

REVIEW ARTICLE

Valourizing agricultural farm waste with bioinoculants for plant growth promotion and disease management

S Jensipershiya¹, V Sendhilvel^{1*}, V Geethalakshmi², S K Manoranjitham¹, P Malathi³ & M Siva¹

¹Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India

²Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India

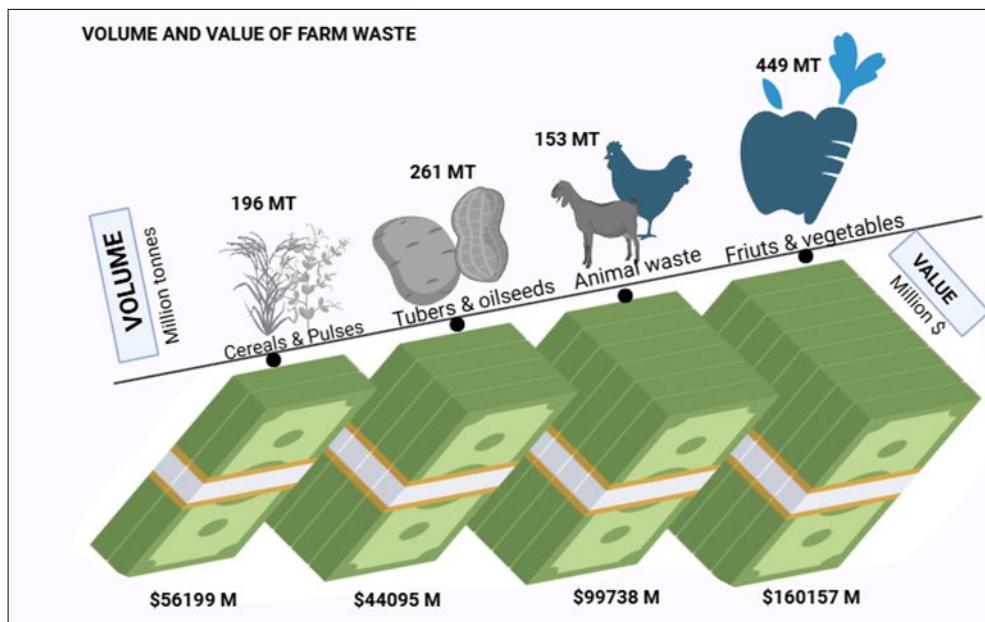
³Division of Crop Protection, ICAR - Sugarcane Breeding Institute, Coimbatore 641 007, Tamil Nadu, India

*Correspondence email - sendhilvel@tnau.ac.in

Received: 04 March 2025; Accepted: 09 April 2025; Available online: Version 1.0: 28 April 2025

Cite this article: Jensipershiya S, Sendhilvel V, Geethalakshmi V, Manoranjitham SK, Malathi P, Siva M. Valourizing agricultural farm waste with bioinoculants for plant growth promotion and disease management. Plant Science Today (Early Access). <https://doi.org/10.14719/pst.8068>

Abstract


Soilborne pathogens such as *Fusarium* spp., *Pythium* spp., *Phytophthora* spp., *Verticillium* spp. causes significant yield loss to various agricultural and horticultural crops. These diseases are difficult to control by chemicals which are harmful to environment and crop health. On the other hand, continuous usage of pesticides leads to the development of pesticides resistance by the pathogens. Valourizing the farm waste by microbial bioinoculants is an alternative and promising approach for controlling soilborne diseases. Farm waste releases bioactive compounds with antifungal and antibacterial properties. Farm waste utilization reduces pesticide dependence by enriching soil, enhancing microbial diversity and promotes sustainable agriculture. Microbial bioinoculants serve as alternatives to synthetic pesticides for the management of plant pathogens. Beneficial microbes like nitrogen-fixing bacteria, phosphate-solubilizing microbes and biocontrol agents play a crucial role in strengthening the plant immunity against pathogens. These beneficial organisms not only improve soil biodiversity but also ensure better plant growth and development. This review focuses on the enrichment of agricultural farm wastes such as fruits and vegetable waste, coir pith, farm yard manure, biochar and chicken manure with bioinoculants for soil borne disease management. Harnessing microbial bioinoculants for farm waste valorization presents a promising pathway toward sustainable agriculture, ensuring environmental protection and long-term soil health.

Keywords: bioinoculants; disease management; farm waste; soil borne pathogens; soil organic carbon; valourization

Introduction

Agricultural activities generate a significant amount of waste, inclusive of crop residues, animal waste and agro-industrial by-products. Agricultural waste management is essential for maintaining soil health and ensuring a sustainable farming system. These activities result in large quantity of the agricultural residue, including crop residues, straw and organic waste. To reduce greenhouse gas emission, smoke from residue burning and soil deterioration, it is important to manage this biomass effectively. Globally, agricultural waste accounts for approximately 998 million tons (1). According to the World Wildlife Fund (WWF), 26 % of fruits and vegetables from total food production end up as waste, followed by 15 % from roots, tubers and oil crops, 12 % from animal waste and 14 % from cereals and pulses (2). The quantity and value of the organic waste production are depicted in Fig. 1. Effective management and utilization of this waste are essential to reduce environmental impact and enhance sustainable farming practices. An innovative approach for addressing this challenge is the valorization of biomass using potential bioinoculants. The valorization process includes the decomposition and enrichment of organic biomass with

beneficial organisms *viz.*, plant growth promoting rhizobacteria (PGPR) and biocontrol agents to manage the soil borne plant pathogens (3). In this bioconversion involves transforming organic waste into compost and then enriched with crop specific bioinoculants through biological processes. Valorization of farm waste not only aids in waste management but also contributes to improved soil health, reduced use of chemical pesticides and supports environmentally responsible farming practices. Bioinoculants play a pivotal role in this process for colonization and inhabiting plant root system (4). They act as a shield and protecting the roots from soil borne pathogens *viz.*, *Pythium*, *Phytophthora*, *Sclerotinia*, *Macrophomina*, *Rhizoctonia*, etc (5). The diversity of plant growth-promoting microorganisms plays an important role in disease reduction (6). Valorization of farm waste using microbial bioinoculants and disease controlled are listed in Table 1. Adopting this integrated approach can lead to more sustainable and productive farming systems, contributing to long-term agricultural sustainability and environmental conservation. In this review valorization of biochar, fruits and vegetable waste, coir pith, farm yard manure and chicken manure are discussed in detail.

Fig. 1. Quantum of agricultural farm waste and its value.

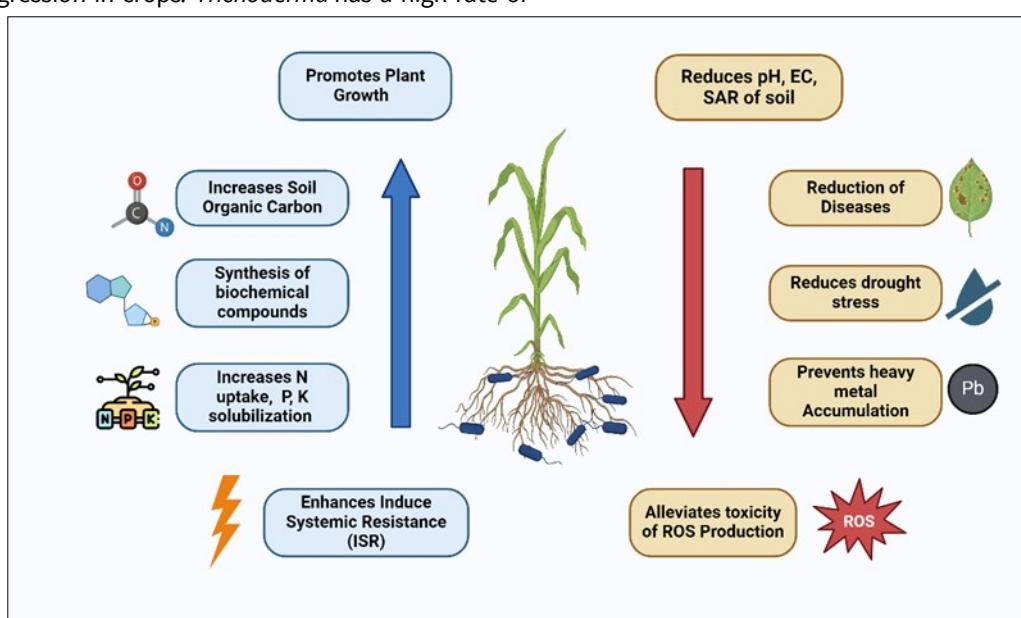
Table 1. Valorization of farm waste using microbial bioinoculants and disease controlled

Sl. No.	Nature of farm waste	Bioinoculants multiplied	Disease controlled	Crop	Disease reduction (%)	Reference
1	Green waste biochar	<i>Bacillus subtilis</i>	Early blight (<i>Alternaria solani</i>)	Tomato	>50 %	(62)
2	Biochar	<i>Pseudomonas, B. subtilis</i>	Wilt (<i>Fusarium oxysporum f. sp. lycopersici</i>)	Tomato	40-42 %	(58)
			Wilt (<i>Fusarium spp.</i>)	Radish	60-70 %	(63)
			Root rot (<i>Rhizoctonia solani</i>)	Cucumber	40-60 %	(60)
3	Rice husk biochar	<i>Pseudomonas sp, Azotobacter chroococcum and Azospirillum brasilense</i>	Bacterial wilt (<i>Ralstonia solanacearum</i>)	Banana, eggplant, peanut, potato, tobacco, tomato	45-65 %	(86)
4	Spent Mushroom biochar	<i>P. fluorescens, B. subtilis</i>	<i>Fusarium oxysporum</i> , <i>Pythium aphanidermatum</i> , <i>Rhizoctonia solani</i> , <i>Phytophthora palmivora</i> , <i>Sclerotium rolfsii</i> and <i>Ralstonia solanacearum</i>	Tomato	60-70 %	(74)
5	Dried banana leaf and pseudostem	<i>Trichoderma asperellum</i>	Wilt (<i>Fusarium oxysporum f. sp. lycopersici</i>)	Tomato	70-75 %	(78)
6	Mango processing industry	<i>T. harzianum</i>	Wilt (<i>Fusarium oxysporum f. sp. cubense</i>)	Banana	>60 %	(87)
7	Coco peat	<i>T. asperellum</i>	Anthracnose (<i>Colletotrichum gleosporioides</i>)	Mango	55-60 %	(34)
8	Coconut fibre	<i>T. harzianum</i>	Damping off (<i>Fusarium oxysporum f. sp. lycopersici</i>)	Tomato, chilli	60-65 %	(88)
9	FYM	<i>T. asperellum</i>	Root rot (<i>Phytophthora capsica</i>)			
10	Chicken manure	<i>Bacillus spp.</i>	Fusarium wilt (<i>Fusarium oxysporum f. sp. lycopersici</i>)	Cherry tomato	60-70 %	(37)
			Wilt (<i>Ralstonia solanacearum</i>)	Egg plant	50-60 %	(42)
		<i>B. subtilis, T. asperellum</i>	Late blight (<i>Phytophthora infestans</i>)	Potato	50-55 %	(43)
			Seedling mortality - damping off, wilt (<i>Fusarium oxysporum f. sp. phaseoli</i> , <i>Ralstonia solani</i> and <i>Sclerotium rolfsii</i>)	Bush Bean	>60 %	(89)
		<i>T. harzianum</i>	Root knot Nematode (<i>Meloidogyne incognita</i>)	Cucumber	65-70 %	(85)

PGPR bioinoculants for valorization

The plant growth promoting rhizobacteria (PGPR) are potential microorganism, which conquer plant roots act as protective wall against soil-borne pathogens (7). The promising genera of PGPR viz., *Bacillus subtilis*, *B. amyloliquefaciens*, *Pseudomonas fluorescens*, *P. striata*, *Azotobacter*, *Rhizobium*, *Acinetobacter*, *Serratia*, *Actinoplanes*, *Enterobacter*, *Cellulomonas*, *Thiobacillus*, *Flavobacterium* and various taxa are under PGPR (8). They synthesize chemical compounds that are beneficial for growth and defense mechanism of plants (9). The plant growth promoting activities of PGPR was given in Fig. 2. PGPR also contributes to induced systemic resistance in plants and is often utilized as a biological agent to suppress plant diseases and pests (10). To function effectively in the rhizosphere, PGPR must be both competitive and compatible with native microbial communities.

The PGPR has a significant impact on soil properties and fertility. In addition to that, these microbes exhibit a synthesis of a variety of biochemical compounds such as exopolysaccharides and phytohormones, siderophores, hydrogen cyanide and antibiotics promote plant growth (11). It also has a role in absorption of nutrients, nitrogen fixation, phosphate and potassium solubilization (12). Several studies have reported that these microbes are used for partially decomposition of farm waste and manures. The ideal carriers such as compost, biogas slurry, crushed corn cobs, biochar, press mud, fruit peels, peat, zeolite, perlite, lignite and talc can be utilized as substrate for PGPR (13). They found that the various types of vegetable waste, crop residues and animal feces can be effectively utilized as carrier materials. The native PGPR strains are becoming more significant as economical and ecofriendly microbes that can be applied for management of crop diseases (14). PGPR controls phytopathogens by triggering systemic resistance through metabolic pathways (15).


Fungal inoculants for valorization

Apart from bacterial inoculants fungal bioinoculants play a major role in enhancing plant growth and reduction of disease progression in crops. *Trichoderma* has a high rate of

multiplication, high nutrient uptake capacity, root colonizing ability and triggered systemic resistance of plant (16). According to Bettoli (17) *Trichoderma* species such as *T. harzianum*, *T. atroviride*, *T. stromaticum*, *T. asperellum*, *T. lignorum*, *T. koningiopsis* and *T. fertile* are the commercialized strains used worldwide. *Trichoderma* spp., synthesize mycolytic enzymes such as β -1, 3 glucanases, β -1, 4 endo-glucanases, chitinases and proteases are known to broken down the chitin layer of pathogen (18). *Trichoderma* synthesizes a wide range of secondary metabolites, many of which exhibit antifungal activity against plant pathogens. These antifungal metabolites include compounds like 6-pentyl-2H-pyran-2-one, harzianopyridone and various anthraquinones (19). These metabolites often have broad-spectrum activity against fungal pathogens. *Trichoderma* showed antagonistic activity against *Rhizoctonia solani* and *Macrophomina phaseolina* (20). Addition of soil organic matter enriched with biological antagonists develop suppressiveness for managing soil-borne diseases (21).

Soil organic carbon

Intensive farming practices and the continuous use of chemical fertilizers and pesticides have significantly depleted soil organic carbon (SOC), disrupting soil microbial communities and favoring the proliferation of plant pathogens. Recent studies have shown that such conventional agricultural practices reduce SOC due to enhanced microbial respiration and the absence of carbon-returning practices like residue retention. On the other hand, the application of valorized farm waste and bioinoculants has been proven effective in restoring SOC and enhancing microbial diversity. A meta-analysis demonstrated that organic amendments, such as compost and green manure, increased SOC by an average of 18 %, with individual studies showing increases up to 24 % (22). It was further reported that biofertilizers enhanced SOC by 0.44 g C kg⁻¹ soil, particularly those involving mycorrhizal fungi and cyanobacteria (23). A recent study in paddy fields showed that bio-organic fertilizers and rice-straw-derived biochar improved SOC content by 26.1 % and 30.7 %, respectively, within just 180 days of application (24). These findings affirm that combining

Fig. 2. Plant growth promoting role of PGPR in soil application.

organic waste amendments with bioinoculants can sustainably boost SOC, improve soil health and support resilient agricultural systems.

Valorization of agricultural and agro-industry waste and byproducts

Fruits and vegetables waste

The global production of fruits and vegetables is about 675 million metric tonnes annually and among them, 1.3 billion tonnes of waste are generated (25). It contributes 26 % of fruits and vegetables being wasted and they are beneficially used nowadays for sustainable organic agriculture. They are composted and supplemented to crops for the benefit of nutrient enrichment and biological management of diseases. *Trichoderma* has been found to exhibit a variety of interactions with soil-borne fungal diseases, including *Phytophthora*, *Rhizoctonia*, *Fusarium* and *Pythium* in vegetable crops like tomato, brinjal, cucurbits and okra (26).

Banana farms produce about 4 tonnes of waste for each tonn of bananas, which includes waste fruits, pseudostems, leaves, inflorescences and skins. They are easily degraded and have a suitable carbon-nitrogen fixation ratio. Among them, 40 million tonnes of banana peel are generated every year which accounts for 35 % of the total weight of bananas (27). The banana peel is a novel carrier material for bioformulation. The presence of tryptophan, a key amino acid precursor for microbial indole-3-acetic acid (IAA) synthesis, in banana peel powder highlights its potential as an effective organic talc based carrier material (28). It increases the shoot length and yield of rice crops. It contains macro and micronutrients and processes tryptophan which are the precursors for indole acetic acid (IAA). IAA producing the ability of microbes depends on the available precursor and it is supplemented by banana peel. It helps microbes with wider multiplication and higher auxin production. The phosphate-solubilizing bacteria multiplied from banana waste support the growth and survival of *Musa paradisiaca*, suggesting promising ecological benefits such as improved soil fertility and reduced dependence on chemical fertilizers. However, further research is necessary to fully understand their long-term effects on soil microbiota, nutrient cycling and overall ecosystem stability (29).

Orange peel, known for its high pectin content, has been used as a composting material that supports the growth of *Bacillus velezensis*. This bacterium, when cultured using orange peel compost, has shown potential in promoting drought stress tolerance and nodulation in soybeans, as well as contributing to the biological suppression of root knot nematodes (*Meloidogyne* spp.) in cotton and soybean crops (30). Jack fruit seeds along with rice porridge are effectively used as a substrate for the multiplication of *Azospirillum brasiliense*, *A. lipoferum*, *Pseudomonas putida*, *P. fluorescence*, *Burkholderia cepacia* which are used for growth promotion of plantation crops (31). The fruits and vegetable waste viz., potato peel, banana, brinjal, papaya, spinach, guava, agroindustry byproducts sugarcane bagasse, used tea leaves and pea husk were used an ideal substrate for the multiplication of *Trichoderma harzianum* and *T. viride* (32).

Experiments were done with the medium made of wheat straw + apple pomace (WsA) and another medium

namely T-GRAN made of dried onion rind, apples and strawberry pomaces, rapeseed meal was combined in a 1:1:1:1 ratio. *T. atroviride* and *T. harzianum* were used to treat those mediums. The effect of adding these organic materials to the soil was found to be substantial in lowering *Sclerotinia sclerotiorum* a pathogen causing white mold in vegetables and fruits. The carrier WsA overgrown with *T. virens* was particularly effective regardless of application dose, it entirely stopped the sclerotia of *S. sclerotiorum* from surviving (33). The dry wastes (dw) produced during the processing of mangoes were analysed and found to be primarily composed of soluble carbohydrates (71 ± 2 %) and fibre (16 ± 1 %) in dry weight. These materials were then used as carriers of *Trichoderma asperellum*, effective against the mango anthracnose pathogen viz., *Colletotrichum gloeosporioides* (34).

Coir pith

Coir pith, a byproduct of the coconut-based coir industry and commercially known as coco-peat, is widely utilized as a substrate for raising vegetable seedlings under protected cultivation systems. It has also proven effective as a carrier material for the multiplication of *Trichoderma* spp., which is vital for the biological control of soil-borne diseases. Studies have shown that coir pith enriched with neem cake medium significantly enhances the colony-forming units (CFUs) of *T. harzianum* within seven days of incubation, making it suitable for soil application. However, large-scale extraction and utilization of coir pith raise ecological concerns, including the depletion of organic matter in coconut-growing areas, potential imbalances in soil ecosystems and disposal challenges of spent material post-application (35). Extensive removal of coir pith from coconut husks can lead to the depletion of organic matter in coconut-growing regions, potentially disrupting local soil ecosystems and contributing to soil imbalances. Over time, this may affect soil structure, water retention capacity and microbial diversity.

Sriram studied the suitable substrate for *T. harzianum* multiplication in coco-peat and they are utilized for growth of tomato and chilli seedlings (36). The multiplication of *T. asperellum* in coconut fibre found that the rate of multiplication was 9.053×10^5 CFU per gram of coconut fibre after 120 days of inoculation when compared to oil palm fruit bunches which produced the second-highest amount CFU of 7.406×10^5 CFU per gram (37). Additionally, the intensive harvesting process may strain natural resources and contribute to environmental degradation. Another concern arises post-application of biocontrol agents like *Trichoderma* spp. although beneficial for plant health, their large-scale use may create disposal issues, especially if residual biomass or microbial load accumulates in the environment.

Farm yard manure

Farm yard manure (FYM) prepared from cattle dung is nutrient enriched compost for plants. Seed treatment with PGPR and FYM prevents seed borne diseases. *Pseudomonas fluorescens* which has antifungal, antinematode, growth promotion and defense inducing properties are mass multiplied with FYM. They increase the bulb size of onions and prevents wilt, root rot and damping off disease of different crops (38). Farm yard Manure application with potential zinc solubilizing microbes used for integrated soil

fertility management (39). Seed inoculation of *Azotobacter*, phosphate solubilizing bacteria multiplied with FYM increase the plant height, cob length and yield of pearl millet (40). FYM, phosphorus and phosphate solubilizing bacteria helps nodulation, growth and yield of kabuli chickpea (41). Microbiome enriched FYM using *Bacillus* spp. results increased yield and suppression of wilt disease caused by *Ralstonia solanacearum* of eggplant compared to alone application of FYM (42). Compared to other treatments, combinations of FYM + *B. subtilis* and FYM + *Trichoderma asperellum* were more successful in managing potato late blight. In terms of disease incidence, the plants treated by FYM + *T. asperellum* and FYM + *B. subtilis* revealed lowest rates, at 16 % and 17 %, respectively. The experiment was conducted with three replicates using a randomized complete block design (RCBD). Statistical analysis was done using ANOVA and differences between treatments were tested using LSD at $p \leq 0.05$. The study took place under field conditions with an average temperature of 18–25 °C and humidity between 75 % and 85 %. The soil was loamy with a pH of 6.8. Furthermore, the area under disease progressive curve for FYM + *Trichoderma asperellum* was the lowest (806.62) when compared to the untreated application of FYM alone (2587.86) (43). Treatment with poultry manure and biofertilizers recorded the lowest prevalence of *cercospora* leaf spot (11.18 %) (*Cercospora capsici*) in capsicum and reduced the presence of *Fusarium* root rot (11.42 %), caused by *Fusarium solani* of capsicum and peas (44).

Biochar

The Biochar were developed using organic substrates like wood, dung, or leaves in oxygen limited environment (45). By the process of pyrolysis or dry carbonization, biomass is burnt in anaerobic conditions at temperature between 300 and 700 °C to create biochar, as an activated carbon soil conditioner (46). The addition of biochar significantly stabilizes photosynthetic carbon and raises the amount of chlorophyll, stomatal conductance, photosynthetic rate and relative water content (47). The increased presence of vital nutrients in the soil, such as K⁺ and the reduction of Na⁺ absorption are the direct mechanisms of biochar (48). The enhancement of soil enzymatic activity, biological and physiochemical characteristics raised the plant water status represents the indirect mechanism (49). Biochar's high surface area serves as a substrate for PGPR and supplies them with enriched nutrients necessary for its existence (50).

The colonizing effectiveness of PGPR with charcoal is a beneficial strategy to improve soil quality (51). In salt-affected soil, biochar decreased Na⁺ uptake while boosting K⁺ uptake when combined with PGPR. Another well-known feature of biochar is its capacity to lower pesticides and heavy metals, which can have negative effects on crops, soil and human health (52). Combination of biochar and PGPR in plant growth promotion has been studied in soybean (53), chickpea (54), French beans (55) and wheat (56). The combined effect of biochar and PGPR on maize and rice are used for the management of abiotic stresses such as drought and salinity respectively (57). The combination of PGPR and biochar represents a promising strategy to improve soil quality. However, its effectiveness is influenced by variables including

soil texture, the origin of the biochar feedstock and the quantity applied, as excessive biochar may lead to nutrient imbalances.

The application of biochar has been reported for the reduction of *F. oxysporum* f. sp. *lycopersici* on tomato (58), *Podosphaera aphanis* on strawberry (59), *Rhizoctonia solani* on cucumber (60), *Botrytis cinerea*, *Leveillula taurica* on tomato and pepper (61). The green waste biochar was also found to be effective in suppressing *Alternaria solani* in tomato (62). In addition to that, the combination of *B. subtilis* and biochar application in tomato crop was highly effective against *A. solnai* and *F. oxysporum* f. sp. *lycopersici* when compared biochar alone. It was observed that *B. subtilis* along with biochar effectively control the *Fusarium* wilt in radish and promote plant growth (63).

Biochar and bio-inoculum

Rice husk biochar: The integration of plant growth-promoting rhizobacteria (PGPR) with agricultural waste products, such as rice husk, is an innovative approach to enhancing soil health and managing soil-borne diseases. Rice husk, the outer shell of rice grains, is a major by-product of rice milling. It is abundant, renewable and rich in organic matter, making it a suitable candidate for valorization. Rice husk ash, which is a source of carbon and silica has porous physical structure, good for sustaining microorganisms and retaining moisture. This indicates the plant can uptake silicon element via their root in a soluble state. Moreover, employing rice husk ash can enhance soil structure and increase soil aeration. Researchers found that rice husk ash, peat, vermiculite, alginic, wheat bran and clay are acceptable materials for usage as a carrier (64). Microorganisms can proliferate and survive in these carriers for longer periods.

The application of Rice husk biochar (3.6 g kg⁻¹ soil) along with PGPR strains viz., *Pseudomonas* sp., *Azotobacter chroococcum* and *Azospirillum brasilense* significantly enhanced higher grain and straw yield and increased the uptake of nutrients (phosphorous, zinc, iron) in rice (65). Multiplication of beneficial bacteria such as *Bacillus*, *Bradyrhizobium*, *Burkholderia*, *Chlorochromatium*, *Chthoniobacter*, *Geobacillus*, *Leptospirillum*, *Mariseminicola*, *Microvirga*, *Pseudoxanthomonas*, *Telmatobacter* in rice husk biochar can be applied for different vegetable crops (66). The reduction of the bacterial wilt disease caused by *Ralstonia solanacearum* in different crops viz., banana, eggplant, potato, tobacco, peanut, tomato were noticed. Biochar made of rice husk with *Bacillus* spp. showed inhibitory activity against *Phytophthora nicotianae*, reduced the survival of pathogens in soil and decreased the disease severity of tobacco black shank disease (67). The rice husk biochar was combined with biocontrol agents such as *B. subtilis* and *Trichoderma harzianum* which can control root knot nematode *Meloidogyne incognita* in tomato (68). Interestingly *B. subtilis* with 3 % rice husk biochar increased overall plant growth and decreased *Meloidogyne incognita* losses. However, while RHB presents numerous agronomic and biological benefits, certain limitations must be considered. These include the risk of silicon toxicity at high concentrations, alterations in soil pH that may affect nutrient availability, potential heavy metal contamination depending on the rice husk source and a

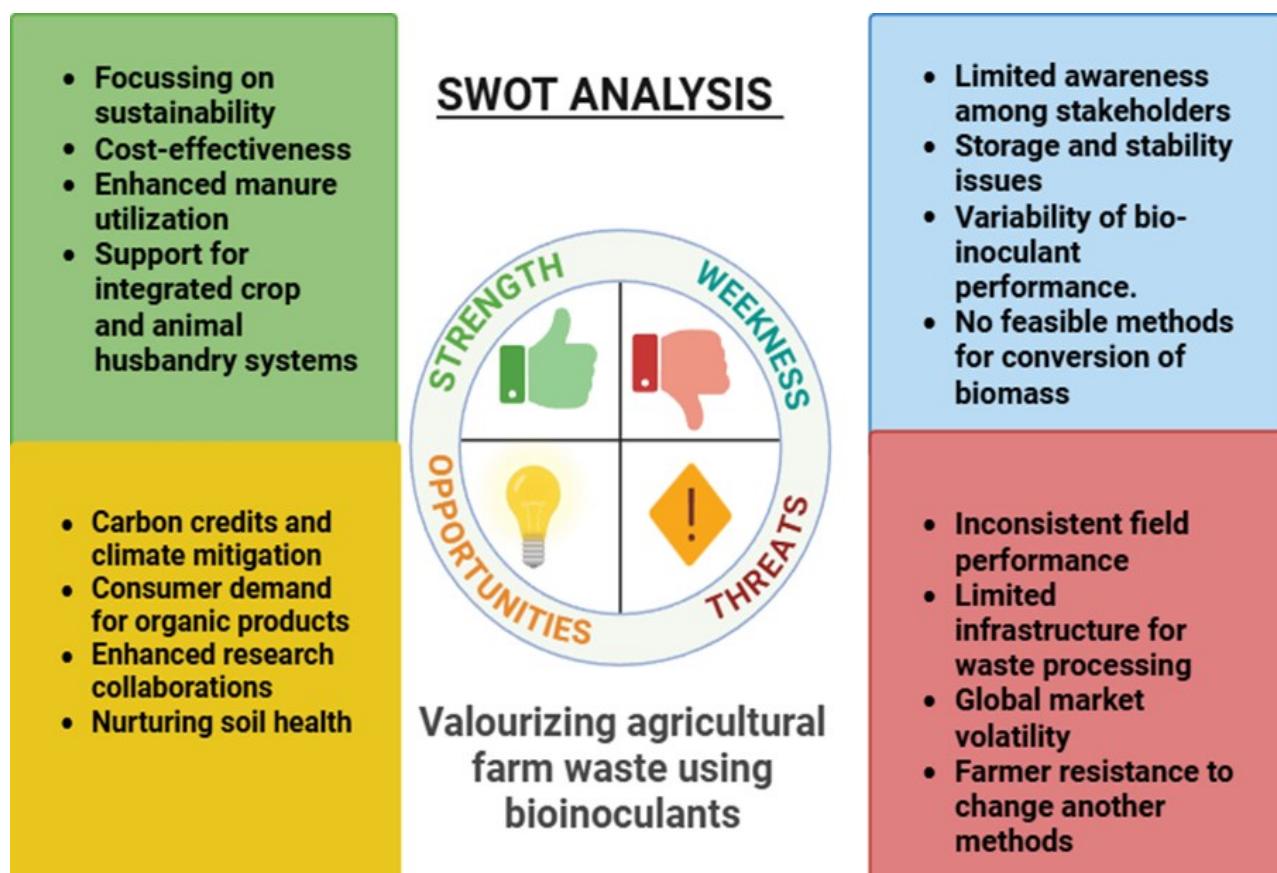
possible reduction in microbial diversity due to selective promotion of specific microbial populations. Therefore, careful assessment of soil conditions, biochar quality and appropriate application rates is essential to optimize the benefits of rice husk biochar in sustainable agriculture.

Spent mushroom substrate: Spent mushroom substrate (SMS) is a byproduct from mushroom cultivation using *Agaricus bisporus* and *Pleurotus* spp. after mushroom harvesting (69). These edible mushroom fungi are mainly cultivated in agricultural raw wastes such as paddy and millet straw and bagasse (70). Adding SMS-biochar along with pig manure and rice straw lowered the compost's organic matter loss and enhanced the calcium, potassium, phosphorus and nitrogen contents. Recent studies demonstrate, biochar prepared from spent black fungus substrates and spent Shiitake mushroom has enhanced surface area and high porosity. SMS biochar offers advantageous properties that allow for improved microbial attachment and growth that promote plant growth, including as adequate surface area, pore size and functional groups (71). Among the beneficial uses of SMS, the application of SMS along with different bioinoculants in soil and its disease controlling property is quite interesting. Larkin and Fravel demonstrated the reduction of bacterial wilt and damping off diseases in tomato which are serious soil borne diseases (72). SMS extract of *Hericium erinaceus* showed high antagonistic activity against some phytopathogenic bacteria (73). Under *invitro* condition fortified SMS by *P. fluorescens* and *B. subtilis* effectively reduced incidence of *Ralstonia solanacearum*, *Fusarium oxysporum*, *Phytophthora palmivora*, *Pythium aphanidermatum*, *Sclerotium rolfsii* and *Rhizoctonia solani* and tomato (74). Application of both PGPR and SMS significantly reduced the abundance of *Fusarium oxysporum* in the rhizosphere (75). In addition, SMS along with compost, chicken manure significantly reduced the abundance of pathogenic fungi, specifically *Magnaporthe grisea* in rice seedlings (76). SMS from *Pleurotus florida* and *P. sojae-caju* with the antagonist *Pseudomonas aeruginosa* and *B. subtilis* are used to control the nursery disease of black pepper (77). SMS of *Pleurotus ostreatus* was biofortified with *Trichodrema asperellum* shows higher multiplication rate of 12.37×10^{13} conidia/g substrate and effectively controls *F. oxysporum* f. sp. *lycopersici* in tomato (78). SMS with *Serratia* sp., *Bacillus cereus* and *B. subtilis* controls rice sheath blight and root knot nematode disease (79). Furthermore, the high carbon-to-nitrogen (C:N) ratio in SMS can cause nitrogen immobilization, leading to nutrient deficiencies and reduced crop performance. In some cases, fungal secondary metabolites present in SMS may exhibit allelopathic effects, potentially inhibiting the growth of certain crops or disrupting beneficial microbial communities. Therefore, while SMS holds significant potential as a sustainable agricultural input, its use must be carefully managed through appropriate pre-treatment, dosage regulation and regular monitoring to ensure environmental safety and agronomic efficacy.

Chicken manure: Rural poultry production technology, one of the components of integrated farming systems, has been estimated to increase the benefit-cost ratio by 2.5 times, significantly improving the small and marginal farmer income by diversifying revenue streams and lowering input cost (80).

In addition, it can be effectively utilized by farmers as organic fertilizer because of its high macro and micronutrient content (81). For macro and micronutrients, particularly N, P, K and S, chicken dung is a valuable resource (82). Soil physical qualities are improved by using chicken dung. Furthermore, it minimizes the danger of nutrient loss and preserves soil fertility (83). Adding chicken manure helps the soil's physical characteristics, giving it a crumb structure and enhancing soil aeration by increasing the porosity, or pore space, which influences root development. This chicken manure is effectively used as a substrate for the multiplication PGPR. Chicken manure and PGPR are used for shallot plants (*Allium ascalonicum* L.) which can increase the growth of the plant, number of bulbs per hill and number of leaves per clump (84). Under greenhouse conditions, the application of animal (cow, sheep and chicken) manures mixed with *Bacillus* spp. decreases galls and reproduction of root knot nematode *Meloidogyne incognita* in cucumber (85). However, despite its agronomic potential, chicken manure presents several health and environmental risks if not properly treated or applied. Pathogen contamination is a major concern, as raw manure can harbor harmful microorganisms such as *Salmonella*, *Escherichia coli* and *Clostridium perfringens*, posing threats to food safety and human health. Improper application may also lead to excessive ammonia emissions, contributing to air pollution, odor issues and soil acidification. Moreover, chicken feed additives can introduce heavy metals into the manure, which may accumulate in soils and be taken up by crops, impacting food safety. Over-application of manure can result in nutrient overload, especially nitrogen and phosphorus, leading to runoff, water pollution and eutrophication of nearby water bodies. The absence of proper drying, composting, or treatment measures may exacerbate these risks. Therefore, while chicken manure is a valuable input for sustainable agriculture, its application should be guided by best practices including composting, dosage regulation and periodic soil and water quality assessments to ensure environmental safety and crop productivity.

Conclusion


The post-Green Revolution era has seen tremendous strides in agricultural productivity, yet it has also brought serious ecological consequences due to the overuse of chemical inputs and intensive farming practices. Valorizing agricultural waste such as crop residues (rice straw, sugarcane trash, maize stalks) and agro-industrial byproducts (press mud, paddy husk, peanut shells) offers an innovative path toward improving soil health and managing soil-borne pathogens in a sustainable manner. Biofertilizers and microbial bioinoculants, when combined with organic substrates like biochar, spent mushroom substrate and animal manures, have shown promise in enhancing soil fertility, nutrient availability and microbial diversity. These eco-friendly inputs represent a potential alternative to synthetic agrochemicals, aligning with the goals of sustainable agriculture. However, this approach is not without challenges. Many agricultural and agro-industrial wastes may contain residual pesticides, heavy metals, or pathogens if not properly treated or

composted. Such contaminants pose a risk to soil, crops and human health. Moreover, overapplication of organic inputs may lead to nutrient imbalances, altered soil pH, or disrupted microbial equilibrium. The effectiveness of biofertilizers also varies with environmental factors such as soil type, climate and existing microbial communities. In some cases, introduced PGPR strains may compete with or suppress native soil microbiota, while their slow-release nature demands consistent, long-term application to achieve noticeable improvements. Therefore, the promotion of biofertilizers and waste-derived soil amendments should be coupled with strict quality control, scientific validation and region-specific application strategies. Government support, public awareness programs and farmer training are essential to ensure the safe and effective use of these materials. Financial assistance and incentives can further encourage entrepreneurship in biomass valorization. A SWOT analysis (Fig. 3) has been included to summarize the key strengths, weaknesses, opportunities and threats associated with using bioinoculants and agricultural waste. This holistic perspective will help guide future research, inform policy frameworks and support the transition toward sustainable, climate-resilient farming systems.

Acknowledgements

The authors wish to thank the Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India.

Authors' contributions

Fig. 3. SWOT (strengths, weaknesses, opportunities and threats) analysis for valourizing agricultural farm waste.

SJ and VS conceived the concept and wrote the manuscript. VS and MS gave ideas for the design of the diagrams and tables. SJ designed the diagrams and tables. SJ, VS, VG, SKM, PM and MS revised and finalized the manuscript. All authors read and approve the final manuscript.

Compliance with ethical standards

Conflict of interest: Authors do not have any conflict of interest to declare.

Ethical issues: None

References

1. Marak TB, Tiwari A, Roy A. Conversion of agricultural residues into high-value animal feed. In: Arora J, Joshi A, Ray RC, editors. Transforming agriculture residues for sustainable development: from waste to wealth. Vol. 202. Springer, Cham; 2024. p. 205-221. https://doi.org/10.1007/978-3-031-61133-9_9
2. World Wildlife Fund. Driven to waste: the global impact of food loss and waste on farms; 2021 [cited 2024 Aug 2]. Available from: <https://www.worldwildlife.org/publications/driven-to-waste-the-global-impact-of-food-loss-and-waste-on-farms>
3. Chew KW, Chia SR, Yen HW, Nomanbhay S, Ho YC, Show PL. Transformation of biomass waste into sustainable organic fertilizers. *Sustainability*. 2019;11(8):2266. <https://doi.org/10.3390/su11082266>
4. Kalia A, Sharma SP, Kaur S, Kaur H. Bacterial inoculants: how can these microbes sustain soil health and crop productivity? In: Giri B, Varma A, editors. Soil health. Soil biology. Vol. 59. Springer, Cham; 2020. p. 337-72. https://doi.org/10.1007/978-3-030-44364-1_18

5. Prasad D, Singh RP, Tomar A, Pusa SB. Biological management of plant diseases through bacterial bioagents. *Rashtriya Krishi*. 2023;18(1&2):15-22.
6. Sivaprakasam N, Vaithianathan S, Gandhi K, Narayanan S, Kavitha PS, Rajasekaran R, et al. Metagenomics approaches in unveiling the dynamics of Plant Growth-Promoting Microorganisms (PGPM) vis-à-vis *Phytophthora* sp. suppression in various crop ecological systems. *Res Microbiol*. 2024;175:104217. <https://doi.org/10.1016/j.resmic.2024.104217>
7. Jeyanthi V, Kanimozhi S. Plant growth promoting rhizobacteria (PGPR)-prospective and mechanisms: a review. *J Pure Appl Microbiol*. 2018;12(2):733-49. <https://doi.org/10.22207/JPAM.12.2.34>
8. Pramanik P, Goswami AJ, Ghosh S, Kalita C. An indigenous strain of potassium-solubilizing bacteria *Bacillus pseudomycoides* enhanced potassium uptake in tea plants by increasing potassium availability in the mica waste-treated soil of North-east India. *J Appl Microbiol*. 2019;126(1):215-22. <https://doi.org/10.1111/jam.14130>
9. Siva M, Sreeja SJ, Thara SS, Heera G, Anith KN. Screening and evaluation of bacterial endophytes of cowpea [*Vigna unguiculata* (L.) Walp.] for plant growth promotion and bio-control potential. *Plant Sci Today*. 2024;11(2):44-57. <https://doi.org/10.14719/pst.2600>
10. Mhatre PH, Karthik C, Kadirvelu K, Divya KL, Venkatasalam EP, Srinivasan S, et al. Plant growth promoting rhizobacteria (PGPR): A potential alternative tool for nematodes bio-control. *Biocatal Agric Biotechnol*. 2019;17:119-28. <https://doi.org/10.1016/j.bcab.2018.11.009>
11. Benissa A. Plant growth promoting rhizobacteria a review. *Alger J Environ Sci Technol*. 2019;5(1):873-880.
12. Rochlani A, Dalwani A, Shaikh N, Shaikh N, Sharma S, Saraf M. Plant growth promoting rhizobacteria as biofertilizers: application in agricultural sustainability. *Acta Sci Microbiol*. 2022;5(4):12-21. <https://doi.org/10.31080/ASMI.2022.05.1028>
13. Sharma S, Rathod ZR, Jain R, Goswami D, Saraf M. Strategies to evaluate microbial consortia for mitigating abiotic stress in plants. In: Maheshwari DK, Dheeman S, editors. *Sustainable agrobiology: design and development of microbial consortia*. Vol. 43. Singapore: Springer; 2023. p. 177-203. https://doi.org/10.1007/978-981-19-9570-5_9
14. Gupta S, Kaushal R, Spehia RS, Pathania SS, Sharma V. Productivity of capsicum influenced by conjoint application of isolated indigenous PGPR and chemical fertilizers. *J Plant Nutr*. 2017;40(7):921-7. <https://doi.org/10.1080/01904167.2015.1093139>
15. Attia MS, El-Sayyad GS, Abd Elkodous M, El-Batal AI. The effective antagonistic potential of plant growth-promoting rhizobacteria against *Alternaria solani*-causing early blight disease in tomato plant. *Sci Hortic*. 2020;266:109289. <https://doi.org/10.1016/j.scientia.2020.109289>
16. Vinodkumar S, Indumathi T, Nakkeeran S. *Trichoderma asperellum* (NVTA2) as a potential antagonist for the management of stem rot in carnation under protected cultivation. *Biol Control*. 2017;113:58-64. <https://doi.org/10.1016/j.biocontrol.2017.07.001>
17. Bettoli W, Pinto ZV, Silva JC, Forner C, Faria MR, Pacifico MG, et al. Produtos comerciais à base de *Trichoderma*; 2019:45.
18. Harman GE, Jin X, Stasz TE, Peruzzotti G, Leopold AC, Taylor AG. Production of conidial biomass of *Trichoderma harzianum* for biological control. *Biol Control*. 1991 Jun 1;1(1):23-8. [https://doi.org/10.1016/1049-9644\(91\)90097-J](https://doi.org/10.1016/1049-9644(91)90097-J)
19. Ahluwalia V, Kumar J, Rana VS, Sati OP, Walia S. Comparative evaluation of two *Trichoderma harzianum* strains for major secondary metabolite production and antifungal activity. *Nat Prod Res*. 2015;29(10):914-20. <https://doi.org/10.1080/14786419.2014.958739>
20. El-Benawy NM, Abdel-Fattah GM, Ghoneem KM, Shabana YM. Antimicrobial activities of *Trichoderma atroviride* against common bean seed-borne *Macrophomina phaseolina* and *Rhizoctonia solani*. *Egyptian J Basic Appl Sci*. 2020;7(1):267-80. <https://doi.org/10.1080/2314808X.2020.1809849>
21. Panth M, Hassler SC, Baysal-Gurel F. Methods for management of soilborne diseases in crop production. *Agriculture*. 2020;10(1):16. <https://doi.org/10.3390/agriculture10010016>
22. Parewa HP, Yadav J, Rakshit A. Effect of fertilizer levels, FYM and bioinoculants on soil properties in inceptisol of Varanasi, Uttar Pradesh, India. *Int J Environ Agric Biotechnol*. 2014;7(3):517-25. <http://dx.doi.org/10.5958/2230-732X.2014.01356.4>
23. Kavitha K, Mathiyazhagan S, Senthilvel V, Nakkeeran S, Chandrasekar G. Development of bioformulations of antagonistic bacteria for the management of damping off of Chilli (*Capsicum annuum* L). *Arch Phytopathol Plant Prot*. 2005;38(1):19-30. <https://doi.org/10.1080/03235400400008382>
24. Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, et al. Enhanced top soil carbon stocks under organic farming. *Proc Natl Acad Sci*. 2012;109(44):18226-31. <https://doi.org/10.1073/pnas.1209429109>
25. Supraja G, Vidya kittali. Wastage of fresh fruit and vegetables at retail outlets and households at Bangalore. *Int J Creat Res Thoughts*. 2023;11(1):192-9.
26. Sharma L, Shrivastava P. Utility of *Trichoderma* amended compost to manage soil borne fungal diseases of vegetable crops in Kota district of Rajasthan (India). *Asian J Adv Agric Res*. 2022;20(4):17-22. <https://doi.org/10.9734/AJAAR/2022/v20i4404>
27. Zou F, Tan C, Zhang B, Wu W, Shang N. The valorization of banana by-products: nutritional composition, bioactivities, applications and future development. *Foods*. 2022;11(20):3170. <https://doi.org/10.3390/foods11203170>
28. Raj RS, Preethy HA, Rex KG. Development of banana peel powder as organic carrier based bioformulation and determination of its plant growth promoting efficacy in rice Cr100g. *J Pure Appl Microbiol*. 2021;15(3):1279-90. <https://doi.org/10.22207/JPAM.15.3.18>
29. del Carmen Rivera-Cruz M, Narcía AT, Ballona GC, Kohler J, Caravaca F, Roldan A. Poultry manure and banana waste are effective biofertilizer carriers for promoting plant growth and soil sustainability in banana crops. *Soil Biol Biochem*. 2008;40(12):3092-5. <https://doi.org/10.1016/j.soilbio.2008.09.003>
30. Hassan MK. Enhancing plant growth, drought stress tolerance and biological control capacities of PGPR strains with exogenous pectin-rich amendments [PhD dissertation]. Auburn (AL): Auburn University; 2020. Available from: <https://etd.auburn.edu/handle/10415/7248>
31. Princy T, Balamurugan A, Jayanthi R, Nepolean P, Mareeswaran J, Kuberan T, et al. Studies on mass multiplication and shelf life of biofertilizers formulations used in tea. *Am Eurasian J Agric Environ Sci*. 2014;14(6):580-3. <https://doi.org/10.5829/idosi.aejaes.2014.14.06.12372>
32. Simon S. Agro-based waste products as a substrate for mass production of *Trichoderma* spp. *J Agric Sci*. 2011;3(4):168. <https://doi.org/10.5539/jas.v3n4p168>
33. Smolińska U, Kowalska B, Kowalczyk W, Szczech M, Murgrabi A. Eradication of *Sclerotinia sclerotiorum* sclerotia from soil using organic waste materials as *Trichoderma* fungi carriers. *J Hort Res*. 2016;24(1):101-10. <https://doi.org/10.1515/johr-2016-0012>
34. De los Santos-Villalobos S, Hernández-Rodríguez LE, Villaseñor-Ortega F, Peña-Cabriales JJ. Production of *Trichoderma asperellum* T8a spores by a “home-made” solid-state fermentation of mango industrial wastes. *Bioresources*. 2012;7(4).

35. Prathibha V, Sharadraj K, Nidhina K, Hegde V. Evaluation of locally available substrates for mass production of *Trichoderma*. *J Lant Crops*. 2015;43(2):168-70.

36. Sriram S, Palanna KB, Ramanujam B. Effect of chitin on the shelf-life of *Trichoderma harzianum* in talc formulation. *Indian J Agric Res*. 2010;80(10):930.

37. Hasan ZA, Mohd Zainudin NA, Aris A, Ibrahim MH, Yusof MT. Biocontrol efficacy of *Trichoderma asperellum*-enriched coconut fibre against *Fusarium* wilts of cherry tomato. *J Appl Microbiol*. 2020;129(4):991-1003. <https://doi.org/10.1111/jam.14674>

38. Shahid M, Zaidi A, Khan MS, Rizvi A, Saif S, Ahmed B. Recent advances in management strategies of vegetable diseases. In: Zaidi A, Khan M, editors. *Microbial strategies for vegetable production*. Vol. 19. Springer, Cham; 2017. https://doi.org/10.1007/978-3-319-54401-4_9

39. Bolo P, Mucheru-Muna MW, Mwirichia RK, Kinyua M, Ayaga G, Kihara J. Influence of farmyard manure application on potential zinc solubilizing microbial species abundance in a ferralsol of Western Kenya. *Agriculture*. 2023;13(12):2217. <https://doi.org/10.3390/agriculture1312217>

40. Singh K, Kaur J, Gandhi N. Effect of Azotobacter, FYM (Farmyard manure) and PSB (Phosphorus solubilizing bacteria) on the yield and yield attributing characters on pearl millet (*Pennisetum glaucum*). *J Pharmacogn Phytochem*. 2019;8(1S):505-7.

41. Singh G, Sekhon HS, Ram H, Sharma P. Effect of farmyard manure, phosphorus and phosphate solubilizing bacteria on nodulation, growth and yield of kabuli chickpea. *J Food Legume*. 2010;23(3&4):226-9.

42. Sakthivel K, Manigundan K, Gautam RK, Singh PK, Balamurugan A, Kumar A, et al. Microbe-enriched farm yard manure (MFYM) approach for the suppression of *Ralstonia solanacearum* Yabuuchi (Smith) inciting bacterial wilt disease in eggplant (*Solanum melongena* L.). *Plant Soil*. 2023;491(1):303-15. <https://doi.org/10.1007/s11104-023-06119-y>

43. Abdirahman SH, Joseph MJ, Kimurto PK, Nyongesa M. Efficacy of biofertilizers and farmyard manure in management of late blight (*Phytophthora infestans*) and yield of potato. *World*. 2023;11(2):59-67. <https://doi.org/10.12691/wjar-11-2-4>

44. Jaipaul SS, Sharma S, Kumar Dixit A, Sharma AK. Growth and yield of capsicum (*Capsicum annuum*) and garden pea (*Pisum sativum*) as influenced by organic manures and biofertilizers. *Indian J Agric Res*. 2011;81(7):637.

45. Lehmann J, Amonette JE, Roberts K, Hillel D, Rosenzweig C. Role of biochar in mitigation of climate change. *Climate Change and Agroecosystems: Impacts, Adaptation and Mitigation*. 2010;343-63. https://doi.org/10.1142/9781848166561_0018

46. Pandit NR, Schmidt HP, Mulder J, Hale SE, Husson O, Cornelissen G. Nutrient effect of various composting methods with and without biochar on soil fertility and maize growth. *Arch Agron Soil Sci*. 2020;66(2):250-65. <https://doi.org/10.1080/03650340.2019.1610168>

47. Liao F, Yang L, Li Q, Xue J, Li Y, Huang D, et al. Effect of biochar on growth, photosynthetic characteristics and nutrient distribution in sugarcane. *Sugar Tech*. 2019;21:289-95. <https://doi.org/10.1007/s12355-018-0663-6>

48. Moradi S, Rasouli-Sadaghiani MH, Sepehr E, Khodaverdiloo H, Barin M. Soil nutrients status affected by simple and enriched biochar application under salinity conditions. *Environ Monit Assess*. 2019;191:1-3. <https://doi.org/10.1007/s10661-019-7393-4>

49. Song X, Li H, Song J, Chen W, Shi L. Biochar/vermicompost promotes Hybrid *Pennisetum* plant growth and soil enzyme activity in saline soils. *Plant Physiol Biochem*. 2022;183:96-110. <https://doi.org/10.1016/j.plaphy.2022.05.008>

50. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. Biochar effects on soil biota-a review. *Soil Biol Biochem*. 2011;43(9):1812-36. <https://doi.org/10.1016/j.soilbio.2011.04.022>

51. Hafez EM, Alsohim AS, Farig M, Omara AE, Rashwan E, Kamara MM. Synergistic effect of biochar and plant growth promoting rhizobacteria on alleviation of water deficit in rice plants under salt-affected soil. *Agronomy*. 2019;9(12):847. <https://doi.org/10.3390/agronomy9120847>

52. Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. *Crit Rev Environ Sci Technol*. 2016;46(4):406-33. <https://doi.org/10.1080/10643389.2015.1096880>

53. Egamberdieva D, Reckling M, Wirth S. Biochar-based *Bradyrhizobium* inoculum improves growth of lupin (*Lupinus angustifolius* L.) under drought stress. *Eur J Soil Biol*. 2017;78:38-42. <https://doi.org/10.1016/j.ejsobi.2016.11.007>

54. Kavita Budania KB, Janardan Yadav JY. Effects of PGPR blended biochar and different levels of phosphorus on yield and nutrient uptake by chickpea. *Ann Agri Bio Res*. 2014;19(3):408-12.

55. Saxena J, Rana G, Pandey M. Impact of addition of biochar along with *Bacillus* sp. on growth and yield of French beans. *Sci Hortic*. 2013;162:351-6. <https://doi.org/10.1016/j.scienta.2013.08.002>

56. Ijaz M, Tahir M, Shahid M, Ul-Allah S, Sattar A, Sher A, et al. Combined application of biochar and PGPR consortia for sustainable production of wheat under semiarid conditions with a reduced dose of synthetic fertilizer. *Braz J Microbiol*. 2019;50:449-58. <https://doi.org/10.1007/s42770-019-00043-z>

57. Danish S, Zafar-ul-Hye M, Mohsin F, Hussain M. ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. *PLoS One*. 2021;15(4):e0230615. <https://doi.org/10.1371/journal.pone.0230615>

58. Akhter A, Hage-Ahmed K, Soja G, Steinkellner S. Potential of *Fusarium* wilt-inducing chlamydospores, *in vitro* behaviour in root exudates and physiology of tomato in biochar and compost amended soil. *Plant Soil*. 2016;406:425-40. <https://doi.org/10.1007/s11104-016-2948-4>

59. Meller Harel Y, Elad Y, Rav-David D, Borenstein M, Shulchani R, Lew B, et al. Biochar mediates systemic response of strawberry to foliar fungal pathogens. *Plant Soil*. 2012;357:245-57. <https://doi.org/10.1007/s11104-012-1129-3>

60. Jaiswal AK, Elad Y, Gruber ER, Frenkel O. *Rhizoctonia solani* suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. *Soil Biol Biochem*. 2014;69:110-8. <https://doi.org/10.1016/j.soilbio.2013.10.051>

61. Mehari ZH, Elad Y, Rav-David D, Gruber ER, Meller Harel Y. Induced systemic resistance in tomato (*Solanum lycopersicum*) against *Botrytis cinerea* by biochar amendment involves jasmonic acid signaling. *Plant Soil*. 2015;395:31-44. <https://doi.org/10.1007/s11104-015-2445-1>

62. Rasool M, Akhter A, Soja G, Haider MS. Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. *Sci Rep*. 2021;11(1):6092. <https://doi.org/10.1038/s41598-021-85633-4>

63. Chen W, Wu Z, Liu C, Zhang Z, Liu X. Biochar combined with *Bacillus subtilis* SL-44 as an eco-friendly strategy to improve soil fertility, reduce *Fusarium* wilt and promote radish growth. *Ecotoxicol Environ Saf*. 2023;251:114509. <https://doi.org/10.1016/j.ecoenv.2023.114509>

64. Jackson AM, Whipps JM, Lynch JM. Production, delivery systems and survival in soil of four fungi with disease biocontrol potential. *Enzyme Microb Technol*. 1991;13(8):636-42. [https://doi.org/10.1016/0141-0229\(91\)90077-N](https://doi.org/10.1016/0141-0229(91)90077-N)

65. Singh A, Singh AP, Singh SK, Rai S, Kumar D. Impact of addition of biochar along with PGPR on rice yield, availability of nutrients and their uptake in alluvial soil. *J Pure Appl Microbiol*. 2016;10(3):2181-8.

66. Fan H, Yao M, Wang H, Zhao D, Zhu X, Wang Y, et al. Isolation and effect of *Trichoderma citrinoviride* Snelf1910 for the biological control of root-knot nematode, *Meloidogyne incognita*. *BMC Microbiology*. 2020;20:299. <https://doi.org/10.1186/s12866-020-01984-4>

67. Zhang X, Wang Y, Han X, Gou J, Li W, Zhang C. A novel bio-fertilizer produced by prickly ash seeds with biochar addition induces soil suppressiveness against black shank disease on tobacco. *Appl Sci*. 2021;11(16):7261. <https://doi.org/10.3390/app11167261>

68. Arshad U, Azeem F, Mustafa G, Bakhsh A, Toktay H, McGiffen M, et al. Combined application of biochar and biocontrol agents enhances plant growth and activates resistance against *Meloidogyne incognita* in tomato. *Gesunde Pflanzen*. 2021;73(4):591-601. <https://doi.org/10.1007/s10343-021-00580-4>

69. Abou Fayssal S, Yordanova MH. Effect of substrate temperature and stages duration on recycling of agro-industrial residues through *Pleurotus ostreatus* production. *Int J Recycl Org Waste Agri*. 2023;12(4). <https://doi.org/10.30486/ijrowa.2023.1964536.1513>

70. Barshteyn V, Krupodorova T. Utilization of agro-industrial waste by higher mushrooms: modern view and trends. *J Microbiol Biotechnol Food Sci*. 2016;5(6). <https://doi.org/10.15414/jmbfs.2016.5.6.563-577>

71. Širić I, Eid EM, Taher MA, El-Morsy MH, Osman HE, Kumar P, et al. Combined use of spent mushroom substrate biochar and PGPR improves growth, yield and biochemical response of cauliflower (*Brassica oleracea* var. *botrytis*): a preliminary study on greenhouse cultivation. *Horticulturae*. 2022;8(9):830. <https://doi.org/10.3390/horticulturae8090830>

72. Larkin RP, Fravel DR. Efficacy of various fungal and bacterial biocontrol organisms for control of *Fusarium* wilt of tomato. *Plant Dis*. 1998;82(9):1022-8. <https://doi.org/10.1094/PDIS.1998.82.9.1022>

73. Kwak AM, Min KJ, Lee SY, Kang HW. Water extract from spent mushroom substrate of *Hericium erinaceus* suppresses bacterial wilt disease of tomato. *Mycobiology*. 2015;43(3):311-8. <https://doi.org/10.5941/MYCO.2015.43.3.311>

74. Arathikrishna VK. Potential of fortified spent mushroom substrate for the management of soil borne diseases of tomato. *Plant Pathology*, PhD [dissertation]. Vellanikkara (IN): College of Horticulture; 2015.

75. Wang HW, Zhu YX, Xu M, Cai XY, Tian F. Co-application of spent mushroom substrate and PGPR alleviates tomato continuous cropping obstacle by regulating soil microbial properties. *Rhizosphere*. 2022;23:100563. <https://doi.org/10.1016/j.rhisph.2022.100563>

76. Zeng G, Liu Z, Guo Z, He J, Ye Y, Xu H, et al. Compost with spent mushroom substrate and chicken manure enhances rice seedling quality and reduces soil-borne pathogens. *Environ Sci Pollut Res*. 2023;30(31):77743-56. <https://doi.org/10.1007/s11356-023-27681-z>

77. Roshna S. Potential of spent mushroom substrate for the management of nursery disease of black pepper. *Plant Pathology*. PhD [dissertation]. Vellanikkara (IN): College of Horticulture; 2013.

78. Singh G, Tiwari A, Gupta A, Kumar A, Hariprasad P, Sharma S. Bioformulation development via valorizing silica-rich spent mushroom substrate with *Trichoderma asperellum* for plant nutrient and disease management. *J Environ Manage*. 2021;297:113278. <https://doi.org/10.1016/j.jenvman.2021.113278>

79. Yu YY, Li SM, Qiu JP, Li JG, Luo YM, Guo JH. Combination of agricultural waste compost and biofertilizer improves yield and enhances the sustainability of a pepper field. *J Plant Nutr Soil Sci*. 2019;182(4):560-9. <https://doi.org/10.1002/jpln.201800223>

80. Rai RB, Dhama K, Chakraborty S, Ram RA, Balvir Singh BS, Tiwari R, et al. Comparative evaluation of crop productivity and profitability under traditional farming and integrated farming system in Northern plains of India. *South Asian J Exp Biol*. 2013;3(5):220-5.

81. Tagoe SO, Horiuchi T, Matsui T. Effects of carbonized and dried chicken manures on the growth, yield and N content of soybean. *Plant soil*. 2008;306:211-20. <https://doi.org/10.1007/s11104-008-9573-9>

82. Boyhan GE, Hicks RJ, Torrance RL, Riner CM, Hill CR. Evaluation of poultry litter and organic fertilizer rate and source for production of organic short-day onions. *Hort Technol*. 2010;20(2):304-7. <https://doi.org/10.21273/HORTTECH.20.2.304>

83. Srivastava PK, Gupta M, Upadhyay RK, Sharma S, Shikha, Singh N, et al. Effects of combined application of vermicompost and mineral fertilizer on the growth of *Allium cepa* L. and soil fertility. *J Plant Nutr Soil Sci*. 2012;175(1):101-7. <https://doi.org/10.1002/jpln.201000390>

84. Dani U, Budiarti A, Wijaya A. Application of chicken manure dosage and plant growth promoting rhizobacteria on the growth and yield of shallot plants (*Allium ascalonicum* L.). *IOP Publishing Conference Series: Earth Environ Sci*. 2021;748(1):012044.

85. Ali AA, El-Ashry RM, Aioub AA. Animal manure rhizobacteria co-fertilization suppresses phytonematodes and enhances plant production: evidence from field and greenhouse. *J Plant Dis Prot*. 2022;129(1):155-69. <https://doi.org/10.1007/s41348-021-00529-9>

86. Chen S, Qi G, Ma G, Zhao X. Biochar amendment controlled bacterial wilt through changing soil chemical properties and microbial community. *Microbiol Res*. 2020;231:126373. <https://doi.org/10.1016/j.micres.2019.126373>

87. Thangavelu R, Palaniswami A, Velazhahan R. Mass production of *Trichoderma harzianum* for managing *Fusarium* wilt of banana. *Agric Ecosyst Environ*. 2004;103(1):259-63. <https://doi.org/10.1016/j.agee.2003.09.026>

88. Sriram S, Savitha M, Ramanujam B. *Trichoderma*-enriched coco-peat for the management of *Phytophthora* and *Fusarium* diseases of chilli and tomato in nurseries. *J Biol Control*. 2010;24:311-6.

89. Liton MJ, Bhuiyan MK, Jannat R, Ahmed JU, Rahman MT, Rubayet MT. Efficacy of *Trichoderma*-fortified compost in controlling soil-borne diseases of bush bean (*Phaseolus vulgaris* L.) and sustainable crop production. *Adv Agric Sci*. 2019;7(2):123-36.

Additional information

Peer review: Publisher thanks Sectional Editor and the other anonymous reviewers for their contribution to the peer review of this work.

Reprints & permissions information is available at https://horizonpublishing.com/journals/index.php/PST/open_access_policy

Publisher's Note: Horizon e-Publishing Group remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Indexing: Plant Science Today, published by Horizon e-Publishing Group, is covered by Scopus, Web of Science, BIOSIS Previews, Clarivate Analytics, NAAS, UGC Care, etc
See https://horizonpublishing.com/journals/index.php/PST/indexing_abstracting

Copyright: © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited (<https://creativecommons.org/licenses/by/4.0/>)

Publisher information: Plant Science Today is published by HORIZON e-Publishing Group with support from Empirion Publishers Private Limited, Thiruvananthapuram, India.