RESEARCH ARTICLE

Assessment of total phenolic content and antioxidant potentiality of selected Indian folk medicinal plants by spectrophotometric method

Satish Dubey, Kundan Ojha, Jagriti Chandrakar, Rashmi Dehariya, Shilpa Vinodia, Akanksha Singh & Ashwini Kumar Dixit*

Laboratory of Molecular Taxonomy & Medicinal Plant Biology, Department of Botany, Guru Ghasidas Vishwavidyalaya, Bilaspur 495 009, Chhattisgarh, India
*Email: dixitak@live.com

ARTICLE HISTORY
Received: 04 March 2020
Accepted: 30 May 2020
Published: 10 July 2020

KEYWORDS
Reactive oxygen species
Antioxidants
Polyphenols
Leaf extract
Folk Medicines

ABSTRACT
Natural antioxidant capacity of five important folk medicinal plants measured in vitro. Total phenolic content (TPC), flavonoid content (FC) and free radical scavenging capacity of ethanolic, methanolic and aqueous leaf extracts of *Lippia alba* (LA), *Annona squamosa* (AS), *Hyptis suaveolens* (HS), *Commiphora wightii* (CW) and *Milletia pinnata* (MP) was assessed using spectrophotometric method. Folin ciocalteu and aluminium chloride method employed to optimise TPC and FC. Free radical scavenging potentiality of leaf extracts was assessed using Ferrous ion chelation (FIC), 2, 2'-diphenyl-1-picrylhydrazyl (DPPH) scavenging, Hydroxyl (OH•) radical scavenging (HRS) and Superoxide (O₂•-) radical scavenging (SRS) methods. Results revealed that the TPC (96.22±5.85 to 519.23±34.90 μg GAE/gm dry weight) were found significant in aqueous extracts from all the plants except AS (*p*<0.05). For FC (μg QCE/gm dry weight), ethanol was found optimum for LA (463.94±6.49), CW (289.99±2.70) and MP (347.47±4.50) whereas, aqueous was found more appropriate for rest two plants were found significant instead of ethanol and methanol (all *p*<0.05). The lowest I_{50} (μg/ml) were recorded from *A. squamosa* (27.72±8.95), *H. suaveolens* (27.78±0.88), *C. wightii* (27.18±0.16) and *M. pinnata* (27.30±0.03). All plants have reflected a high antioxidant capacity; however, the highest antioxidant activity was reported from ethanolic extract of *H. suaveolens* followed by *L. alba, A. squamosa, C. wightii* and *M. pinnata*. Hence, these studies show that all folk medicinal plants contain potential antioxidant bioactive compounds.

Introduction

Reactive oxygen species or free radicals like hydroxyl radical, hydrogen peroxide and superoxide anions generated during the cell metabolism. Survival of the cell largely depends on the oxidative metabolism. Production of free radical and other oxidative oxygen species are result of this dependency, which causes oxidative changes. A wide range of scavenging enzymes such as glutathione, NADH, NADPH, superoxide dismutase and catalase reacts with free radicals and protect the body against noxious oxidative stress, cellular and molecular damage (1). Disintegration of free radicals and scavengers balance may trigger various diseases such as neurodegenerative disease, Parkinson's, mongolism, cancer and the aging process (2, 3). Antioxidant inhibits the initiation of oxidative chain reactions, which prevents the oxidation of lipids or other molecules by different mechanisms like free radical-scavenging, potential complexity of pro-oxidant metals and by single oxygen quenching (4). Synthetic antioxidants like butylhydroxytoluene (BHT) and butylhydroxyanisole (BHA) along with other food preservatives have toxic and carcinogenic effects by high doses which causes tumour in stomach and liver (5). Plants possess phytochemicals like flavonoids, carotenoids, benzoic acids, polyphenols, cinnamic acids, ascorbic acid, tocotrienols and tocopherols, which act as natural antioxidants at low concentration without any risk (6). Naturally, polyphenols derived from various parts of plants in active form with anti-radical properties such as leaf, flower, seed, root, fruit and barks (7). Antioxidant activity and yield of plant

© Dubey et al (2020). This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/).

Plant Science Today, published by Horizon e-Publishing Group, is covered by Scopus, Web of Science, BIOSIS Previews, etc.
Full list at http://www.plantsciencetoday.online
compounds totally depends on different extraction techniques (such as maceration, Soxhlet extraction, ultrasound-assisted extraction, subcritical water extraction) as well as polarity of solvents. Antioxidant compounds, characterized by different chemical nature like their structure, polarity and solubility (8). Present study-employed ethanol, methanol and deionized water for the extraction of phytochemicals obtained from medicinal plants. Ethanol is a good solvent for extraction and safe for human consumption. Methanol generally used for the extraction of the polar and lower molecular weight polyphenols. While, deionised water is exploit for extraction of highly polar polyphenols from plant parts (9). Plants were used as crude drugs for treatment of different ailments in different cultures (10). However, the medicinal actions are unique for each plant species. This consistency with the concept of combination of secondary products in particular plant is taxonomically different (11).

Materials and Methods

Plant Materials

Five locally available plants used as folk medicine against many diseases by tribal and rural communities of Chhattisgarh. These plants viz. *Lippia alba* (LA), *Annona squamosa* (AS), *Hyptis suaveolens* (HS), *Commiphora wightii* (CW) and *Milletta pinnata* (MP) are described in Ayurveda for curing various ailments (Table 1).

Chemicals and Reagents

Ascorbic acid (Aca), Gallic acid (GA), Folin reagent, Aluminium chloride (AlCl₃), Quercetin, Hydrogen peroxide (H₂O₂), Phosphate buffer (pH 7.4, 7.8), 2,2-diphenyl-1-picryl-hydrazyl (DPPH), Ethylenediamine tetra acetic acid (EDTA), Phenanthroline, Ferric chloride (FeCl₃), Ferrous sulphate (FeSO₄), Ferrozine, Nitro blue tetrazolium (NBT), Nicotinamide adenine dinucleotide reduced (NADH), Phenazinemethosulphate (PMS). All chemicals purchased from HiMedia (India) were of analytical grade.

Collection of plants

Guru Ghasidas University campus with around 700 acres of land, lies between 22° 7’ 54” North to 82° 8’ 32” East in Koni, Bilaspur, Chhattisgarh, India. It is an abode of many naturally growing medicinal plants with rich diversity without pollution and any human disturbance. Selected plant species are already found as wild plants in the area of university campus. The collected plants were identified using APG IV criteria and deposited in the Department of Botany as herbarium with voucher number (Table 1).

Preparation of plant extract

Healthy plant leaves were surface sterilized by using 1% H₂O₂ and dried at 30 °C and finally ground to coarse powder. Obtained powder was dissolved separately into ethanol, methanol and aqueous in 1:10 ratio (gm/ml) than kept on the rotary shaker for 24 hrs. All extracts filtered through the Whatman No. 1 filter paper and stored in refrigerator (GLF282RSOL/2016) at 4 °C until analysis (12).

Determination of total amount of antioxidant compounds

Determination of the total phenolic content (TPC)

The total phenolic content (TPC) was determined by folin ciocalteu assay with slight modifications (13). The sample (1 ml) was placed into the test tube and 0.5 ml of Folin-Ciocalteu reagent was added. After five min, 1.5 ml of sodium carbonate (20%) added in the mixture, volume make up to 10 ml with deionized water and left for 30 min at room temperature. The deep blue colour indicated that presence of high phenolic compound in the samples. Absorbance measured at 750 nm wavelength using UV-visible, spectrophotometer (Elico Double beam SL-210, India). TPC, expressed as Gallic acid equivalents (GAE) in μg GAE/gm dry weight which calculated by the following equation:

\[
C = \frac{c \times V}{m}
\]

Where, \(C \) = total content of phenolic compounds, \(c \) = the concentration of GA established from the calibration curve, \(V \) = the volume of extract and \(m \) = the weight of crude plant extract.

Determination of the flavonoid content (FC)

For the determination of flavonoid content (FC) aluminium chloride colorimetric method was used as standard protocol (14). Each plant extract (0.5 ml) was diluted with 4 ml of deionized water and added 0.3 ml of sodium nitrate (5%). After 5 min later 0.3 ml of aluminium chloride (10%) was added and incubated for six min. After incubation 2 ml sodium hydroxide (1M) added in the mixture and final volume make with 10 ml deionized water and shaken well. Reaction mixture was incubated at room temperature for 30 min. Appearance of Orange yellowish colour was the positive indicator for the presence of flavonoid content. Absorbance measured with the help of the UV-visible, spectrophotometer (Elico Double beam SL-210, India) at 510 nm wavelengths. FC expressed as Quercetin equivalents (QUE) in μg QCE/gm dry weight and calculated by the following formula:

\[
C = \frac{c \times V}{m}
\]

Where, \(C \) = flavonoid content (FC), \(c \) = the concentration of quercetin established from the calibration curve, \(V \) = the volume of extract and \(m \) = the weight of crude plant extract.

In-vitro determination of free radical scavenging activity

Below described four methods were used with minor modifications for evaluation of free radical scavenging activity of selected plants. Inhibition percent of leaf extract calculated by the following formula:

\[
\text{Inhibition} \% = \frac{A_0 - A_1}{A_0} \times 100
\]
Table 1. General description, utilization and specimen voucher number of selected folk medicinal plants.

<table>
<thead>
<tr>
<th>Name of plant species</th>
<th>Botanical name</th>
<th>Local name</th>
<th>Family</th>
<th>Plant Habit</th>
<th>Specimen Voucher Number</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annona squamosa L.</td>
<td>Sitafl</td>
<td>Annonaceae</td>
<td>Tree</td>
<td>GGV/BOT/T/ANA/DKS/050</td>
<td>In Epilepsy, Dysentery, worm infestation, Fever, malignant tumours, ulcers, as an abortifacients. (33)</td>
<td></td>
</tr>
<tr>
<td>Hypsot suaveolens (Poir.)</td>
<td>Ganga tuls</td>
<td>Lamiaceae</td>
<td>Aromatic herb</td>
<td>GGV/BOT/H/LAM/DKS/250</td>
<td>Stimulant, carminative, parasitic skin disease, antibacterial, anti-malarial anti-inflammatory, anti-plasmodial, activities. (34)</td>
<td></td>
</tr>
<tr>
<td>Commiphora wightii (Arnott) Bhandari</td>
<td>Guggul</td>
<td>Burseraceae</td>
<td>Bushy tree</td>
<td>GGV/BOT/BT/BUR/DKS/130</td>
<td>Arthritis, inflammation, rheumatism, fatness and disorders of lipids metabolism. (35)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Effect of extracting solvents on the total phenolic content (TPC) and flavonoid contents (FC) of leaf extract of medicinal plant species

<table>
<thead>
<tr>
<th>Plants name</th>
<th>Total Phenolic content (μg GAE/gm dry weight)</th>
<th>Flavonoid content (μg QCE/gm dry weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ethanol</td>
<td>Methanol</td>
</tr>
<tr>
<td>Lippia alba</td>
<td>177.78±2.69 a</td>
<td>367.49±38.90 b</td>
</tr>
<tr>
<td>Annona squamosa</td>
<td>206.86±2.52 a</td>
<td>205.38±1.50 a</td>
</tr>
<tr>
<td>Hypsot suaveolens</td>
<td>121.16±4.09 a</td>
<td>347.00±4.00 b</td>
</tr>
<tr>
<td>Commiphora wightii</td>
<td>153.17±0.30 a</td>
<td>345.01±2.55 a</td>
</tr>
<tr>
<td>Milletta pinnata</td>
<td>176.53±2.76 a</td>
<td>197.40±1.50 a</td>
</tr>
</tbody>
</table>

GAE= Gallic Acid Equivalent; QCE= Quercetin Equivalent. Data is represented in Mean ± SEM; Different Subscript alphabets in left to right show variation between solvents. Different subscript alphabets in top to bottom in separate column show significant variation within plants. Significance was calculated by post hoc ANOVA Tukey test at p<0.05.

Results

Data obtained from ethanolic, methanolic and aqueous leaf extracts showed significant results. Results from all parameters are described in below (Table 2 and 3).
Total phenolic content and flavonoid content

TPC and FC was predicted by Gallic acid (Y = 0.006x + 0.036, R² = 0.998) and Quercetin (Y = 0.005x + 0.115, R² = 0.981) calibration curves. TPC (96.22±5.85 to 519.23±34.90) were found significant in aqueous extracts from all plant except AS (all p<0.05). For FC ethanol was found optimum for LA (463.94±6.49), CW (289.99±2.70) and MP (347.47±4.50) while aqueous extract of both AS (265.73±7.98) and HS (560.17±25.91) was found significant for flavonoid content instead of ethanolic and methanolic extracts (all p<0.05, Table 2).

Antioxidant Assay

Free radical scavenging activity of selected plant leaf extracts revealed the concentration (10-100 μg/ml) ethanolic extract were found to be optimal as compared to aqueous extract. The highest chelation percentage reported from aqueous (88.798±0.32) followed by ethanolic (92.57±2.06) and methanolic (94.39±0.02) extracts of LA. IC₅₀ with minimum trapping activity was reported from the aqueous (47.06±0.48) and methanolic (42.88±0.18) extracts of LA as compare to EDTA (48.16±0.25). But IC₅₀ for aqueous extracts of AS (27.72±8.95) and CW (27.4±0.27) which was found low from standard value (Table 3, Fig. 1).

Hydroxyl (OH) radical scavenging activity

All extract showed significant (p<0.05) difference from each other. Results were reported from ethanolic extract of AS (95.28±0.31), methanolic extracts of LA (94.39±0.02) and aqueous extracts of AS and MP (89.00) which showed similar result. But IC₅₀ of AS, LA and MP were reported higher than standard values (28.76±2.16) while, methanolic extract of HS was reported with lower IC₅₀ (27.78±0.88 33) than standard values (Fig.1 III).

Superoxide radical (O₂⁻) scavenging activity

Result indicated an outstanding effect on superoxide scavenging. All extracts shows the significant (p<0.05) result for superoxide radical scavenging percentage. Ethanolic extract of AS (96.28±1.02) shows the highest percentage of inhibition followed by methanolic and aqueous extract of CW (95.36±1.31 and 92.98±1.27) respectively. IC₅₀ of ethanolic extract of AS (50.06±0.19) reported higher than the standard value that was ascorbic acid (28.76±2.16). But IC₅₀ of ethanolic extract of MP was observed at 29.55±4.81 from other plant extracts but statistically all other three extracts of MP has not showed significant differences (p >0.05, Table 3).

Discussion

There are varieties of phytocompounds found in medicinal herbs with antioxidant properties. Phenolics and flavonoids are mostly used in polymer

Table 3. Result of IC₅₀ values (in μg/ml) of the Methanolic, Ethanol and Aqueous leaf extracts of five medicinal plant species

<table>
<thead>
<tr>
<th>Methods</th>
<th>Extract</th>
<th>Lippia alba</th>
<th>Annona squamosa</th>
<th>Hyptis suaveolens</th>
<th>Commiphora wightii</th>
<th>Millettia pinnata</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPPH method (μg/ml)</td>
<td>Ethanol</td>
<td>36.21±1.44a</td>
<td>42.02±0.58ab</td>
<td>38.34±1.24ab</td>
<td>38.08±0.61a</td>
<td>30.02±0.68a</td>
</tr>
<tr>
<td></td>
<td>Aqueous</td>
<td>37.85±0.24a</td>
<td>28.81±0.04a</td>
<td>36.93±0.34a</td>
<td>33.29±0.33a</td>
<td>31.54±0.74a</td>
</tr>
<tr>
<td></td>
<td>Methanolic</td>
<td>35.41±1.11a</td>
<td>28.81±0.04a</td>
<td>31.48±0.04a</td>
<td>27.18±0.16a</td>
<td>27.30±0.03a</td>
</tr>
<tr>
<td>Ion chelating method (μg/ml)</td>
<td>Ethanol</td>
<td>36.28±0.54a</td>
<td>50.64±0.23a</td>
<td>36.98±0.10a</td>
<td>42.61±0.43a</td>
<td>41.40±0.74a</td>
</tr>
<tr>
<td></td>
<td>Aqueous</td>
<td>47.06±0.48a</td>
<td>27.72±8.95a</td>
<td>35.83±0.59a</td>
<td>27.41±0.27a</td>
<td>41.35±0.41a</td>
</tr>
<tr>
<td></td>
<td>Methanolic</td>
<td>42.88±0.18a</td>
<td>59.00±2.88a</td>
<td>46.92±0.35a</td>
<td>31.38±0.27a</td>
<td>46.85±0.13a</td>
</tr>
<tr>
<td>Hydroxyl radical scavenging activity (μg/ml)</td>
<td>Ethanol</td>
<td>36.36±0.47a</td>
<td>63.17±14.83a</td>
<td>41.75±0.49a</td>
<td>31.62±0.53a</td>
<td>38.96±0.69a</td>
</tr>
<tr>
<td></td>
<td>Aqueous</td>
<td>39.31±0.28a</td>
<td>59.06±7.75a</td>
<td>36.01±0.27a</td>
<td>31.25±0.17a</td>
<td>39.85±1.08a</td>
</tr>
<tr>
<td></td>
<td>Methanolic</td>
<td>42.92±0.14a</td>
<td>49.02±16.64a</td>
<td>27.78±0.88a</td>
<td>38.94±10.60a</td>
<td>41.23±0.25a</td>
</tr>
<tr>
<td>Superoxide radical scavenging activity (μg/ml)</td>
<td>Ethanol</td>
<td>39.54±2.77a</td>
<td>50.06±0.19a</td>
<td>47.76±1.02a</td>
<td>54.49±1.11a</td>
<td>29.55±4.81a</td>
</tr>
<tr>
<td></td>
<td>Aqueous</td>
<td>37.07±0.78a</td>
<td>37.99±6.06a</td>
<td>47.90±0.33a</td>
<td>45.11±0.82a</td>
<td>38.03±0.53a</td>
</tr>
<tr>
<td></td>
<td>Methanolic</td>
<td>42.74±2.41a</td>
<td>41.61±0.13a</td>
<td>33.23±0.72a</td>
<td>52.60±0.12a</td>
<td>42.33±10.37a</td>
</tr>
<tr>
<td>Standard (μg/ml)</td>
<td>Ascorbic acid</td>
<td>28.76±2.16</td>
<td></td>
<td></td>
<td>EDTA</td>
<td>48.16±0.25</td>
</tr>
</tbody>
</table>

Data is represented in Mean± SEM; same superscript alphabets in left to right show homogeneity between medicinal plants. Different subscript alphabets in top to bottom in separate column show significant variation within plants and different solvents methods. Significance was calculated by post hoc ANOVA Tukey test at p<0.05.

dependent. Data of different antioxidant methods was plotted in the Fig. 1 and 2. Concentration (μg/ml) of Ascorbic acid (28.76±2.16) and EDTA (48.16±0.25) for 50% inhibition (IC₅₀) was recorded (Table 3).

DPPH radical scavenging activity

The scavenging effect of ethanolic (93.02±0.08μg/ml) and aqueous extract (90.64±0.35 μg/ml) of LA, AS (94.52±0.74 μg/ml, 93.78±0.56 μg/ml), CW (84.92±1.34 μg/ml, 84.92±1.34 μg/ml), MP (94.73±0.83 μg/ml, 85.11±0.57 μg/ml) and HS (97.02±0.17 μg/ml, 98.21±0.56 μg/ml) shows significant scavenging activity as compared to methanolic extract. It is reported as the best scavenger over others (Fig. 1 IV) and Fig. 2 (II). Significant (p <0.05) differences between IC₅₀ mean values of the extracts were observed (Table 3). Methanolic extract of CW for 50% inhibition was found to be 27.18±0.16 μg/ml whereas, ethanolic and aqueous extract of CW was reported to be 38.08±0.61 μg/ml and 33.29±0.33 μg/ml respectively. Methanolic and aqueous extract of AS needed 28.81±0.04 μg/ml for 50% inhibition in comparison with ethanolic extract (42.02±0.58 μg/ml).

Ferrous ion chelating activity

In all the extract, significant result was found in case of ion chelation i.e. p<0.05. Both methanolic and
Fig. 1. Comparison of inhibition percentage between ethanolic, aqueous and methanolic leaf extracts of five plants; (I) Ion chelating activity; (II) Hydroxyl radical scavenging activity; (III) Superoxide radical scavenging activity; (IV) DPPH• method; Same alphabets in separate plant show homogeneity, significance using post hoc ANOVA Tukey test at \(p < 0.05 \).

Fig. 2. Comparison between inhibition percentages; (I) between methods; (II) between plants. Same alphabets in separate plant show homogeneity, significance using ANOVA, Tukey test (Post hoc) set \(P \) value is \(p < 0.05 \).
chemistry, biochemistry, and food chemistry, but tannins, Coumarins, xanthones, and procyanidins that depend on doses, have been promising as therapeutic drugs in free radical pathologies. Due to the presence of hydroxyl groups and phenolic rings, they have many other beneficial effects on human health (18- 20). The present study revealed that, the highest poly phenols (TPC, 519.23±34.90 & FC, 560.17±25.91) found in the aqueous extract of H. sauveolans which is more polar solvent from others two. During the study of selected Indian folk medicinal plants similar results were reported (21). Whereas the lowest TPC and FC from the aqueous extract of A. squamosa, L. alba, C. wightii and M. pinnata could be correlated to the responsiveness of folin reagent as well as chemical compositions of polyphenols in the solvents (22).

The FIC, HRS, SRS and DPPH’ quenching assays are most common methods for the evaluation of antioxidant activity of extracts. A comparable result was obtained for the antioxidant activity of ethanolic, methanolic, and aqueous leaf extracts of these five folk medicinal plant species. The data were presented in Fig. 2 (I). Results obtained in the present investigation shows similarity with previous studies (23) for DPPH’, ABTS and FRAP assays. These extracts disrupted the ferrozine Fe^{2+} complex as chelating agents and decreased the developed red colour of the complex with the increase in their concentration in the mixture which competes with Ferrozine for the ferrous ions (15). Our findings displayed a noticeable efficiency about ion binding capacity of L. alba which support the study from essential oil of two morph types of L. alba (24). The aim of ferrous ion chelating assay is to find out the oxidation catalytic ferrous ion potentiality of selected materials. It is reported that chelating agents work as secondary antioxidants because they oxidized the metal ion by reducing the redox potential. L. alba was reported most effective metal ion chelator from others. H_{2}O_{2} is not a reactive species, but it can be made toxic by pre-existing hydroxyl radicals in the cells. It can disturb the pro-oxidant–antioxidant balance hence, elimination of H_{2}O_{2} is important (25).

The leaf extract of five medicinal plant samples exhibited significant (p<0.05) hydroxyl radical scavenging percentage. Hydroxyl radical substitution by phenolic substances is known that’s scavenging activity. And this stronger scavenging percentage was shown its maximum in L. alba, A. squamosa and M. pinnata. Out of which, L. alba was reported as best ferrous ion chelator and best hydroxyl radical scavenger. On the other hand, Polyphenols inhibits the hydroxyl radical formation and lipid per-oxidation that correlates to their iron chelating properties (26).

Statistically, ethanolic extract of L. alba was found as a powerful hydroxyl radical scavenger that’s play a role of shield for hydroxyl radicals. Superoxide radicals are very harmful to cellular components as a precursor of the highly reactive oxygen species, which is responsible for the tissue damage and numerous pathological conditions (27). Findings reveals that all plant extracts have significant (p<0.05) and potential superoxide radicals scavenging percentage. High FC in extracts may contribute to the high superoxide radical scavenging potential as compared to TPC. Ethanolic and methanolic extracts could be dissolved most FC from A. squamosa in comparison with aqueous extract, which mainly dissolve in phenolic compounds. Similar results were reported from comparative study of Indian leafy vegetables and six medicinal plants respectively (28, 29). In the DPPH radical scavenging assay 98.21±0.56 % and 97.02±0.17 scavenging percentage reported from the aqueous and ethanolic extract of H. sauveolans that is indication of presence of highest amount of total phenolic content in this extracts. Lowest (83.86±0.55) antioxidant activity and total phenolic content was obtained from methanolic extract of M. pinnata. IC_{50} value of aqueous (36.93±0.34) and ethanolic (38.34±1.24) extracts was reported lower than the standard (28.76±2.16) which was Ascorbic acid. Comparable correlation was found between the total phenolic content and antioxidant activities from six medicinal plants and C. fistula during the study of antioxidants potential of their different parts (29, 30). Likewise flavonoids such as kaempferol, rutin, myricetin and quercetin also contributed as free radical scavenger (31-33). The data obtained from the present study revealed that, all selected folk medicinal plants significantly (p<0.05) followed the following trends, i.e. EDTA>Acacetin>HS>MP>AS>LA>CW for free radical scavenging activity (Fig. 2 (II)).

Conclusion
The DPPH’, Ion chelating method, Hydroxyl radical scavenging and superoxide radical scavenging methods of ethanolic, aqueous and methanolic leaf extracts of five medicinal plants gave comparative results of antioxidant activities, confirms that all the five plants have significant capacity to reduce free radicals. As more polyphenols were found in aqueous extracts in comparison with ethanolic and methanolic leaf extracts of these plants, the values of different antioxidant assays and total phenolic content is more for aqueous extracts. Furthermore, this research shall be useful for future researchers working in the field of biologically active drug formulation of novel drugs from these folklore medicinal plants.

Acknowledgement
The authors are thankful to Department of Biotechnology (DBT- BUILDER), Government of India (BT/PR7020/INF/22/172/2012) for the financial support.

Authors’ contributions
Concept and work plan was supervised by AKD and SD. All the analytical experiment was performed by JC and KO. The manuscript writing and statistical calculation were done by SD and RD. Necessary and final correction done by SV and AS.
Conflict of interest
Authors do not have any conflict of interest to declare.

References
1. Aslani BA, Gobadi S. Studies on oxidants and antioxidant in loss with a brief glance at their relevance to the immune system. Life Sciences. 2016 Feb 1;146:165-73. https://doi.org/10.1016/j.lfs.2016.01.014

36. Yoganarasimhan SN. Medicinal Plants of India (Tamil Nadu), Vol II. Bangalore: Cyber Media. 2000:276