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Abstract

Nitrogen (N) fertilizers have played a significant role in enhancing rice yield over recent decades; however, their excessive use has also
led to considerable negative environmental impacts. To achieve sustainable productivity, it is essential to adopt strategies that
enhance yield while reducing, or at least minimizing, nitrogen input, thereby improving nitrogen use efficiency (NUE). The crucial
physiological reasons for maintaining high yield and NUE in N-efficient varieties were attributed to better root system characteristics.
Fourteen selected rice varieties, comprising both short-duration and medium-duration varieties, were screened for NUE based on root
characteristics under field conditions at two levels of the recommended dose of nitrogen (RDN). Application of 100 % RDN resulted in a
significantly higher root volume and Root dry weight. Interaction effects also showed significant influence. Based on the Root Dry
Weight Efficiency Index (RDWEI), seven varieties were classified as efficient (RDWEI > 1.0). At the same time, the remaining seven were
moderately efficient (RDWEI 0.5-1.0) and none of the varieties were N inefficient (RDWEI <0.5). Trends in RDWEI were consistent with
variations in grain yield, highlighting its reliability as a NUE indicator. Among the evaluated varieties, Harsha recorded the highest
grain yield (4.1 t ha), which was statistically comparable to Varsha, Aiswarya and Sreyas. Notably, varieties that maintained stable
yields under reduced N application demonstrated superior adaptability and NUE. The study confirmed that genetic variability exists in
N response and the interaction between variety and N levels significantly influenced yield and root traits. Identifying N-efficient
genotypes with robust root systems presents a promising approach for enhancing N management and promoting sustainable rice
production, as well as improved soil health.
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Introduction Modern agriculture has successfully increased grain
yields and helped mitigate food shortages (5). However, it has
also resulted in excessive accumulation of reactive N, which
can exceed environmental thresholds and disrupt critical Earth
-system processes (6). On average, crops absorb only about
half of the N applied as fertilizer, while about 25 % is lost
through leaching, volatilization and denitrification. Due to the
low N recovery rate (30-50 %), farmers often apply large
amounts of fertilizers to maintain crop productivity, which
contributes to increased costs and environmental degradation
(7). However, unutilized N contributes to environmental
concerns, including water pollution, greenhouse gas emissions
and soil degradation (8). These negative consequences impose
significant ecological and economic burdens (9). This
necessitates the development of N-efficient rice varieties that
can maintain productivity under reduced N input, thereby
enhancing food security and environmental sustainability.

Rice (Oryza sativa L.) is a primary staple food, sustaining almost
half the global population (1). Although it comprises only 2.5 %
of the worlds’ land area, India supports approximately 18 % of
the worlds’ population. The ever-growing global population
places tremendous pressure on food production, necessitating
significant advancements in agricultural output. According to
the United Nations' World Population Index, the global
population is expected to reach 9.7 billion by 2050, requiring an
estimated 60 % increase in food production from the same
cultivable land area (2). Mineral fertilizers are crucial for
ensuring food security, as more than half of the worlds’ food
supply relies on their use (3). Among essential plant nutrients, N
is the most critical and is frequently a limiting factor in yield
across diverse agro-ecological regions (4). Therefore, applying
nitrogenous fertilizers is crucial for enhancing productivity in
high-input cropping systems.
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Although most improved rice varieties are bred under
high-input conditions, their NUE is best evaluated under low N
availability. There is significant variability among varieties and
the interaction between N application rates and variety types
influences their performance. Identifying N-efficient varieties and
optimized agronomic practices can enhance NUE and support
sustainable rice production. A key method for understanding
plant responses to varying nitrogen (N) regimes is to examine
plants that exhibit superior growth under Nitrogen-Deficient
conditions.

The rice root system is vital for several key functions,
including the absorption of nutrients and water, the assimilation
and synthesis of various compounds and providing structural
support to the plants’ aboveground parts. Vigorous root growth
is crucial, particularly under conditions of nutrient and water
stress (10). The root systems’ efficiency directly impacts rice
growth, development and yield (11). Genotypes with deeper
roots are better at absorbing nitrogen from deficient soils (12).
Based on this, an ideotype has been proposed that possesses
strong lateral roots, deeper rooting and robust nitrate responses
to ensure effective nitrogen acquisition in intensive cropping
systems (13). Optimizing such root systems can significantly
enhance NUE inrice.

This study aimed to evaluate NUE in 14 rice varieties
under field conditions, with a focus on root morphological traits
to identify genotypes suitable for sustainable rice production.
The ability of certain genotypes within a species to absorb
nutrients more effectively at low nutrient concentrations in the
growth medium is a key mechanism contributing to efficient
nutrient use in plants. Traits such as rooting depth, root volume,
Root dry weight and Root dry weight efficiency index are key
parameters that contribute to improved NUE (14). These traits
associated with nitrogen use efficiency can serve as valuable
screening criteria for phenotyping and selecting genotypes that
are suitable for efficient nitrogen utilization. Such studies
accelerate the development of N-efficient rice varieties in
breeding programs that focus on enhancing productivity under
both optimal and suboptimal N conditions. Supporting this,
Research indicates that root morphological characteristics are
key determinants of NUE in rice. Identifying nitrogen-efficient rice
varieties, combined with optimized agronomic practices, offers a
promising strategy to improve NUE and promote sustainable rice
production.

Materials and Methods

The experiment was carried out at the Integrated Farming System
Research Station (IFSRS), Karamana, Thiruvananthapuram,
during the Kharifseason of 2023. The primary objective was to
screen fourteen selected rice varieties for NUE under field
conditions, at two levels of recommended dose of nitrogen
(RDN): 70 kg ha*for short duration and 90 kg ha® for medium
duration rice varieties (16).

The experiment was laid out in a randomized block
design with three replications. The fourteen rice varieties were
selected based on popularity among the farmers. The varieties
included seven short-duration varieties (SDVs), viz., Makom (MO
9), Prathyasa (MO 21), KAU Manuratna, Jyothi (PTB 39), Harsha
(PTB 55), Varsha (PTB 56) and Kanchana (PTB 50) and seven
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medium-duration varieties (MDVs), viz., Bhadra (MO 4), Uma
(MO 16), Sreyas (MO 22), Pournami (MO 23), KAU Manuvarna,
Athira (PTB 51) and Aiswarya (PTB 52). These varieties were
screened for NUE under two N levels: 0 % RDN and 100 % RDN.

The texture of the soil at the experimental site was
sandy clay loam, strongly acidic (pH 5.7), low in available N
(227.15 kg ha), medium in available potassium (178 kg ha?)
and high in organic carbon (1.25 %) and available phosphorus
(33.28 kg ha!). Lime was applied at the rate of 600 kg ha™ in two
split doses with 350 kg ha* at the time of first ploughing and the
rest one month after planting). Well-decomposed farmyard
manure (FYM) at 5 t ha' was incorporated during land
preparation. The fertilizer recommendations were 70:35:35 kg
NPK ha? for short-duration varieties and 90:45:45 kg ha™* for
medium-duration varieties. In the case of short-duration
varieties, two-thirds of N, a full dose of P and half of K were
applied as basal at the time of transplanting and the remaining
one-third of N and half of K were applied one week prior to
panicle initiation. In the case of medium-duration varieties, a
one-third dose of N, a full dose of P and half the dose of K were
applied as basal applications. One-third N was applied at the
active tillering stage and one-third N and half the dose of K
were applied one week prior to panicle initiation.

The meteorological data collected during the experiment
period, including weekly statistics on mean maximum and
minimum temperatures, relative humidity and rainfall, were
obtained from the Agro-meteorological Observatory of IFSRS,
Karamana (Fig. 1). The seedlings of the chosen varieties were
raised separately in raised nursery beds and then transplanted
into the main field, adopting a spacing of 15 cm x 10 cm for
short-duration varieties and 20 cm x 15 cm for medium-
duration varieties. Seedlings of short duration and medium
duration varieties were transplanted at 18 days and 25 days of
age respectively.

Observations
Root parameters

At the harvest stage, six sample hills were carefully uprooted
and the following root parameters were measured as per the
standard methodology (17).

The root portion was separated, cleaned and the length
was measured. The mean value was calculated and recorded in
c¢m. Root volume per plant was estimated using the water
displacement method and expressed in cm? per plant. Root dry
weight: The root portion was separated and dried in a hot air
oven at (65 + 5) °C until a constant weight was achieved, then
measured and recorded in grams (g). Root dry weight efficiency
index (RDWEI): After drying the plant material at (65 + 5) °C the
roots were weighed and the correlation between Root dry
weight efficiency index (RDWEI) and yield was analyzed. RDWEI
was calculated by using the formula (18),

RDWEI=
Root dry wt. at low N rate Root dry wt. at High N rate
Average Root dry wt. of
genotypes at low N rate

(Egn. 1)

Average Root dry wt. of
genotypes at High N rate
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Fig. 1. Standard week wise weather parameters during the cropping period (11 June 2023 to 21 Oct' 23)

Plant Science Today, ISSN 2348-1900 (online)




MERIN ET AL

Genotypes with RDWEI values greater than 1.0 were
regarded as efficient, while those ranging from 0.5 to 1.0 were
categorized as moderately efficient and genotypes with RDWEI
values below 0.5 were identified as inefficient in N utilization.

Grain yield: The net plot area was harvested separately,
threshed, grains cleaned and dried to a moisture level of 14 %.
The final grain weight was measured and expressed in kg ha™.

Partial factor productivity of N (PFPy): PFPy was worked out by
using the formula and expressed as kg yield per kg nutrient
applied (19). PFP reflects how effectively the applied N is
utilized by the crop to produce yield.

PFP = crop yield with applied nutrients / fertilizer rate (Eqn. 2)

Harvest index: Harvest index was calculated as the ratio
between economic yield (grain yield) and biological yield (grain
yield + straw yield (20).

Table 1. Effect of varieties and nitrogen levels on root parameters of rice

Statistical Analysis

Data from the different treatments were analyzed using standard
ANOVA procedures. The GRAPES program, developed by the
Department of Agricultural Statistics at the College of Agriculture,
Vellayani, was used to analyze and compare the treatments (21).
The F test was used to evaluate statistical significance (22). For
cases where the F test indicated significance, the critical
difference (CD) was calculated and reported.

Results and Discussion
Rooting depth

The rooting depth showed significant variation among the rice
varieties and between the N levels tested (Table 1 and Fig. 2).
Among the SDVs, Harsha recorded the deepest roots (26.31
c¢m), which was 28.40 % greater than that of KAU Manuratna,
the variety with the lowest rooting depth (20.49 cm).

Treatments Rooting depth (cm) Root volume (cm?) Root dry weight (g/ plant)
vi- Makom (MO 9) 22.73 9.30 5.49
V.- Prathyasa (MO 21) 21.91 9.05 5.24
vs- KAU Manuratna 20.49 9.18 5.74
vs- Jyothi (PTB 39) 24.04 8.98 5.25
vs- Harsha (PTB 55) 26.31 10.28 5.86
ve- Varsha (PTB 56) 24.17 10.00 5.97
v7- Kanchana (PTB 50) 22.29 9.45 5.59
Ve- Bhadra (MO 4) 22.53 8.55 458
vo- Uma (MO 16) 22.84 9.38 5.73
vio- Sreyas (MO 22) 24.87 10.40 6.31
vii- Pournami (MO 23) 20.90 8.68 4.89
vi- KAU Manuvarna 21.53 9.43 5.51
vi3- Athira (PTB 51) 24.78 9.55 5.92
vi4- Aiswarya (PTB 52) 27.08 11.05 6.51
SEm () 0.26 0.139 0.092
CD (0.05) 0.754 0.404 0.266
Levels of nitrogen (N)
no- 0 % RDN 24.07 8.65 4.98
n:- 100 % RDN 22.57 10.39 6.24
SEm (%) 0.10 0.05 0.04
CD (0.05) 0.285 0.153 0.101
Interaction (Vx N)
Vino 23.94 8.35 4,79
Vving 21.53 10.25 6.20
VaNo 20.84 7.95 4.49
V2N 22.99 10.15 5.99
ViNg 21.21 8.25 5.13
ViNy 19.76 10.10 6.35
VaNg 24.18 7.95 4.68
Vany 23.91 10.00 5.83
VsNo 27.20 9.80 5.23
V5N 25.43 10.75 6.49
VeNo 25.60 9.45 5.25
VeN1 22.74 10.55 6.69
V7No 24.25 8.35 4.88
V7N 20.33 10.55 6.31
VgNo 21.39 7.60 4.26
Vgny 23.66 9.50 4.89
VoNg 23.84 8.35 4.95
Vo 21.85 10.40 6.50
V1oNo 27.03 9.80 5.65
VioN1 22.71 11.00 6.96
V11No 21.83 71.75 4,51
Vi 19.98 9.60 5.26
V12No 21.75 8.25 4,78
V12N 21.30 10.60 6.25
V13No 25.86 8.55 5.25
V13N 23.70 10.55 6.59
V14No 28.13 10.65 5.93
V14N 26.04 11.45 7.10
SEm (+) 0.37 0.20 0.13
CD (0.05) 1.067 0.571 0.376
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Fig. 2. Interaction effect of varieties and levels of nitrogen on rooting depth of rice

Meanwhile, among the MDVs, Aiswarya exhibited the deepest
roots (27.08 c¢m), which was 29.57 % greater than that of
Pournami (20.90 cm). This implies different rice varieties exhibit
varying levels of adaptability to N stress (23).

Concerning levels of N, zero % RDN resulted in
significantly deeper roots (24.45 cm), representing a 6.65 %
increase compared to 100 % RDN. Under N-deficient conditions,
rice plants often exhibit increased root length as an adaptive
response to enhance nutrient acquisition. This is a common
adaptive response in N-efficient cultivars, where greater root
length supports better N uptake under nutrient-limited
conditions. Whereas, root length may decrease when N is readily
available in the soil, reducing the need for plants to develop
extensive root systems. Research indicates that rice varieties
with high nitrogen uptake efficiency exhibit superior root traits,
including increased root biomass, length and volume, even
under nitrogen-deficient conditions, as an adaptive strategy to
enhance nutrient acquisition (24, 25). The interaction effect
further revealed that among the SDVs, Harsha under zero % RDN
produced deeper roots (27.2 cm), while among MDVs, Aiswarya
under zero % RDN produced deeper roots (28.13 cm). Both were
on par, surpassing all other variety and N-level combinations.

Root volume

Harsha recorded a higher root volume (10.28 cm’among the
SDVs, which was comparable to Varshas’ (10 cm?®). Meanwhile,
among the MDVs, Aiswarya recorded the highest root volume
(11.05 cm?®), which was 29.24 % greater than that of Bhadra, the
variety with the lowest root volume (8.55 cm?). This variation
highlights the genetic potential of certain varieties to develop
more robust root systems under optimal N conditions.
Research indicates that rice varieties with improved NUE
exhibit enhanced root development, contributing to better
nutrient uptake and higher productivity (26). Among the N
levels, root volume increased by 20.12 % under 100 % RDN,
indicating the positive influence of adequate N availability on
root development. This enhancement can be attributed to the
role of nitrogen in promoting cell division and elongation in the
Root apical meristem, thereby stimulating root expansion,
branching and overall biomass accumulation. Research
indicates that mild N deficiency can stimulate root growth,
aiding in deeper root penetration to improve nitrogen foraging.

An adequate N supply enhances critical root traits, such as root
number, biomass and density, providing a balance between
root expansion and functional efficiency (27).

The interaction effect further emphasized this trend.
Among SDVs Harsha (10.75cm? under 100 % RDN recorded
higher root volume, which was on par with Varsha (10.55 cm?)
and Kanchana (10.55 cm®) under 100 % RDN. Among the MDVs,
Aiswarya under 100 % RDN recorded a higher root volume (11.45
c¢m?) which was comparable to that of Sreyas under 100 % RDN
(11 cmd) (Table 1). Overall, the findings on rooting depth and root
volume suggest that an increase in root length is an adaptive
strategy for coping with N deficiency. However, since N is a
crucial nutrient, prolonged and severe N deprivation, such as the
zero N treatment, suppresses adventitious root formation and
reduces the total root system volume (25).

Root dry weight

Significant variations were observed among the rice varieties and
N levels in terms of Root dry weight (Table 1). Among the SDVs,
Varsha recorded a higher Root dry weight (5.97 g), which was
comparable to that of Harsha and KAU Manuratna. Similarly,
among the MDVs, Aiswarya recorded a higher Root dry weight
(6.51 g), which was comparable to that of Sreyas (6.30 g). In
contrast, Bhadra exhibited the lowest Root dry weight (4.58 g),
indicating its relatively lower ability to develop a robust root
system and suggesting lower nitrogen use efficiency.

N levels had a pronounced effect, with 100 % RDN
application resulting in a Root dry weight of 6.24 g, which was
25.30 % higher than that observed under 0 % RDN. This
highlights the critical role of adequate N in promoting root
biomass development. Adequate nitrogen facilitates the
development of a more vigorous root system, which serves as a
foundation for improved nutrient uptake and plant growth.

The interaction effect further supported these findings,
as Varsha under 100 % RDN recorded the highest Root dry
weight (6.69 g) among the SDVs, while Aiswarya under 100 %
RDN recorded the highest Root dry weight among the MDVs,
which was statistically on par with vion:. Research indicates that
applying optimal N levels significantly enhances Root dry
weight (28). This highlights the importance of robust root traits
in enhancing NUE and increasing grain yield inrice.
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Root dry weight efficiency index

The analysis of RDWEI revealed that half of the varieties were
efficient in N use, while the remaining half were moderately
efficient (Fig. 3). Notably, none of the varieties could be
categorized as inefficient in N use. The efficient N use
genotypes included, Aiswarya (vis) (1.37), Sreyas (vi) (1.26),
Varsha (ve) (1.23), Harsha (vs) (1.18), Athira (vis) (1.14), KAU
Manuratna (vs) (1.13), Kanchana (v4) (1.07), Uma (vs) (1.04) and
Makom (vi) (1.03). While the moderately efficient genotypes
were KAU Manuvarna (vi,) (0.95), Prathyasa (v,) (0.95), Jyothi
(va) (0.94), Bhadra (vs) (0.69) and Pournami (vi1) (0.67). The
trends observed in RDWEI closely mirrored those in total grain
weight, indicating a strong correlation between NUE and
productivity, reinforcing its use as a selection criterion. This
finding aligns with recent studies demonstrating that N-
efficient varieties (NEVs) outperform N-inefficient varieties
(NIVs) in terms of grain yield and NUE (29). The enhanced
performance of NEVs is attributed to their superior root and
shoot activity (30). Furthermore, a robust root system is crucial
for sustaining plant growth and development, ultimately
leading to higher yields (31).

Grain yield

Table 2 presents data on grain yield as influenced by variety and
nitrogen levels. Among the SDVs, Harsha recorded a higher grain
yield (4.1 t ha!), Among the MDVs, Aiswarya recorded the highest
grain yield (3.93 t ha!) which was on par with Sreyas (3.80 t ha?).
The grain yield of all four varieties was comparable,
demonstrating their superior ability to utilize available nitrogen
efficiently (32). Research indicates that nitrogen-efficient
varieties (NEVs) outperform nitrogen-inefficient varieties (NIVs) in
grain yield and NUE, owing to their superior root and shoot
activity (30, 33). The positive correlation observed between root
traits and grain yield further supports the hypothesis that robust
root systems are integral to improving NUE. For instance,
varieties with higher Root dry weight and root volume showed
better grain yield performance under both N regimes. Research
indicates that enhanced root biomass and length directly
influence nitrogen (N) uptake and utilization efficiency (34).

N levels significantly influenced grain yield, with the
application of 100 % RDN resulting in a yield of 3.74 t ha?, an
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83.33 % increase compared to 0 % RDN (2.04 t ha?). Research
indicates thatst longer root length as a critical trait in rice
varieties achieving high grain yield and improved NUE,
particularly under N-limited conditions or reduced N application
rates (32). Additionally, research indicates that the advantage of
long root systems in accessing nitrogen (N) from deeper soil
layers makes this an ideal trait for enhancing N acquisition (35).

The combined effect of variety and N level on grain yield
was most pronounced for Harsha under 100 % RDN (4.75 t ha™)
among the SDVs, which was statistically on par with wsniand
vsnzAmongthe MDVs,Aiswarya under 100 % RDN (4.65 t ha?),
recorded higher grain yield which was comparable to vion; (4.60
t ha?) (Fig. 4). The grain yield of high performing SDVs and MDVs
were also statistically comparable. The least reduction in grain
yield with n, compared to ni Was observed in v, Vs, vis and vio
(23.9, 27.4, 31.2 and 34.8 % respectively) indicating that these
varieties maintained relatively stable yield performance even
under 0 % RDN compared to 100 % RDN. Research indicates
thatgreater root biomass and root length are correlated with
enhanced grain yield and NUE, including indices such as N
harvestindex and partial factor productivity of applied N.

Straw yield

The data on straw yield indicated that, Harsha recorded higher
straw yield (7.83 t ha'), among the SDVs, which was statistically
comparable with Varsha (7.72 t ha?). Among MDVs, Aiswarya
recorded the highest straw yield (6.76 t ha').

N levels also had a significant impact, with 100 % RDN
leading to a 53.86 % increase in straw yield compared to zero %
RDN. This demonstrates that increasing N levels promotes
biomass accumulation, as supported by previous research (37,
38). Research indicates that N application significantly enhances
tiller number and dry matter production, contributing to
increased straw yield. The interaction effect showed that
among SDVs, KAU Manuratna under 100 % RDN recorded
higher straw yield, which was statistically comparable to vshy,
Ven1, viniand vzni. Meanwhile, among MDVs, Aiswarya, under
100% RDN, recorded a higher straw yield, which was on par
with Sreyas, under 100% RDN.
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Fig. 3. Effect of varieties on root dry weight efficiency index of rice
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Table 2. Effect of varieties and nitrogen levels on grain yield, straw yield and harvest index of rice

Treatments Grain yield (tonnes ha?) Straw yield (tonnes ha) Harvest Index
vi- Makom (MO 9) 2.35 5.40 0.29
Vo- Prathyasa (MO 21) 2.48 5.64 0.30
v3- KAU Manuratna 2.90 6.41 0.31
Vs- Jyothi (PTB 39) 2.80 6.09 0.31
vs- Harsha (PTB 55) 4.10 7.83 0.34
Ve- Varsha (PTB 56) 4.05 7.72 0.34
v7- Kanchana (PTB 50) 2.63 5.99 0.30
vs- Bhadra (MO 4) 2.18 4.54 0.31
ve- Uma (MO 16) 2.78 5.79 0.32
Vvio- Sreyas (MO 22) 3.80 6.51 0.37
vii- Pournami (MO 23) 2.23 5.00 0.30
vi2- KAU Manuvarna 1.95 4.23 0.31
viz- Athira (PTB 51) 2.33 4.86 0.32
vis- Aiswarya (PTB 52) 3.93 6.76 0.37
SEm () 0.16 0.36 0.01
CD (0.05) 0.470 1.043 0.020
Levels of nitrogen (N)
no- 0 % RDN 2.04 4.66 0.30
n:- 100 % RDN 3.74 7.17 0.34
SEm () 0.06 0.14 0.003
CD (0.05) 0.179 0.394 0.008
Interaction (Vx N)
ViNo 1.10 3.01 0.27
ving 3.60 7.80 0.32
V2No 1.70 4.87 0.26
Van: 3.25 6.42 0.34
V3No 1.50 3.85 0.29
V3N 4.30 8.97 0.33
VaNo 2.10 5.52 0.28
Vani 3.50 6.67 0.35
Vsho 3.45 7.02 0.33
VsNi 4.75 8.64 0.36
VgNo 3.50 7.22 0.32
VN 4.60 8.22 0.36
V7No 1.70 4.24 0.29
VN1 3.55 7.75 0.32
VgNo 1.10 2.65 0.29
Ve 3.25 6.44 0.34
VaNo 2.05 4.61 0.31
Vai 3.50 6.98 0.34
V10No 3.00 5.67 0.35
VioN1 4.60 7.35 0.39
V1iho 1.35 3.48 0.28
Vi 3.10 6.52 0.32
Vi2No 1.15 3.06 0.28
V21 2.75 5.39 0.34
Visho 1.65 3.92 0.30
V13N 3.00 5.80 0.34
V1aNo 3.20 6.11 0.35
Vi 4.65 7.41 0.39
SEm (+) 0.23 0.51 0.01
CD (0.05) 0.670 1.475 NS
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Fig. 4. Interaction effect of varieties and levels of nitrogen on grain yield of rice

Partial factor productivity of nitrogen

The data presented in Fig. 5 reveal significant variation in the
PFPn among the rice varieties under 100 % RDN. Specifically,
among the SDVs, higher PFP value was recorded for Harsha
(68.09 kg kg* N applied) which was on par with Varsha (65.95 kg
kg* N applied) and KAU Manuratna (61.18 kg kg N applied),
indicating their superior NUE. Among the MDVs, Aiswarya
recorded higher PFP value (51.67 kg kg N applied), which was
comparable to Sreyas (51.47 kg kg* N applied). This enhanced
performance is attributed to their greater Root dry weight and
root length, which facilitate improved nutrient uptake and
utilization efficiency. Research indicates that N-efficient
varieties achieve superior grain yield and nitrogen use
efficiency (PFPy) (39). Conversely, the lower PFP value observed
in KAU Manuvarna (30.55 kg/kg N applied) may be indicative of
suboptimal root traits, such as reduced root length or dry

weight, limiting N uptake efficiency and productivity. The
observed trend aligns with the general understanding that PFP
tends to decline as N application rates increase, reflecting
diminishing returns in productivity per unit of N applied.

Harvest Index

The data presented in Table 2 indicate that Harsha (0.34) and
Varsha (0.34) recorded higher harvest index values among the
SDVs. In contrast, among the MDVs, Sreyas (0.37) and Aiswarya
(0.37) recorded higher harvest index values among the MDVs.
100 % RDN resulted in a 13.33 % higher harvest index than zero
% RDN. Research indicates that the harvest index increases
favorably with increasing N levels (40).

No significant interaction effects were observed with
respect to harvest index, suggesting that the variety and N level
independently influenced the harvest index.
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Conclusion

Based on the screening of rice varieties under field conditions
with varying nitrogen regimes particularly concerning Root dry
weight efficiency index, grain yield and partial factor
productivity of nitrogen, the short duration varieties, Harsha
(vs) and Varsha (ve) and the medium duration varieties Sreyas
(vio) and Aiswarya (vis) were found to outperform others,
confirming their potential for efficient nitrogen use. Hence,
Harsha (PTB 55), Varsha (PTB 56), Sreyas (MO 22) and Aiswarya
(PTB 52) were identified as promising nitrogen use-efficient rice
genotypes and selected for detailed field-level evaluation
under graded levels of RDN. These traits hold significant
potential as foundational criteria for root phenotyping aimed
at breeding N-use-efficient rice genotypes. To strengthen these
insights, further validation across a broader range of N-use-
efficient genotypes is essential, paving the way for the
development of high-performing, sustainable rice varieties.
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