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Abstract

PGPR, a plant growth-promoting rhizobacterium in the rhizosphere, stimulates growth and development through various mechanisms
such as mineral nutrient availability, phytohormone regulation and phytopathogen control. PGPR inoculant’s establishment, survival and
persistence depend on these characteristics and a complex chain of interactions in the rhizosphere. Soil is a damp habitat containing
decomposed carbon and abundant microorganisms. Agriculture relies heavily on the rhizo-microbiome, as root exudates and plant cell
detritus create specific microbial colonization patterns. Secondary metabolites, antibiotics, hormones and signalling chemicals are the
extracellular molecules produced and regulated by the rhizomicrobiome. The microbial composition of rhizomes affects soil texture.
Research indicates that PGPR inoculates plants, promotes their growth and development. PGPR modifies plant physiology and improves
nutrient intake and root activity. The plant biochemical pathways that contribute to this phenomenon are not yet fully understood. New
research has revealed how PGPR signaling triggers plant responses at both local and systemic levels. There is limited understanding of
how PGPR mechanisms and chemicals affect metabolic pathways in the roots. This review focuses on understanding the PGPR
mechanism and the chemicals that affect root-microbe interactions.
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Introduction Both the direct and indirect PGPR pathways affect
plant performance. Direct mechanisms include producing
phytohormones, increasing nutrient availability through
biological nitrogen fixation, releasing unavailable nutrients
into plant-useful systems (e.g. P, K, Zn), chelating heavy
metals (e.g. Fe, Cu) through siderophores and other similar
processes (10, 11). Two types of positive interactions have
been reported between plants and microorganisms:
symbiotic and mutually cooperative (12). Symbiotic
mutualistic associations, in which plants and microbes are
compatible with each other are closely related to some
obligatory traits. Some specific structures are formed only
because of such associations, such as the formation of root
nodules in the members of the Fabaceae family (symbiotic
interaction between Fabaceae and Rhizobia) and
arbuscules in the endomycorrhizal symbiosis. In this
association, microbes invade the host tissue. Cooperative
links are also known as associative symbiosis, which is like
symbiosis and generally colonizes the surface of plants and
roots (very rarely develops inside the host tissue).
Rhizobacteria are good examples of this association
including plant growth and development and provide
better adaptability to plants under different biotic and
abiotic stresses. In contrast to the symbiotic association,
PGPR have a wide range of host tissues, in which most

Plant growth-promoting rhizobacteria that colonize the
rhizosphere can directly or indirectly increase plant growth
and development (1). The root microbiome refers to
beneficial bacterial populations in the rhizoplane and root
endosphere that aid plant growth (2). Microorganisms
thrive in the rhizosphere and the soil around the roots of
plants is directly influenced by root exudates (3).Plants
emit carbon molecules into the soil, increasing the
microbial populations in the rhizosphere (100-1000 times
higher than that in the normal soil) (4). An important
addition is their ability to create novel microbial niches in
plant systems. This is especially true for the rhizosphere,
where plant roots grow (5). The plant root system has
several objectives including anchoring it to the soil,
absorbing water and ions, storing nutrients and promoting
plant development. It interacts closely with soil microbial
populations (6, 7). Plant roots contain organic nutrients,
such as sugars, acids, phyto-siderophores, amino acids,
vitamins, nucleosides and mucilage which attract microbial
communities (8). Fig. 1 shows the mechanisms of both
direct and indirect support plant development and host-
PGPR interactions (9).
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Table 1. Examples of rhizobacteria that support plant growth

bacteria belong to Firmicutes and Proteobacteria (13).
Plants both above and below-ground benefited after PGPR
inoculation. However, the aerial part is an economically
important component and has received more attention
because of its economic value as a food source for animals
and ease of collecting and documenting observations. The
impact of root properties on ecosystem functioning and
tested measures based on these features can improve
ecosystem processes (14). Understanding root system
growth and functions can help achieve the next Green
Revolution and ensure global food security. Hence, our
objective was to uncover the root system and its impact on
yields under different conditions and to help in studying
the mechanism behind it (15). PGPR can help create the
desired root features, improve soil resource consumption
and lead to sustainable agricultural output (16).

PGPR: Plant growth promoting rhizobacteria

PGPR may influence plant nutrition and growth rate (34).
Lorenz Hiltner, a German microbiologist coined the term
“rhizosphere” in 1904 to describe how plant root exudates
affect soil microorganisms (35). Rhizosphere microorganisms
mostly include bacteria, actinomycetes, fungi, algae and
viruses (36, 37). PGPR in the plant rhizosphere refer to helpful
bacteria that live in the soil and attach to plant roots (37).
PGPR is defined as a group of microorganisms that infiltrate
the plant rhizosphere and stimulate plant growth (38). Table 1
shows the examples of rhizobacteria that support plant
growth.

Role of PGPR for nutritional benefits in plants

It was found that inoculation of PGPR enhances plant growth
by enhancing the absorption of nutrients the absorption of
nutrients and transport is according to the demand for
nutrients in the plant and controlled by ion transporters which
are present in the roots (39, 40). It is a regulatory process that
alters behaviour based on nutrient requirements. Proper
coordination between root growth regulators and ion

transporters is required for continuous intake of nutrients (41).
PGPR are involved in this pathway and accelerate the rate of
nutrient absorption. Rhizobacteria enhance plant growth and
development by either activating the transport of ions in the
roots or directly enhancing the availability of nutrients in the
rhizosphere.

PGPR: Direct mechanism for plant growth and promotion
Biological nitrogen fixation by PGPR

Nitrogen is one of the most important macronutrients in dry
plant biomass. It is a crucial component of genetic material,
membrane lipids, amino acids enzymatic and structural
proteins (42). Biological nitrogen fixation uses microbes such
as blue-green algae, eubacteria and actinomycetes, to
transform atmospheric nitrogen into ammonia via a reduction
process.

Symbiotic nitrogen fixation

Some nitrogen-fixing microbes are symbiotically associated
with plant roots and microorganisms. Symbiotic nitrogen-
fixing microorganisms can fix atmospheric nitrogen and
provide access to plants. Mutualistic interactions begin
when the plant begins to secrete flavonoids and
isoflavonoids in its rhizosphere, as recognized by
Rhizobium (43). Rhizobium, Sinorhizobium, Bradyrhizobium
and Mesorhizobium form symbiotic relationships with
leguminous plants, whereas Frankia is associated with non-
leguminous plants and shrubs (44).

Nonsymbiotic or free-living nitrogen fixation

Free-living nitrogen-fixing bacteria are in the root zone of
plants; obtain food and nutrients from them while
returning fixed nitrogen. Diazotrophs, which promote the
growth of non-leguminous plants, such as rice and radish,
also fix nitrogen without symbiotic relationships. The non-
symbiotic nitrogen fixers are Azoarcus, Azospirillum,
Azotobacter, Burkholderia, Herbaspirillum, Azospirillum,
Acetobacter and Diazotrophicus, which are nitrogen-fixing
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Table 1. Examples of rhizobacteria that support plant growth

PGPR Strain Plants Role in plant growth and development Ref.
The herbicide-resistant Rhizobium strain MRP1 improved growth
Bradyrhizobium MRM6 Mung bean (Vigna radiata) metrics at all herbicide doses examined (quizalafop-p- ethyland  (17)
clodinafop).
. N Increased noticeably the Ni content (A. serpyllifolium) and
Pseudomonas sp. A3R3 Indian Mustard (Brassica juncea L) biomass (B. juncea) of plants cultivated in Ni-stressed soil. (18)
Soybean (Glycine maxL.) & Wheat ~ Enzyme activity, soil productivity and nitrogen absorption have
Pseudomonas sp. (Triticum aestivum L.) all dramatically increased. (19)
Castor bean (Ricinus communis) & Both plant species growth and Ni accumulation were improved by
Psychrobacter sp. SRS8 Sunflower (Helianthus annuus) higher plant biomass, chlorophyll and protein contents. (20)
The growth, symbiotic features (nodulation and hemoglobin
Rhizobium strain MRP1 Common pea (Pisum sativum) content), amount of N and P nutrients in plant organs, seed yield  (21)
and protein content of pea plants were all significantly increased.
Tryptophan helped Rhizobium minimize the negative effects of
Rhizobium phaseoli Mung bean (Vigna radiata L.) salt while also increasing plant height, nodule density, biomass,  (22)
grain production and nitrogen content in the grain.
Significantly more plant biomass was produced and untreated
Paenibacillus polymyxa Black Pepper (Piper nigrum) plants developed systemic resistance to the bacterial spot (23)
pathogen Xanthomonas axonopodis pv. Vesicatoria.
Pseudomonas fluorescens strain - -
y ; . Plant height, seed number, weight, area of the leaves and dry
R-93, P‘c‘set%‘r’fg?fgss putida Maize (Zea mays L.) weight of the shoots all increased noticeably. (24)
Considerably enhanced measurements of plant roots, shoots,
Psychrobacter sp. SRA1 Bacillus  Chinese mustard (Brassica juncea) fresh weight and dry weight in addition to enhanced copper (25)
uptake by plants.
Ralstonia metallidurans, . . e
Pseudomonas fluorescens and Maiz (Zea mays L.) Higher soil met?rl]g::abslgéa;;)c;%,re?ifginocfegrp;lra]gtpdbevelopment and (26)
Pseudomonas aeruginosa P )
Klebsiella pneumonia Wheat (Triticum aestivum) Boosted the root and shoot lengths significantly. (27)
Pseudomonas sp. Chickpea (Cicer arietinum) Plant fresh and dryweightinrcrzaased with a nickel dosage of 2 (28)
. Plant height, node number, branch number, & leaf area all
PSZ%?Wig,? S,ﬁ,bggfélrlgs Sp- Cannabis (Cannabis sativa) increased as compared to the control, increasing the flower’s (29)
9 P- fresh weight by (5.13 %, 6.94 % and 11.45 %).
Peribacillus sp. P10 . . . . L
¢ . Having PGP traits and managing the bacterial population in the
Pseudomonas sp. P8 and Maize (Zea mays L.) ; . ; (30)
Streptomyces sp. X52 rhizosphere may help plants grow better in salty environments.
Pseudomonas sp. G22, . . Effect of distinct beneficial bacterial strains’ chemotaxis, root
Rhizobium sp. 1C3109 and Maize (Ze(‘ég.'gr);flsl"c)a&ai')geon P€a " colonization behavior on root exudates made of a legume (pigeon (31)
Enterobacter sp. C1D. ! ! pea) and a grain (maize).
Excellent biofertilizer choices for the cultivation of tomatillo
Atlantibacter sp., megaterium - o . crops, in comparison to the control, the bacterially treated
and A. calcoaceticus Tomatillo (Physalis philadelphica) seedlings had greater leaf weight (>349 %) and root length (32)
(>11 %).
Bacillus (B. subtilis, B. velezensis Sugar beet (Beta vulgaris) Potential to synthesize antifungal metabolites and for their (33)

and B. amyloliquefaciens)

abilities as plant growth-stimulators.

bacteria that coexist with members of the Poaceae family
plant root cells. Azospirillum is a nitrogen-fixing bacterium
that lives in C4 plants including maize, sugarcane, bajra,
sorghum and cereals such as rice, barley and wheat (45). It
is an aerobic, non-nodulating, gram-negative bacterium.
Gluconacetobacter, Pseudomonas, Diazotrophicus,
Enterobacter and Cyanobacteria (Anabaena and Nostoc) in
the rhizosphere (46).

Phosphate Solubilization by PGPR

PGPR have a significant impact on plant nutrition, which
affects phosphate solubility. Despite high soil phosphorus
levels, plants use only a small fraction of the phosphorus
accumulated by fertilizer applications (46). Plants may
absorb monobasic (HPOs) and dibasic (HPO4*) phosphates
without mineralization or microbial breakdown, unlike
organic or insoluble phosphates (47). Pseudomonas,
Bacillus and Rhizobium are PGPRs that are capable of
dissolving insoluble phosphate. The external media
become more acidic due to the breakdown of organic

forms of phosphate compounds by phosphatases and
phytases, as well as the release of low molecular weight
organic acids, such as gluconic acid. These acids chelate
cations that are bound to phosphates were found by early
researchers (48, 49). Research has shown that HPLC-
purified PGPR with a high phosphorus solubilization
capacity (PSC) can improve plant development and
agricultural yield. Research indicates that PGPR favourably
affects plant roots and leaves (50).

Siderophore produced by PGPR

Plants have difficulty absorbing the trivalent hydroxide
form of iron (Fe?*), which is prevalent in the soil. Fungi,
bacteria and plants produce small siderophore molecules
that aid in iron absorption. Depending on their chemical
properties, siderophores can be classified into four classes:
These categories include catecholates, phenolates,
hydroxamates and carboxylates. A high frequency of
combinations between distinct groups has been reported
(51). Siderophores released by plants and microorganisms
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are tiny, high-affinity iron chelators that bind strongly to
Fe*. Soil bacteria with alkaline to neutral pH levels
synthesize chemicals in response to iron scarcity because
of their limited solubility (52). Bacteria compete for iron
with other rhizosphere bacteria by infecting the plant roots.
To obtain Fe bacteria create siderophores. Iron is essential
for cell growth and metabolism. PGPR can restrict the
growth of pathogenic microbes by securing Fe** near the
roots (53), while several bacterial siderophores can serve as
iron sources for plants and their concentration may not be
sufficient to significantly affect iron uptake. Numerous ions
lead to an increased solubility. Siderophore-producing
bacteria such as Bacillus, Bradyrhizobium, Enterobacter,
Rhizobium, Pseudomonas, Serratia, Streptomyces etc were
identified (54). The siderophore complex converts Fe** to
Fe*, which is easily absorbed by the cells (55).
Siderophores can form stable complexes with iron even
with undesired elements including Al, Cd, Cu, Ga, In, Pb and
Zn. Heavy metals promote the synthesis of bacterial
siderophores (56, 57).

Phytohormones production by PGPR

Unlike many dicotyledonous plants, the root system of this
plant includes both post-embryonic and embryonic roots.
Cereal plants such as wheat, rice and barley develop a
complex root system with root crowns and nodular
structures (58, 59). Studying the connection between plant
phytohormone pathways and roots is worthwhile. The root
system is crucial for plant growth and productivity; thus,
hormone disruption over many roots is a serious concern
for plant adaptability. This structure stabilizes plants,
absorbs water, nutrients and facilitates communication
with soil bacteria (60).

Auxin effect on plant growth

PGPR strains enhance plant development by increasing
total root surface area through auxin-induced root
architectural modifications. Increasing the overall root
surface area can improve water absorption and nutrient
availability, leading to better plant growth and
development (61). PGPR rely heavily on the synthesis of
indole-3-acetic acid (IAA) to promote plant development
(62). IAA is produced by over 80 % of rhizosphere-
associated bacteria, including Azotobacter, Enterobacter,
Azospirillum, Staphylococcus and Pseudomonas (63). Plants
conserve auxin biosynthesis, with production primarily
occurring in the developing seeds, young leaves and leaf
bases. The phloem transports molecules from the synthesis
source to the intended destination either over large
distances or through nearby cells (64). PGPR promote root
development by releasing IAA. Several PGPRs produce
auxins that affect the root architecture and development
(65). Inoculating wheat plants with auxin-producing PGPRs,
such as Pseudomonas extremaustralis 1B-13-1A and
Paenibacillus illinoisensis 1B 1087, led to increased root
biomass and auxin concentration (66, 67). Bacillus
toyonensis Bt04, a PGPR strain, produces IAA induces
phytostimulation in maize. Rhizobacteria play an important
role in plant growth by producing IAA (68). IAA-attenuated
mutants play an important role in PGPR-induced root
growth. Azospirillum boosted IAA and IBA levels, leading to

4

improved cell membrane function in plant roots (69).
Bacteria transfer chemicals to plants, including indole-3-
acetaldehyde, indole-3-lactic acid (ILA), indole-3-ethanol
(TOL) and indole-3-acetamide (IAM), which regulate plant
growth and development (70). Azospirillum and
Paenibacillus species may produce tryptophan and auxins
in the rhizosphere (71). Bacterial auxins promote the
growth of main plant roots at low concentrations. Bacterial
auxins at higher concentrations can also encourage the
formation of adventitious and lateral roots. This
phenomenon can increase mineral intake and generate
root exudates, leading to bacterial proliferation (72).

Cytokinin effect on plant growth

Cytokinin (CTK) is a hormone found in plants, algae and
bacteria. It is the second most important phytohormone
after IAA (73). CTK promotes cell division, tissue growth,
chloroplast development and plant bud differentiation
(74). Plants continuously respond to environmental stimuli
through root and shoot meristem activity, vascular growth,
root elongation, lateral root nodule formation and apical
dominance (75). In shoots, increasing CTK levels correlate
with higher vyields (76). Rhizobacteria associated with
Coleus forskohlii, such as Stenotrophomonas maltophilia
MTP42, Pseudomonas putida MTP50 and Pseudomonas
stutzeri MTP40, generate CTK that promote plant
development (77). CTK and auxins govern plant growth by
promoting the phloem and developing xylem through
antagonistic chemicals (78). PGPR has been linked to CTK
production on many occasions (79, 80). CTK influence
axillary bud development, apical dominance and leaf
withering. They also increased the surface area of the root
by accelerating lateral and adventitious root formation.
CTK facilitate inter-organ communication by delivering
signals from the roots to shoots based on environmental
variables (81). Treating plants with CTK-producing bacteria
accelerates shoot development and reduces the root-to-
shoot ratio (82). Many PGPRs produce cytokinins that
stimulate the release of plant root exudate. This enhances
the interactions between plants and PGPRs. Auxin and CTK
regulate Rhizobium nitrogen-fixing symbiosis (83).CTK
govern root meristem differentiation, increase root hair
growth, inhibit the formation of lateral and main roots (84).

Abscisic Acid (ABA) effect on plant growth

Research suggests that PGPR can increase ABA production
in plants, thereby helping to regulate its levels. The
literature extensively describes the role of the
phytohormone ABA during drought stress (85). As ABA
levels increase during dehydration, the stomatal closure
reduces water loss. Inoculating A. thaliana with Azospirillum
brasilense Sp245 increased ABA levels, particularly during
osmotic stress. However, hormones work differently when
lateral roots grow (86). Inoculating Arabidopsis thaliana
with Azospirillum brasilense Sp245 led to an increase in ABA
levels, especially during osmotic stress. Hormones operate
differently during lateral root growth (87).ABA plays a role
in protein and osmolyte production, senescence, seed
development, dormancy and other functions. It regulates
plant tolerance to abiotic and biotic stresses, including
harsh and unpredictable conditions (88).
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Gibberellins (GAs) effect on plant growth

GAs regulates seed dormancy, germination, fruit ripening,
root growth and root hair density (89). Gibberellin was
discovered in Rhizobium meliloti gnotobiotic cultures,
including GAl, GA4, GA9 and GA20 (90). Research has
shown that certain rhizosphere bacteria such as
Herbaspirillum seropedicae, Acetobacter diazotrophicus,
Bacillus sp., Azospirillum sp. and Bacillus sp. produce GA
(91). Naturally occurring gibberellins include 136
compounds, of which GA; is most produced by bacteria.
Gibberellins produced by bacteria can stimulate plant
growth and increase crop output. Inoculation of maize
roots with several Azospirillum strains led to increased GAs
levels and root growth. The Enterococcus faecium (LKE12)
collaborates with IAA-generated gibberellins such as GA,,
GAs, GA7, GAs, GAs, GA12, GAio, GA, GAxand GAs; to increase
biomass in rice grains and oriental melon. Gibberellins can
act as thermotolerant agents in plant. Bacillus tequilensis
(55807) produced GA:, GAs, GAs, GAs, GAy, GAxand GAss
with soybeans, resulting in increased shoot length and host
plant biomass (92).

Function of 1-aminocyclopropane-1-carboxylate
deaminase produced by PGPR

(ACC)

Ethylene is a crucial metabolite for plant growth and
development. Almost all plants naturally produce this plant
growth hormone. It is also produced by many biotic and
abiotic processes in the soil. It has a significant effect on
plant physiological changes. Ethylene has been identified
as a stress hormone and plant growth regulator (93).
Stressful environmental factors, such as salt, drought,
waterlogging, heavy metals and pathogenicity, can
significantly increase endogenous ethylene levels. Elevated
ethylene levels reduce plant development. High levels of
ethylene can lead to defoliation and decreased crop yield

(94). Several plant-growth-promoting rhizobacteria,
including Acinetobacter, Achromobacter, Agrobacterium,
Alcaligenes, Azospirillum, Bacillus, Burkholderia,
Enterobacter, Pseudomonas, Ralstonia, Serratia and

Rhizobium have ACC deaminase activity (95). Inoculating
seeds and roots with rhizobacteria that produce ACC
deaminase in various crops can promote root elongation;
accelerate shoot growth; enhance rhizobial node
formation; facilitate N, P and K absorption and increase
mycorrhizal colonization (96). ACC deaminase activity in
PGPR promotes plant development. Enzymatic activity
helps plants to develop and adapt to stress under normal
or demanding conditions (97).

Conclusions and future perspectives

Bio-fertilizers (PGPRs) are a highly effective and safe
technique for boosting agricultural yield. This practical
method addresses the need for higher crop yield. PGPR are
crucial for rhizosphere engineering as they enhance plant
growth and development. Over the past few decades,
numerous PGPR strains have been identified and used to
promote optimal growth and development in various plant
species, both under normal and stressful conditions.
Researchers are studying how PGPR inoculations affect

subsurface microbial populations to better understand
their involvement in plant growth. Rhizobacteria, which
enhance plant development, have demonstrated excellent
results in several agricultural studies. Bacteria play
multiple roles including promoting plant growth and
development, neutralizing pollutants and controlling plant
diseases. PGPR production can be further boosted by
adjusting and customizing it to specific soil conditions in
the area. They are intended to eventually replace chemical
fertilizers, herbicides and synthetic growth regulators,
which negatively impacts sustainable agriculture. Further
research on phytostimulation can lead to the generation of
more potent rhizobacterial strains suitable for various
agroecological settings. Producing sufficient plant biomass
is crucial in today’s dynamic  environments.
Microorganisms in the soil around roots and in the
rhizoplane can improve plant growth and increase biomass
production. Rhizobacteria play a crucial role in plant
growth, development and health by increasing nutrient
availability, producing phytohormones and reducing
pathogenic infections. This is particularly important under
abiotic stress. Recent developments have improved soil
fertility, plant tolerance, productivity and nutrient cycle
balance. Modern methodologies and technologies are vital
for advancing PGPR and for establishing sustainable
agricultural practices.
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