matrix and also N* is  

                   

invertible such that N*||x||2 ≥ ϵ||x||2 for all ϵ>0. Therefore taking 

norm on both sides for the above equation 

||y||2 = N*||x(t, b)||2 ≥ ϵ||x(t, b)||2, 

                   

Where This implies ||x(t, b)||2  ≤ ϵ-1||y||2 and hence 

                                          

proved theorem  

 

Results and Discussion  

Examples 

In this section, we demonstrate how to apply the results from 

the previous section. By appropriately selecting the input (i.e., 

boundary conditions) and the output, we show that a simple 

matrix condition can be used to establish exponential stability. 

Example 4.1 

(Bioprocess model): Consider the following bioprocess control 

model 

 

 

 

 Based on Theorem 3.1 and 3.2 our approach can be 
applied for linear transformation, we select the state variable as   

From Eqn. (26) we can find matrix ψ-1Pψ.  

Therefore 

From (25), the integral function can be derived as 

  

Substituting Eqn. (26-28) in (25), 

and the boundary condition is 

 

  

     

                                             

Therefore, the boundary conditions are associated with 

boundary port-variables, which can write as   

                                                          

 To obtain exponential stability with boundary port-

variables, we can select the matrix Q as follows 

           

 Let Q be an operator, which relates to the equation (1) 

and generates a contraction semigroup satisfies the condition 

(by using Theorem 3.1) 

( ) ( ) ( ) ( ) .,00
2

0
0 dtbsxCSSS

R+−
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
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(30) 

 

( )
( )
( )

( )
( )
( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

.
2

1

100

010

001

100

010

001

100

010

001

100

010

001

2

1

33

22

11

33

22

11

3

2

1

3

2

1

,

,



























+

+

+

−

−

−

=




























































































−

−

−

















=

















axbx

axbx

axbx

axbx

axbx

axbx

ax

ax

ax

bx

bx

bx

f

x

x



(31) 

(32) 
.

00

2

1

33

23

323

22

121

31

212

11

33

23

323

22

121

31

212

11

















−−

−

−=

a

a

ak

a

ak

a

ak

a

a

a

ak

a

ak

a

ak

a

Q

( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

0

00

00

00

00

00

00

31

2/3

3332

2

3

23

2/3

2221

2

2

12

2

1

2/3

11

33

22

11


















+−−

++−

−

+

















−

−

−

=+





aaak

aaak

aka

aFbF

aFbF

aFbF

QQdz
z

zFb

a

T

(33) 

https://plantsciencetoday.online


7 

Plant Science Today, ISSN 2348-1900 (online) 

and 

 

  

    

. 

                    

By using Eqn. (31-34) in (29), 

with domain                                                                            

generates a contraction semigroup. This is turn implies that the 

corresponding system (1), which generates uniformly bounded 

and the infinitesimal generator AT is satisfied C0 semigroup, 

therefore the system (25) is exponentially stable. 

Example 4.2 

To verify the validity of recycle loop, we executed the numerical 

values. In this example, it shows that how much inputs can be 

added to the bioprocess model during the time interval [0,1] and 

it could be stabilized. We set as  

  a11 = 0.1, a12 = 0.9,  a13 = 0,  a21 = 0.7, a22 = 0.2   

  a23 = 0.1, a31 = 0.1,  a32 = 0.8,  a33 = -0.3  

and k1 = k2 = k3 = 1 are tolerable carbon transfer rate between 

tankers, then existing Q matrix is given in last page. Therefore   

Q∑QT ≥0, however, Theorem 3.2, the stability will depend on the 

choice of input and the system (29) with boundary of the value 

(30) is corresponding to the system (25). The following table 

shows that how much of input values can be tolerated the output 

values and shows how much error occurs (if k1 = k2 = k3 = 1). It 

shows Table 1, Table 2 and Table 3. 

 The boundary condition is exists in [0, 1] and the inputs are 

(F3(b) - F3(a)) = u3(t), it shows that input values from (F3(b) - F3(a)) = 0.5   

to (F3(b) - F3(a)) = 1.0  is stable and the remaining values are unstable, 

                 

if and only if less than 0.5 does not satisfies 

                  

and also input values  greater than 1 is invalid, because 

boundary values in [0 1]. If we consider (F2(b) - F2(a)) = u2(t), the 

input values from (F2(b) - F2(a)) = 0.5     to (F2(b) - F2(a)) = 1.0 is stable, 

then (F1(b) - F1(a)) = u1(t) and stability is exist at (F1(b) - F1(a)) = 0.5 to 

(F1(b) - F1(a)) = 1.0. In particular, if we choose the boundary 

conditions are exist in [-10,10] and (F3(b) - F3(a)) = u3(t), (F2(b) - F2(a)) 

= u2(t), (F1(b) - F1(a)) = u1(t), simulating  k1, k2, k3 in the ration of 0.1, 

the response of ui(t), i = 1, 2, 3  is showed in Fig 1. The response of 

error ei(t) =ui(t)- yi(t) (where  yi(t) = CXi(t, 1)  for i=1,2,3 and C is n × n  

are showed in Fig 2. In [14] has taken into an account of k1 = k2 = 

k3 = 1, which is indicated as recycle rates are maintained as a 

constant value. But in our methodology, we have considered 

different values for                            (Fi(b) - Fi(a)),  i = 1,2,3 while the 

recycle rates are associated with carbon transfer between 

tankers. 

Input (F2(b) - F2(a))  Output   error 

0.5000 1.05634  0.05634 

0.6000 1.03277  0.03277 

0.7000 1.02706  0.02706 

0.8000 1.04934  0.04934 

0.9000 1.05563  0.05563 

1.0000 0.0558 1.05589  

3/2
2 2 2 23 22
2

21

( ( ) ( ))F b F a a a
k

a

− + +


Table 2. The error value of   
3/2
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− + +
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Table 3. The error value of    
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Input (F1(b) - F1(a))  Output  
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− +
 error 

0.5000 1.07634  0.07634 

0.6000 1.05262  0.05262 

0.7000 1.03706  0.03706 

0.800 1.02803  0.02803 

0.9000 1.05513  0.05513 

1.0000 0.05462 1.05462  
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T ker,
,

,1 







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


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
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33
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Input  (F3(b) - F3

(a)) 
Output   error 

0.5000 1.06891  0.06891 

0.6000 1.08039  0.08039 

0.7000 1.02053  0.02053 

0.8000 1.03303  0.03307 

0.9000 1.04553  0.04553 

1.0000 0.04801 1.04803  

3/2
2 3 3 31 33
3

32

( ( ) ( ))F b F a a a
k

a

− + −


Table 1. The error value of    
3/2

2 3 3 31 33
3

32

( ( ) ( ))F b F a a a
k

a

− + −

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Conclusion 

This study analyzed the stability of a bioprocess model that 

integrates mass balance concepts with a sequential reactor 

system and recycling loop, using one-dimensional partial 

differential equations with integro-differential terms. Exponential 

stability was examined through a Port-Hamiltonian control 

framework, in which boundary damping conditions applied to 

input and output variables facilitated stabilization of the system’s 

energy storage function. The structural framework supports 

carbon dehydration measurement within a dynamic model, 

while the controller maintains a tolerable carbon transfer rate 

between tankers. 
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