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Abstract   

Sweet corn (Zea mays var. saccharata), cherished globally for its sweet taste 

and nutritional richness, is sensitive to zinc availability-a key micronutrient vital 

for enzymatic activity, photosynthesis and kernel development. Despite its 

importance, zinc deficiency in agricultural soils remains a significant barrier to 

enhancing crop yield and nutritional quality. This study explores the efficacy of 

foliar-applied green-synthesized zinc oxide nanoparticles (ZnO NPs) using 

Moringa oleifera leaf extract in enhancing sweet corn yield and quality under 

field conditions at Tamil Nadu Agricultural University, Coimbatore, during the 

Kharif season of 2024, employing a Randomized Block Design with seven 

treatments, varying ZnO NP concentrations from 100 to 600 ppm, applied at 40 

and 60 days after sowing (DAS). The findings revealed that foliar application of 

ZnO NPs at 500 ppm significantly enhanced yield parameters, including cob 

weight (269.9 g), grain yield (10277 kg/ha), green cob yield (16195 kg/ha) and 

green fodder yield (16393 kg/ha) along with quality attributes such as total 

soluble solids (16.33 ºBrix), total sugars (12.07 %) and carbohydrate content 

(25.08 %). Enhanced zinc uptake (357.5 g/ha) and recovery efficiency (50.63 %) 

were also recorded. Correlation analysis also revealed strong positive 

associations between yield traits, such as cob weight, grain yield and green 

fodder yield, with zinc uptake and content in grains. These results underscore 

the potential of ZnO NPs in optimizing zinc bioavailability to bolster sweet corn 

yield and nutritional value and thereby positioning ZnO NPs as a promising and 

sustainable biofortification strategy.  
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Introduction   

Sweet corn (Zea mays var. saccharata) is a widely cultivated cereal crop valued 

for its nutritional richness, characterized by a high sugar concentration and 

essential micronutrients. In recent years, increasing the nutritional quality and 

yield of sweet corn has gained significant attention, particularly using novel 

agronomic practices such as biofortification. As a vital micronutrient, zinc 

supports various physiological functions in plants, including enzyme activation, 

chlorophyll production, pollen fertility and kernel formation. Despite its 

importance, zinc deficiency is still a widespread problem in agricultural soils, 

limiting crop productivity and leading to nutritional deficiencies in human 

populations consuming zinc-deficient produce (1, 2).  
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 Nanotechnology involves the manipulation of 

materials at the nanoscale (1-100 nm), enabling unique 

physicochemical properties that enhance their reactivity and 

efficiency. In agriculture, nanoscale fertilizers, including zinc 

oxide nanoparticles (ZnO NPs), improve nutrient solubility, 

uptake and targeted delivery, reducing losses and enhancing 

plant metabolism. Green synthesis of these nanoparticles 

using biological agents ensures environmental sustainability 

while maintaining effectiveness. By leveraging these 

advancements, nanotechnology offers a promising approach 

to addressing micronutrient deficiencies and improving crop 

productivity. Eco-friendly synthesized ZnO NPs have 

demonstrated potential in enhancing plant health, yield and 

quality attributes. The application of ZnO NPs (15-30 nm) as a 

foliar spray enables direct and efficient nutrient uptake, 

minimizing environmental losses like soil-related limitations 

such as immobilization and leaching (3-5). Foliar-applied ZnO 

NPs have been reported to improve photosynthetic activity, 

metabolic enzyme activity and stress tolerance in crops like 

rice, wheat and maize, leading to increased grain yield and 

nutritional quality (6, 7). 

 Sweet corn production is particularly sensitive to zinc 

availability due to the micronutrient's critical role during the 

reproductive stages. Zinc improves pollen viability at 

tasseling, a key determinant of successful fertilization and 

grain development (8). Additionally, zinc influences the 

synthesis and transport of carbohydrates and secondary 

metabolites, which are vital for kernel quality and storage (8, 

9). Research has shown that timely zinc application enhances 

chlorophyll synthesis and photosynthesis, leading to better 

light absorption and carbohydrate accumulation (5, 10). This 

is because zinc stabilizes thylakoid membranes in 

chloroplasts, preventing degradation of chlorophyll and 

improving photosynthetic efficiency. Also, zinc deficiency 

reduces ribulose-1,5-bisphosphate carboxylase/oxygenase 

(RuBisCO) activity, limiting CO₂ fixation and reducing 

photosynthetic rate. Adequate and timely zinc supply ensures 

optimal production of photosynthetic pigments, improving 

light absorption and energy conversion. Nevertheless, 

research on the impact of foliar-applied ZnO NPs on sweet 

corn remains limited, particularly when applied at key 

phenological stages like 40 and 60 days after sowing (DAS). 

This study investigates the impact of foliar application of 

green-synthesized ZnO NPs on the yield and quality of sweet 

corn grown under field conditions. The nanoparticles were 

eco-friendly synthesized using Moringa oleifera leaf extract as 

a reducing agent, ensuring a sustainable approach to nutrient 

delivery. The findings aim to offer valuable insights into the 

potential of ZnO NPs as a sustainable agronomic practice for 

enhancing sweet corn productivity and nutritional quality.  

 

Materials and Methods 

Experimental Site and experiment details 

The field study was carried out in Kharif 2024 at the Eastern 

Block farm (11°00'59''N, 76°56'05''E), Department of 

Agronomy, Tamil Nadu Agricultural University, Coimbatore. 

The experiment was laid out in Randomized Block Design 

with seven treatments replicated thrice. The treatments given 

were different doses of green synthesized zinc oxide 

nanoparticles. All the treatments were foliar applied at 40 

DAS and 60 DAS. The treatments were T1: Foliar application of 

synthesized zinc oxide nanoparticles @ 100 ppm, T2: Foliar 

application of synthesized zinc oxide nanoparticles @ 200 

ppm, T3: Foliar application of synthesized zinc oxide 

nanoparticles @ 300 ppm, T4: Foliar application of 

synthesized zinc oxide nanoparticles @ 400 ppm, T5: Foliar 

application of synthesized zinc oxide nanoparticles @ 500 

ppm, T6: Foliar application of synthesized zinc oxide 

nanoparticles @ 600 ppm, T7: Control (No zinc application).  

Planting material and nanoparticles 

The sweet corn variety Sugar 75 was purchased from 

Syngenta India Ltd. For this study, ZnO NPs were green 

synthesized, characterized and produced in bulk at the 

Department of Agronomy, Tamil Nadu Agricultural University, 

utilizing Moringa oleifera leaf extract as a reducing agent 

through the co-precipitation method. The synthesized zinc 

oxide nanoparticles had an average crystallite size of 53.88 

nm (Unpublished data).  

Parameters studied 

Five sample plants from each treatment plot were tagged and 

used for recording observations. The yield parameters like 

cob weight, number of kernel rows, number of kernels per 

row, total number of kernels per cob, 100 seed weight, grain 

yield, stover yield and harvest index of sweet corn were 

observed. The quality parameters analyzed in the study 

included total soluble solids (TSS), total sugars, reducing 

sugars, total carbohydrates and starch content, using fresh 

kernels. Each parameter was determined following the 

standard protocols (11). Given below is an elaboration of the 

procedures: 

Total Soluble Solids (TSS): TSS was measured using a hand 

refractometer. A small amount of pulp extracted from fresh 

kernels was placed on the refractometer prism and the 

reading was taken in °Brix, which directly indicates the 

percentage of dissolved solids. 

Total Sugars and Reducing Sugars: Total sugars were 

estimated using the phenol-sulfuric acid method, a 

colorimetric assay where sugar reacts with phenol and 

concentrated sulfuric acid to produce a green color 

measurable at 630 nm. Reducing sugars were determined 

using the DNS (dinitrosalicylic acid) method, where reducing 

sugars reduce 3,5-dinitrosalicylic acid to form a colored 

complex, quantified spectrophotometrically at 510 nm. Both 

were estimated using the formula, 

Sugars (%) = (X/Volume of aliquot) x (Total volume of extract/

weight of sample) ×100  (Eqn. 1) 

X= concentration of glucose corresponding to absorbance 

value at 630 nm (total sugars) and 510 nm (reducing sugars) 

from standard curve. 

Total Carbohydrates: Total carbohydrates were quantified 

using the anthrone method.  

Carbohydrate Content (%) = (mg of glucose corresponding to 

absorbance value at 490 nm from graph/Volume of test 

sample) ×100       (Eqn. 2) 
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Starch Content: Starch content was estimated after 

enzymatic or acid hydrolysis to glucose, which was then 

determined using the anthrone reagent method.  

Starch Content (%) = concentration of glucose corresponding 

to absorbance value at 630 nm from standard curve × 0.9 

(Factor)       (Eqn. 3) 

The zinc content in grain (ppm) was estimated using ICP-MS. 

Zinc uptake (g/ha) was computed with the zinc content and 

grain yield. Zinc recovery efficiency was computed using the 

formula given by (12), as follows:  

Recovery efficiency = {Zn uptake in Zn treated plot (g/ha) - Zn 

uptake in control plot (g/ha)}/ Zn applied (g/ha)  (Eqn. 4) 

Statistical analysis 

Analysis of variance (ANOVA) technique was used to analyse 

the significance of different treatments and the LSD test at P≤ 

0.05 was used to compare treatment means by using GRAPES 

(General R based Analysis Platform Empowered by Statistics) 

computer-based software (13). Correlation analysis was done 

using the R software.  

 

Results and Discussion  

Yield parameters 

The foliar applied zinc oxide nanoparticles produced 

significant results on the yield aspects of sweet corn. Highest 

test weight (34.33 g) in sweetcorn was recorded in foliar 

application of zinc oxide nanoparticles @ 500 ppm at 40 & 60 

DAS (T5).  

 The cob weight (269.9 g), grain yield (10277 kg/ha), 

green cob yield (16195 kg/ha) and green fodder yield (16393 

kg/ha) of sweetcorn was significantly higher in foliar 

application of zinc oxide nanoparticles @ 500 ppm at 40 & 60 

DAS (T5). It was statistically on par with foliar application of 

zinc oxide nanoparticles @ 400 ppm at 40 & 60 DAS (T4), for 

cob weight (258.9 g), grain yield (9805 kg/ha), green cob yield 

(15535 kg/ha) and green fodder yield (16349 kg/ha).  

 The lowest green fodder yield (15152 kg/ha) was 

recorded in control plot (T7). Lesser 100 seed weight (26.88 g) 

was observed in control plot (T7) and was comparable with 

foliar application of zinc oxide nanoparticles @ 100 ppm at 40 

& 60 DAS (T1).  

 The lower values of cob weight, grain yield and green 

cob yield (225.4 g, 10277 kg/ha and 13596 kg/ha respectively) 

were recorded in control plot. These were on par with the 

foliar application of zinc oxide nanoparticles @ 100 ppm at 40 

& 60 DAS (T1) and foliar application of zinc oxide nanoparticles 

@ 200 ppm at 40 & 60 DAS (T2). The data pertaining to yield 

parameters are presented in Table 1, 2, 3. The harvest index in 

sweet corn was not significantly influenced by the zinc oxide 

nanoparticle treatments. The value range ranged between 

0.473 to 0.497. 

 The number of kernel rows, number of kernels per row 

and total number of kernels per cob were not significantly 

influenced by the various zinc oxide nanoparticle dosages. 

The values ranged from 13.93 to 15.00 (number of kernel 

rows), 39.73 to 46.73 (number of kernels per row) and 542.27 

to 665.07 (total number of kernels per cob).  

 Zinc plays an integral role in auxin metabolism, 

carbohydrate synthesis and protein metabolism, which 

directly influence grain filling and test weight (14). The 

significantly higher test weight in T5 reflects improved kernel 

density and quality, likely resulting from enhanced nutrient 

uptake and translocation facilitated by ZnO NPs. As 

previously reported, foliar zinc applications of 250 and 500 

ppm at 20 and 40 DAS enhance photosynthetic efficiency and 

the allocation of assimilates to reproductive structures, 

thereby improving kernel weight (15). 

Treatments 
Cob weight 

(g) 
100 seed 

weight (g) 

T1: Foliar application of zinc oxide 
nanoparticles @ 100 ppm 

236.7 28.29 

T2: Foliar application of zinc oxide 
nanoparticles @ 200 ppm 

239.9 29.57 

T3: Foliar application of zinc oxide 
nanoparticles @ 300 ppm 

249.8 31.03 

T4: Foliar application of zinc oxide 
nanoparticles @ 400 ppm 

258.9 31.59 

T5: Foliar application of zinc oxide 
nanoparticles @ 500 ppm 

269.9 34.33 

T6: Foliar application of zinc oxide 
nanoparticles @ 600 ppm 

246.8 30.18 

T7: Control 225.4 26.88 

SE(d) 8.68 0.92 

CD (P=0.05) 18.901 2.003 

Table 1. Effect of different doses of zinc oxide nanoparticles on cob weight 
(g) and 100 seed weight (g) of sweetcorn at harvest 

Table 2. Effect of different doses of zinc oxide nanoparticles on green cob 
yield (kg/ha) and green fodder yield (kg/ha) of sweetcorn at harvest 

Treatments Green cob 
yield (kg/ha) 

Green fodder 
yield (kg/ha) 

T1: Foliar application of zinc oxide 
nanoparticles @ 100 ppm 

14202 15493 

T2: Foliar application of zinc oxide 
nanoparticles @ 200 ppm 

14393 15510 

T3: Foliar application of zinc oxide 
nanoparticles @ 300 ppm 

14985 15896 

T4: Foliar application of zinc oxide 
nanoparticles @ 400 ppm 

15535 16349 

T5: Foliar application of zinc oxide 
nanoparticles @ 500 ppm 

16195 16393 

T6: Foliar application of zinc oxide 
nanoparticles @ 600 ppm 

14804 15811 

T7: Control 13596 15152 
SE(d) 520.31 298.61 

CD (P=0.05) 1133.654 650.621 

Table 3. Effect of different doses of zinc oxide nanoparticles on grain yield 
(kg/ha) and Harvest Index of sweetcorn at harvest 

Treatments Grain yield
(kg/ha) 

Harvest 
Index 

T1: Foliar application of zinc oxide 
nanoparticles @ 100 ppm 

9223 0.478 

T2: Foliar application of zinc oxide 
nanoparticles @ 200 ppm 9256 0.481 

T3: Foliar application of zinc oxide 
nanoparticles @ 300 ppm 9550 0.485 

T4: Foliar application of zinc oxide 
nanoparticles @ 400 ppm 9805 0.487 

T5: Foliar application of zinc oxide 
nanoparticles @ 500 ppm 10277 0.497 

T6: Foliar application of zinc oxide 
nanoparticles @ 600 ppm 9487 0.483 

T7: Control 8779 0.473 

SE(d) 286.11 0.01 

CD (P=0.05) 623.372 NS 
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 The increased cob weight and grain yield in T5 may be 

attributed to enhanced enzymatic activity and efficient 

nutrient transport, promoting superior cob and kernel 

development. Similarly, ZnO NPs have been found to 

enhance cell elongation and promote starch deposition in 

grains (5). The enhancement in grain yield may also be linked 

to the increase in kernel weight and number compared to the 

control, likely due to improved pollen viability facilitated by 

sufficient zinc availability during the tasseling stage, which is 

critical for effective fertilization and subsequent grain 

development (8). The substantial increase in fodder yield in T5 

further highlights zinc's role in promoting vegetative growth 

and overall plant vigor. Zinc's involvement in cell wall 

synthesis and protein metabolism likely contributed to the 

observed biomass increase (16). 

 Furthermore, the comparable performance of T4 (ZnO 

NPs @ 400 ppm) to T5 for cob weight and grain yield indicates 

diminishing returns beyond optimal zinc concentrations, 

potentially due to nutrient uptake saturation or mild toxicity 

at excessive levels.  

 Conversely, the control treatment (T7) recorded the 

lowest test weight, cob weight, grain yield and green fodder 

yield stressing zinc's vital role in physiological and biochemical 

processes necessary for optimal plant growth and yield. These 

findings align with previous research indicating that zinc 

deficiency impairs enzymatic function and photosynthetic 

capacity, ultimately reducing biomass and grain yield (17). 

 Interestingly, ZnO NP treatments did not significantly 

influence the harvest index, number of kernel rows, kernels 

per row, or total kernels per cob. The harvest index ranged 

from 0.473 to 0.497, indicating that zinc primarily enhanced 

biomass accumulation without affecting the distribution of 

assimilates between economic and biological yields. 

Similarly, the lack of significant variation in kernel rows and 

kernel numbers across treatments suggests that zinc or zinc 

oxide nanoparticles do not affect floral development or 

kernel set but instead enhances kernel filling and weight, as 

observed in T5 and T4. These findings are consistent with 

previous research which reported that zinc primarily 

improves kernel quality rather than kernel number in rice 

(18). Foliar zinc application has been shown to enhance grain 

yield, 100-grain weight and other quality parameters in rice, 

suggesting that micronutrient applications can improve grain 

filling and quality without significantly altering kernel 

numbers (2). Similar findings in sweet corn yield and yield 

attributes were also noted (19). 

Quality parameters 

The data pertaining to the effect of zinc oxide nanoparticles 

on sweet corn quality is presented below (Tables 4 - 7). 

Statistically superior values of TSS (16.33 ºbrix) and total 

sugars (12.07 %) were observed in foliar application of zinc 

oxide nanoparticles @ 500 ppm at 40 & 60 DAS (T5). 

 Carbohydrate content (25.08 %) and starch content 

were higher (24.87 %) in foliar application of zinc oxide 

nanoparticles @ 500 ppm at 40 & 60 DAS (T5) and was 

comparable with foliar application of zinc oxide nanoparticles 

@ 400 ppm (23.60 % of carbohydrate and 25.14 % of starch) 

at 40 & 60 DAS (T4). Zinc is a cofactor for several enzymes 

Table 4. Effect of different doses of zinc oxide nanoparticles on TSS (ºbrix) 
and total sugars (%) of sweetcorn at harvest 

Treatments TSS (ºbrix) Total sugars (%) 

T1: Foliar application of zinc oxide 
nanoparticles @ 100 ppm 

13.00 8.57 

T2: Foliar application of zinc oxide 
nanoparticles @ 200 ppm 

13.33 8.83 

T3: Foliar application of zinc oxide 
nanoparticles @ 300 ppm 

14.00 9.02 

T4: Foliar application of zinc oxide 
nanoparticles @ 400 ppm 

14.17 9.30 

T5: Foliar application of zinc oxide 
nanoparticles @ 500 ppm 

16.33 12.07 

T6: Foliar application of zinc oxide 
nanoparticles @ 600 ppm 

14.17 9.30 

T7: Control 12.83 8.28 

SE(d) 0.69 0.53 

CD (P=0.05) 1.506 1.162 

Table 5. Effect of different doses of zinc oxide nanoparticles on carbohydrate 
content (%) and starch content (%) of sweetcorn at harvest 

Treatments 
Carbohydrate 

content (%) 
Starch 

content (%) 

T1: Foliar application of zinc oxide 
nanoparticles @ 100 ppm 21.70 19.46 

T2: Foliar application of zinc oxide 
nanoparticles @ 200 ppm 

22.27 21.79 

T3: Foliar application of zinc oxide 
nanoparticles @ 300 ppm 

22.32 21.80 

T4: Foliar application of zinc oxide 
nanoparticles @ 400 ppm 

23.60 23.02 

T5: Foliar application of zinc oxide 
nanoparticles @ 500 ppm 

25.08 24.87 

T6: Foliar application of zinc oxide 
nanoparticles @ 600 ppm 

22.59 22.05 

T7: Control 20.91 18.32 

SE(d) 0.71 0.85 

CD (P=0.05) 1.546 1.850 

Table 6. Effect of different doses of zinc oxide nanoparticles on reducing 
sugars (%) and zinc content in kernel (ppm) of sweetcorn at harvest 

Treatments 
Reducing 

sugars (%) 

Zinc 
content 
(ppm) 

T1: Foliar application of zinc oxide 
nanoparticles @ 100 ppm 

4.66 29.40 

T2: Foliar application of zinc oxide 
nanoparticles @ 200 ppm 

4.98 31.87 

T3: Foliar application of zinc oxide 
nanoparticles @ 300 ppm 

5.12 33.24 

T4: Foliar application of zinc oxide 
nanoparticles @ 400 ppm 

5.35 34.25 

T5: Foliar application of zinc oxide 
nanoparticles @ 500 ppm 

5.41 34.78 

T6: Foliar application of zinc oxide 
nanoparticles @ 600 ppm 

5.04 33.83 

T7: Control 4.41 28.02 

SE(d) 0.19 0.69 

CD (P=0.05) 0.409 1.511 
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involved in carbohydrate metabolism, including fructose-1,6-

bisphosphatase and aldolase, which regulate starch and 

carbohydrate synthesis. Zinc also influences ADP-glucose 

pyrophosphorylase (AGPase) and starch synthase which are 

key enzymes in starch biosynthesis. The increased zinc 

concentration in T5 and T4 treatments might have facilitated 

higher enzymatic activity, leading to improved carbohydrate 

accumulation and starch deposition in developing kernels. 

 Foliar application of zinc oxide nanoparticles @ 500 

ppm at 40 & 60 DAS (T5) recorded higher value of reducing 

sugars (5.41 %), zinc content in grain (34.78 ppm) and zinc 

uptake (357.5 g/ha). Reducing sugars in T5 was on par (5.35 %) 

with foliar application of zinc oxide nanoparticles @ 400 ppm at 

40 & 60 DAS (T4), foliar application of zinc oxide nanoparticles @ 

300 ppm (5.12 %) at 40 & 60 DAS (T3) and foliar application of 

zinc oxide nanoparticles @ 600 ppm (5.04 %) at 40 & 60 DAS 

(T6). The higher zinc content in grain recorded in T5, was 

statistically on par with foliar application of zinc oxide 

nanoparticles @ 400 ppm (34.25 ppm) at 40 & 60 DAS (T4) and 

foliar application of zinc oxide nanoparticles @ 600 ppm (33.83 

ppm) at 40 & 60 DAS (T6). Zinc uptake of T5 was comparable 

with foliar application of zinc oxide nanoparticles @ 400 ppm 

(335.5 g/ha) at 40 & 60 DAS (T4) alone.   

 The lower value of TSS (12.83 ºbrix) and total sugars 

(8.28 %) was observed in control plot (T7), which was 

comparable with all the other treatments except T5. Lesser 

carbohydrates (20.91 %) and reducing sugars (4.41%) were 

found in control plot (T7), which was on par with foliar 

application of zinc oxide nanoparticles @ 100 ppm at 40 & 60 

DAS (T1) and foliar application of zinc oxide nanoparticles @ 

200 ppm at 40 & 60 DAS (T2). Lesser starch content (18.32 %) 

and zinc content in grain (28.02 ppm) was recorded in control 

plot (T7), which was comparable with foliar application of zinc 

oxide nanoparticles @ 100 ppm at 40 & 60 DAS (T1). 

 Lowest zinc uptake (245.9 g/ha) was also recorded in 

control plot. Zinc recovery efficiency was highest (50.63 %) in 

foliar application of zinc oxide nanoparticles @ 100 ppm at 40 

& 60 DAS (T1) and lowest (24.96 %) in foliar application of zinc 

oxide nanoparticles @ 600 ppm (T6).  

  

 Zinc is vital for carbohydrate and starch synthesis, 

serving as a cofactor for enzymes such as carbonic anhydrase 

and fructose bisphosphate aldolase, which play key roles in 

photosynthetic carbon fixation and carbohydrate metabolism 

(17). The notable increase in starch content observed in T5 

could be attributed to improved photosynthetic efficiency 

induced by ZnO NPs, likely enhancing the biosynthesis and 

storage of starch in kernels. Likewise, the elevated 

carbohydrate content in T5 indicates better mobilization of 

carbohydrates from source tissues to sink tissues during grain 

filling. Similar results were reported in maize as well (15). The 

elevated TSS and total sugars in T5 can be attributed to zinc's 

pivotal role in sugar metabolism. Zinc is critical for the activity 

of sucrose synthase, an enzyme essential for converting 

sucrose into hexose sugars. Furthermore, zinc-mediated stress 

signaling pathways may have stimulated the production of 

secondary metabolites, thereby bringing in more soluble 

sugars and enhancing kernel quality (5). Adequate zinc levels 

regulate sugar metabolism genes, enhancing the conversion 

of starch into soluble sugars (sucrose, glucose and fructose) 

during grain filling. A 500-ppm foliar spray might have 

promoted higher starch hydrolysis than the lower zinc 

concentrations. 

 The increase in reducing sugars, grain zinc content and 

zinc uptake in T5 can be linked to the efficient uptake and 

translocation of zinc from foliage to grains through the 

phloem. Zinc, absorbed as Zn²⁺ ions via stomatal pores, is 

actively transported to sink tissues by transport proteins such 

as ZIP (Zinc-Iron Permease) and ZRT (Zinc regulated 

transporter) (17). Additionally, foliar application ensures the 

timely availability of nutrients during critical growth phases 

like tasselling and grain filling, resulting in improved nutrient 

accumulation especially zinc, in kernels (18). ZnO NPs have 

also been recognized for their role in triggering stress 

responses that facilitate nutrient mobilization and storage (5). 

The zinc recovery declined notably as zinc application levels 

increased, which can be attributed to the commonly observed 

inverse relationship between nutrient utilization and the rate 

of application. The decline in recovery with increasing zinc 

levels indicates a reduced efficiency of utilization per unit of 

application, though zinc continues to contribute to crop 

growth and yield. High recovery efficiency is typically achieved 

at optimal application rates, which balance supply and plant 

uptake. Excessive application may not improve nutrient 

recovery but can still positively influence plant performance 

until the point of toxicity. Similar recovery trends have been 

observed in previous studies (20, 21). 

 The performance of T4 (ZnO NPs @ 400 ppm) was 

statistically comparable to T5 concerning starch content, 

reducing sugars and kernel zinc content, suggesting that 

increasing zinc concentration beyond optimal levels does not 

proportionally enhance quality attributes. Excessive zinc 

application may induce mild toxicity due to oxidative stress 

following ROS formation, thereby reducing nutrient 

bioavailability and other physiological functions (22). 

Nanoparticle agglomeration reduces the surface area of 

nanoparticles available for absorption by plant tissues. 

Nanoparticles typically improve nutrient uptake by increasing 

surface interaction with plant cells (23, 24). When 

Table 7. Effect of different doses of zinc oxide nanoparticles on zinc uptake 
(g/ha) and zinc recovery efficiency (%) of sweetcorn at harvest 

Treatments 
Zinc uptake 

(g/ha) 
Zinc recovery 

(%) 

T1: Foliar application of zinc oxide 
nanoparticles @ 100 ppm 

271.3 50.63 

T2: Foliar application of zinc oxide 
nanoparticles @ 200 ppm 

295.4 49.40 

T3: Foliar application of zinc oxide 
nanoparticles @ 300 ppm 

316.8 47.20 

T4: Foliar application of zinc oxide 
nanoparticles @ 400 ppm 

335.5 44.75 

T5: Foliar application of zinc oxide 
nanoparticles @ 500 ppm 

357.5 44.58 

T6: Foliar application of zinc oxide 
nanoparticles @ 600 ppm 

320.9 24.96 

T7: Control 245.9 0.00 

SE(d) 11.46   

CD (P=0.05) 24.963   
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agglomerated, the particles' ability to be absorbed through 

stomata or leaf cuticles decreases, thus reducing the 

bioavailability of zinc to the plant. Once inside the plant, 

agglomerated nanoparticles may not be transported 

effectively to areas where they are needed, such as developing 

grains (23). This could be the reason for reduced yield and 

quality in T6 (600 ppm). The control treatment (T7) consistently 

recorded lower values for all parameters, highlighting zinc's 

essential role in maintaining plant metabolic processes. These 

findings are consistent with prior research indicating that 

foliar-applied ZnO NPs enhance carbohydrate and sugar 

synthesis by improving chlorophyll content, photosynthetic 

efficiency and enzyme activities. Similar outcomes have been 

observed in sweet corn (25), in rice (18) and maize (15).  

Correlation analysis 

The correlation matrix demonstrated significant positive 

relationships between major yield and quality traits in sweet 

corn subjected to different ZnO NP treatments (Fig. 1). Cob 

weight exhibited a strong positive correlation with grain yield 

(r = 1), green cob yield (r = 1) and green fodder yield (r = 0.98), 

clearly indicating that ZnO-NP application contributed to 

biomass accumulation and yield enhancement. Similarly, 

grain zinc content showed a strong correlation with cob 

weight (r = 0.91), demonstrating effective zinc translocation 

from foliage to grains. 

 Notably, total soluble solids (TSS) and total sugar 

content were positively correlated with yield traits but 

showed only moderate correlations with Zn uptake, 

indicating that ZnO-NP treatments improved sweetness and 

quality but were not the sole determinants of sugar 

accumulation. Overall, these results highlight the beneficial 

role of ZnO-NP application in improving quality and yield  

parameters up to an optimal concentration.  

Conclusion 

The results of this experiment conducted in sweet corn 

indicate that foliar application of zinc oxide nanoparticles @ 

500 ppm at 40 and 60 DAS proved to be better performing in 

terms of yield and quality parameters. These advantages 

arise from timely direct intake of zinc oxide nanoparticles 

through leaves and zinc’s direct impact on plant metabolism, 

along with its role in promoting enzyme activation, protein 

synthesis and photosynthesis. Consequently, zinc oxide 

nanoparticles offer a promising, sustainable method to 

improve kernel quality and yields of sweet corn. 
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