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Introduction 

Agricultural activities generate a significant amount of waste, 

inclusive of crop residues, animal waste and agro-industrial 

by-products. Agricultural waste management is essential for 

maintaining soil health and ensuring a sustainable farming 

system. These activities result in large quantity of the 

agricultural residue, including crop residues, straw and 

organic waste. To reduce greenhouse gas emission, smoke 

from residue burning and soil deterioration, it is important to 

manage this biomass effectively. Globally, agricultural waste 

accounts for approximately 998 million tons (1). According to 

the World Wildlife Fund (WWF), 26 % of fruits and vegetables 

from total food production end up as waste, followed by 15 % 

from roots, tubers and oil crops, 12 % from animal waste and 

14 % from cereals and pulses (2). The quantity and value of 

the organic waste production are depicted in Fig. 1. Effective 

management and utilization of this waste are essential to 

reduce environmental impact and enhance sustainable 

farming practices. An innovative approach for addressing this 

challenge is the valorization of biomass using potential 

bioinoculants. The valorization process includes the 

decomposition and enrichment of organic biomass with 

beneficial organisms viz., plant growth promoting 

rhizobacteria (PGPR) and biocontrol agents to manage the 

soil borne plant pathogens (3). In this bioconversion involves 

transforming organic waste into compost and then enriched 

with crop specific bioinoculants through biological processes. 

Valorization of farm waste not only aids in waste 

management but also contributes to improved soil health, 

reduced use of chemical pesticides and supports 

environmentally responsible farming practices. Bioinoculants 

play a pivotal role in this process for colonization and 

inhabiting plant root system (4). They act as a shield and 

protecting the roots from soil borne pathogens viz., Pythium, 

Phytophthora, Sclerotinia, Macrophomina, Rhizoctonia, etc (5). 

The diversity of plant growth-promoting microorganisms 

plays an important role in disease reduction (6). Valorization 

of farm waste using microbial bioinoculants and disease 

controlled are listed in Table 1. Adopting this integrated 

approach can lead to more sustainable and productive 

farming systems, contributing to long-term agricultural 

sustainability and environmental conservation. In this review 

valorization of biochar, fruits and vegetable waste, coir pith, 

farm yard manure and chicken manure are discussed in 

detail. 
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Abstract  

Soilborne pathogens such as Fusarium spp., Pythium spp., Phytophthora spp., Verticillium spp. causes significant yield loss to various 
agricultural and horticultural crops. These diseases are difficult to control by chemicals which are harmful to environment and crop 

health. On the other hand, continuous usage of pesticides leads to the development of pesticides resistance by the pathogens. Valourizing 

the farm waste by microbial bioinoculants is an alternative and promising approach for controlling soilborne diseases. Farm waste 
releases bioactive compounds with antifungal and antibacterial properties. Farm waste utilization reduces pesticide dependence by 

enriching soil, enhancing microbial diversity and promotes sustainable agriculture. Microbial bioinoculants serve as alternatives to 

synthetic pesticides for the management of plant pathogens. Beneficial microbes like nitrogen-fixing bacteria, phosphate-solubilizing 

microbes and biocontrol agents play a crucial role in strengthening the plant immunity against pathogens. These beneficial organisms not 
only improve soil biodiversity but also ensure better plant growth and development. This review focuses on the enrichment of agricultural 

farm wastes such as fruits and vegetable waste, coir pith, farm yard manure, biochar and chicken manure with bioinoculants for soil borne 

disease management. Harnessing microbial bioinoculants for farm waste valorization presents a promising pathway toward sustainable 

agriculture, ensuring environmental protection and long-term soil health.  
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Table 1. Valorization of farm waste using microbial bioinoculants and disease controlled 

Fig. 1. Quantum of agricultural farm waste and its value. 

SI. No. 
Nature of farm 

waste 
Bioinoculants 

multiplied 
Disease controlled Crop Disease reduction (%) Reference 

1 Green waste biochar 
Bacillus  
subtilis 

Early blight (Alternaria solani) Tomato >50 % (62) 

2 Biochar 
Pseudomonas, 

B. subtilis 

Wilt (Fusarium oxysporum f. sp. 
lycopersici) 

Tomato 40-42 % (58)  

Wilt (Fusarium spp.) Radish 60-70 % (63) 

Root rot (Rhizoctonia solani) Cucumber 40-60 % (60) 

3 Rice husk biochar 

Pseudomonas sp, 
Azotobacter 

chroococcum and 
Azospirillum 

brasilense 

Bacterial wilt (Ralstonia 
solanacearum) 

Banana, eggplant, 
peanut, 

potato, tobacco, 
tomato 

45-65 % (86) 

4 
Spent Mushroom 

biochar 
  

P. fluorescens, B. 
subtilis 

  
  

Fusarium oxysporum, 
Pythium aphanidermatum, 

Rhizoctonia solani, 
Phytophthora palmivora, 

Sclerotium rolfsii and 
Ralstonia solanacearum 

Tomato 60-70 % (74) 

Trichoderma 
asperellum 

Wilt (Fusarium oxysporum f. sp. 
lycopersici) 

Tomato 70-75 % (78) 

5 Dried banana leaf 
and pseudostem 

T. harzianum Wilt (Fusarium oxysporom f. sp. 
cubense) 

Banana >60 % (87) 

6 
Mango processing 

industry 
T. asperellum 

Anthracnose 
(Colletotrichum gleosporoides) 

Mango 55-60 % (34) 

7 
  
  
  
  

Coco peat 
Trichoderma 

harzianum 

Damping off 
(Fusarium oxysporum f. sp. 

lycopersici) 
Root rot 

(Phytophthora capsica) 

Tomato, 
chilli 

60-65 % (88) 

8 Coconut fibre T. asperellum 
Fusarium wilt 

(Fusarium oxysporum f. sp. 
lycopersici) 

Cherry tomato 60–70 % (37) 

9 FYM 

Bacillus spp. 
Wilt 

(Ralstonia solanaecearum) 
Egg plant 50–60 % (42) 

B. subtilis, 
Trichoderma 
asperellum 

Late blight 
(Phytophthora infestens) 

Potato 50-55 % (43) 

10 Chicken manure 

T. harzianum 

Seedling mortality - damping off, 
wilt (Fusarium oxysporum f. sp. 
phaseoli, Ralstonia solani and 

Sclerotium rolfsii) 

Bush Bean >60 % (89)  

Bacillus spp. 
Root knot Nematode 

(Meloidogyne incognita) 
Cucumber 65-70 % (85) 
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PGPR bioinoculants for valorization 

The plant growth promoting rhizobacteria (PGPR) are 

potential microorganism, which conquer plant roots act as 

protective wall against soil-borne pathogens (7). The 

promising genera of PGPR viz., Bacillus subtilis,                                    

B. amyloliquefaciens, Pseudomonas fluorescens, P. striata, 

Azotobacter, Rhizobium, Acinetobacter, Serratia, Actinoplanes, 

Enterobacter, Cellulomonas, Thiobacillus, Flavobacterium and 

various taxa are under PGPR (8). They synthesize chemical 

compounds that are beneficial for growth and defense 

mechanism of plants (9). The plant growth promoting 

activities of PGPR was given in Fig. 2. PGPR also contributes to 

induced systemic resistance in plants and is often utilized as a 

biological agent to suppress plant diseases and pests (10). To 

function effectively in the rhizosphere, PGPR must be both 

competitive and compatible with native microbial 

communities. 

 The PGPR has a significant impact on soil properties 

and fertility. In addition to that, these microbes exhibit a 

synthesis of a variety of biochemical compounds such as 

exopolysaccharides and phytohormones, siderophores, 

hydrogen cyanide and antibiotics promote plant growth (11). It 

also has a role in absorption of nutrients, nitrogen fixation, 

phosphate and potassium solubilization (12). Several studies 

have reported that these microbes are used for partially 

decomposition of farm waste and manures. The ideal carriers 

such as compost, biogas slurry, crushed corn cobs, biochar, 

press mud, fruit peels, peat, zeolite, perlite, lignite and talc can 

be utilized as substrate for PGPR (13). They found that the 

various types of vegetable waste, crop residues and animal 

feces can be effectively utilized as carrier materials. The native 

PGPR strains are becoming more significant as economical and 

ecofriendly microbes that can be applied for management of 

crop diseases (14). PGPR controls phytopathogens by triggering 

systemic resistance through metabolic pathways (15). 

Fungal inoculants for valorization 

Apart from bacterial inoculants fungal bioinoculants play a 
major role in enhancing plant growth and reduction of 

disease progression in crops. Trichoderma has a high rate of 

multiplication, high nutrient uptake capacity, root colonizing 

ability and triggered systemic resistance of plant (16). 

According to Bettiol (17) Trichoderma species such as                         

T. harzianum, T. atroviride, T. stromaticum, T. asperellum,                 

T. lignorum, T. koningiopsis and T. fertile are the 

commercialized strains used worldwide. Trichoderma spp., 

synthesize mycolytic enzymes such as β-1, 3 glucanases, β-1, 

4 endo-glucanases, chitinases and proteases are known to 

broken down the chitin layer of pathogen (18). Trichoderma 

synthesizes a wide range of secondary metabolites, many of 

which exhibit antifungal activity against plant pathogens. 

These antifungal metabolites include compounds like 6-

pentyl-2H-pyran-2-one, harzianopyridone and various 

anthraquinones (19). These metabolites often have broad-

spectrum activity against fungal pathogens. Trichoderma 

showed antagonistic activity against Rhizoctonia solani and 

Macrophomina phaseolina (20). Addition of soil organic 

matter enriched with biological antagonists develop 

suppressiveness for managing soil-borne diseases (21). 

Soil organic carbon  

Intensive farming practices and the continuous use of chemical 

fertilizers and pesticides have significantly depleted soil 

organic carbon (SOC), disrupting soil microbial communities 

and favoring the proliferation of plant pathogens. Recent 

studies have shown that such conventional agricultural 

practices reduce SOC due to enhanced microbial respiration 

and the absence of carbon-returning practices like residue 

retention. On the other hand, the application of valorized farm 

waste and bioinoculants has been proven effective in restoring 

SOC and enhancing microbial diversity. A meta-analysis 

demonstrated that organic amendments, such as compost and 

green manure, increased SOC by an average of 18 %, with 

individual studies showing increases up to 24 % (22). It was 

further reported that biofertilizers enhanced SOC by 0.44 g C kg-1 

soil, particularly those involving mycorrhizal fungi and 

cyanobacteria (23). A recent study in paddy fields showed that 

bio-organic fertilizers and rice-straw-derived biochar improved 

SOC content by 26.1 % and 30.7 %, respectively, within just 180 

days of application (24). These findings affirm that combining 

 

Fig. 2. Plant growth promoting role of PGPR in soil application. 
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organic waste amendments with bioinoculants can sustainably 

boost SOC, improve soil health and support resilient agricultural 

systems. 

Valorization of agricultural and agro-industry waste 

and byproducts  

Fruits and vegetables waste  

The global production of fruits and vegetables is about 675 

million metric tonnes annually and among them, 1.3 billion 

tonnes of waste are generated (25). It contributes 26 % of fruits 

and vegetables being wasted and they are beneficially used 

nowadays for sustainable organic agriculture. They are 

composted and supplemented to crops for the benefit of 

nutrient enrichment and biological management of diseases. 

Trichoderma has been found to exhibit a variety of interactions 

with soil-borne fungal diseases, including Phytophthora, 

Rhizoctonia, Fusarium and Pythium in vegetable crops like 

tomato, brinjal, cucurbits and okra (26). 

 Banana farms produce about 4 tonnes of waste for each 

tonn of bananas, which includes waste fruits, pseudostems, 

leaves, inflorescences and skins. They are easily degraded and 

have a suitable carbon-nitrogen fixation ratio. Among them, 40 

million tonnes of banana peel are generated every year which 

accounts for 35 % of the total weight of bananas (27). The 

banana peel is a novel carrier material for bioformulation. The 

presence of tryptophan, a key amino acid precursor for 

microbial indole-3-acetic acid (IAA) synthesis, in banana peel 

powder highlights its potential as an effective organic talc 

based carrier material (28). It increases the shoot length and 

yield of rice crops. It contains macro and micronutrients and 

processes tryptophan which are the precursors for indole 

acetic acid (IAA). IAA producing the ability of microbes depends 

on the available precursor and it is supplemented by banana 

peel. It helps microbes with wider multiplication and higher 

auxin production. The phosphate-solubilizing bacteria 

multiplied from banana waste support the growth and survival 

of Musa paradisiaca, suggesting promising ecological benefits 

such as improved soil fertility and reduced dependence on 

chemical fertilizers. However, further research is necessary to 

fully understand their long-term effects on soil microbiota, 

nutrient cycling and overall ecosystem stability (29). 

 Orange peel, known for its high pectin content, has 

been used as a composting material that supports the growth 

of Bacillus velezensis. This bacterium, when cultured using 

orange peel compost, has shown potential in promoting 

drought stress tolerance and nodulation in soybeans, as well as 

contributing to the biological suppression of root knot 

nematodes (Meloidogyne spp.) in cotton and soybean crops 

(30). Jack fruit seeds along with rice porridge are effectively 

used as a substrate for the multiplication of Azospirillum 

brasilense, A. lipoferum, Pseudomonas putida, P. fluorescence, 

Burkholderia cepacia which are used for growth promotion of 

plantation crops (31). The fruits and vegetable waste viz., 

potato peel, banana, brinjal, papaya, spinach, guava, 

agroindustry byproducts sugarcane bagasse, used tea leaves 

and pea husk were used an ideal substrate for the 

multiplication of Trichoderma harzianum and T. viride (32).  

 Experiments were done with the medium made of 

wheat straw + apple pomace (WsA) and another medium 

namely T-GRAN made of dried onion rind, apples and 

strawberry pomaces, rapeseed meal was combined in a 1:1:1:1 

ratio. T. atroviride and T. harzianum were used to treat those 

mediums. The effect of adding these organic materials to the 

soil was found to be substantial in lowering Sclerotinia 

sclerotiorum a pathogen causing white mold in vegetables and 

fruits. The carrier WsA overgrown with T. virens was particularly 

effective regardless of application dose, it entirely stopped the 

sclerotia of S. sclerotiorum from surviving (33). The dry wastes 

(dw) produced during the processing of mangoes were 

analysed and found to be primarily composed of soluble 

carbohydrates (71 ± 2 %) and fibre (16 ± 1 %) in dry weight. 

These materials were then used as carriers of Trichoderma 

asperellum, effective against the mango anthracnose pathogen 

viz., Colletotrichum gloeosporioides (34). 

Coir pith 

Coir pith, a byproduct of the coconut-based coir industry and 

commercially known as coco-peat, is widely utilized as a 

substrate for raising vegetable seedlings under protected 

cultivation systems. It has also proven effective as a carrier 

material for the multiplication of Trichoderma spp., which is 

vital for the biological control of soil-borne diseases. Studies 

have shown that coir pith enriched with neem cake medium 

significantly enhances the colony-forming units (CFUs) of T. 

harzianum within seven days of incubation, making it suitable 

for soil application. However, large-scale extraction and 

utilization of coir pith raise ecological concerns, including the 

depletion of organic matter in coconut-growing areas, 

potential imbalances in soil ecosystems and disposal 

challenges of spent material post-application (35). Extensive 

removal of coir pith from coconut husks can lead to the 

depletion of organic matter in coconut-growing regions, 

potentially disrupting local soil ecosystems and contributing 

to soil imbalances. Over time, this may affect soil structure, 

water retention capacity and microbial diversity.  

 Sriram studied the suitable substrate for T. harzianum 

multiplication in coco-peat and they are utilized for growth of 

tomato and chilli seedlings (36). The multiplication of T. 

asperellum in coconut fibre found that the rate of 

multiplication was 9.053 × 105 CFU per gram of coconut fibre 

after 120 days of inoculation when compared to oil palm fruit 

bunches which produced the second-highest amount CFU of 

7.406 × 105 CFU per gram (37). Additionally, the intensive 

harvesting process may strain natural resources and 

contribute to environmental degradation. Another concern 

arises post-application of biocontrol agents like Trichoderma 

spp. although beneficial for plant health, their large-scale use 

may create disposal issues, especially if residual biomass or 

microbial load accumulates in the environment. 

Farm yard manure 

Farm yard manure (FYM) prepared from cattle dung is 

nutrient enriched compost for plants. Seed treatment with 

PGPR and FYM prevents seed borne diseases. Pseudomonas 

florescence which has antifungal, antinematode, growth 

promotion and defense inducing properties are mass 

multiplied with FYM. They increase the bulb size of onions 

and prevents wilt, root rot and damping off disease of 

different crops (38). Farm yard Manure application with 

potential zinc solubilizing microbes used for integrated soil 

https://plantsciencetoday.online
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fertility management (39). Seed inoculation of Azotobacter, 

phosphate solubilizing bacteria multiplied with FYM increase 

the plant height, cob length and yield of pearl millet (40). FYM, 

phosphorus and phosphate solubilizing bacteria helps 

nodulation, growth and yield of kabuli chickpea (41). 

Microbiome enriched FYM using Bacillus spp. results 

increased yield and suppression of wilt disease caused by 

Ralstonia solanaecearum of eggplant compared to alone 

application of FYM (42). Compared to other treatments, 

combinations of FYM + B. subtilis and FYM + Trichoderma 

asperellum were more successful in managing potato late 

blight. In terms of disease incidence, the plants treated by 

FYM + T. asperellum and FYM + B. subtilis revealed lowest 

rates, at 16 % and 17 %, respectively. The experiment was 

conducted with three replicates using a randomized 

complete block design (RCBD). Statistical analysis was done 

using ANOVA and differences between treatments were 

tested using LSD at p ≤ 0.05. The study took place under field 

conditions with an average temperature of 18–25 °C and 

humidity between 75 % and 85 %. The soil was loamy with a 

pH of 6.8. Furthermore, the area under disease progressive 

curve for FYM + Trichoderma asperellum was the lowest 

(806.62) when compared to the untreated application of FYM 

alone (2587.86) (43). Treatment with poultry manure and 

biofertilizers recorded the lowest prevalence of cercospora 

leaf spot (11.18 %) (Cercospora capsici) in capsicum and 

reduced the presence of Fusarium root rot (11.42 %), caused 

by Fusarium solani of capsicum and peas (44). 

Biochar 

The Biochar were developed using organic substrates like 

wood, dung, or leaves in oxygen limited environment (45). By 

the process of pyrolysis or dry carbonization, biomass is burnt 

in anaerobic conditions at temperature between 300 and 700 

°C to create biochar, as an activated carbon soil conditioner 

(46). The addition of biochar significantly stabilizes 

photosynthetic carbon and raises the amount of chlorophyll, 

stomatal conductance, photosynthetic rate and relative 

water content (47). The increased presence of vital nutrients 

in the soil, such as K+ and the reduction of Na+ absorption are 

the direct mechanisms of biochar (48). The enhancement of 

soil enzymatic activity, biological and physiochemical 

characteristics raised the plant water status represents the 

indirect mechanism (49). Biochar's high surface area serves as 

a substrate for PGPR and supplies them with enriched 

nutrients necessary for its existence (50). 

  The colonizing effectiveness of PGPR with charcoal is a 

beneficial strategy to improve soil quality (51). In salt-affected 

soil, biochar decreased Na+ uptake while boosting K+ uptake 

when combined with PGPR. Another well-known feature of 

biochar is its capacity to lower pesticides and heavy metals, 

which can have negative effects on crops, soil and human 

health (52). Combination of biochar and PGPR in plant growth 

promotion has been studied in soybean (53), chickpea (54), 

French beans (55) and wheat (56). The combined effect of 

biochar and PGPR on maize and rice are used for the 

management of abiotic stresses such as drought and salinity 

respectively (57). The combination of PGPR and biochar 

represents a promising strategy to improve soil quality. 

However, its effectiveness is influenced by variables including 

soil texture, the origin of the biochar feedstock and the 

quantity applied, as excessive biochar may lead to nutrient 

imbalances.  

 The application of biochar has been reported for the 

reduction of F. oxysporum f. sp. lycopersici on tomato (58), 

Podosphaera aphanis on strawberry (59), Rhizoctonia solani 

on cucumber (60), Botrytis cinerea, Leveillula taurica on 

tomato and pepper (61). The green waste biochar was also 

found to be effective in suppressing Alternaria solani in 

tomato (62). In addition to that, the combination of B. subtilis 

and biochar application in tomato crop was highly effective 

against A. solnai and F. oxysporum f. sp. lycopersici when 

compared biochar alone. It was observed that B. subtilis 

along with biochar effectively control the Fusarium wilt in 

radish and promote plant growth (63). 

Biochar and bio-inoculum 

Rice husk biochar: The integration of plant growth-promoting 
rhizobacteria (PGPR) with agricultural waste products, such 

as rice husk, is an innovative approach to enhancing soil 

health and managing soil-borne diseases. Rice husk, the 

outer shell of rice grains, is a major by-product of rice milling. 

It is abundant, renewable and rich in organic matter, making 

it a suitable candidate for valorization. Rice husk ash, which is 

a source of carbon and silica has porous physical structure, 

good for sustaining microorganisms and retaining moisture. 

This indicates the plant can uptake silicon element via their 

root in a soluble state. Moreover, employing rice husk ash can 

enhance soil structure and increase soil aeration. Researchers 

found that rice husk ash, peat, vermiculite, alginate, wheat 

bran and clay are acceptable materials for usage as a carrier 

(64). Microorganisms can proliferate and survive in these 

carriers for longer periods.  

 The application of Rice husk biochar (3.6 g kg-1 soil) 
along with PGPR strains viz., Pseudomonas sp., Azotobacter 

chroococcum and Azospirillum brasilense significantly 

enhanced higher grain and straw yield and increased the 

uptake of nutrients (phosphorous, zinc, iron) in rice (65). 

Multiplication of beneficial bacteria such as Bacillus, 

Bradyrhizobium, Burkholderia, Chlorochromatium, 

Chthoniobacter, Geobacillus, Leptospirillum, Marisediminicola, 

Microvirga, Pseudoxanthomonas, Telmatobacter in rice husk 

biochar can be applied for different vegetable crops (66). The 

reduction of the bacterial wilt disease caused by Ralstonia 

solanacearum in different crops viz., banana, eggplant, potato, 

tobacco, peanut, tomato were noticed. Biochar made of rice 

husk with Bacillus spp. showed inhibitory activity against 

Phytophthora nicotianae, reduced the survival of pathogens in 

soil and decreased the disease severity of tobacco black shank 

disease (67). The rice husk biochar was combined with 

biocontrol agents such as B. subtilis and Trichoderma 

harzianum which can control root knot nematode Meloidogyne 

incognita in tomato (68). Interestingly B. subtilis with 3 % rice 

husk biochar increased overall plant growth and decreased 

Meloidogyne incognita losses. However, while RHB presents 

numerous agronomic and biological benefits, certain 

limitations must be considered. These include the risk of silicon 

toxicity at high concentrations, alterations in soil pH that may 

affect nutrient availability, potential heavy metal 

contamination depending on the rice husk source and a 

https://www.sciencedirect.com/topics/immunology-and-microbiology/bradyrhizobium
https://www.sciencedirect.com/topics/immunology-and-microbiology/burkholderia
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/geobacillus
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ralstonia
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possible reduction in microbial diversity due to selective 

promotion of specific microbial populations. Therefore, careful 

assessment of soil conditions, biochar quality and appropriate 

application rates is essential to optimize the benefits of rice 

husk biochar in sustainable agriculture. 

Spent mushroom substrate: Spent mushroom substrate (SMS) 

is a byproduct from mushroom cultivation using Agaricus 

bisporus and Pleurotus spp. after mushroom harvesting (69). 

These edible mushroom fungi are mainly cultivated in 

agricultural raw wastes such as paddy and millet straw and 

bagasse (70).  Adding SMS-biochar along with pig manure and 

rice straw lowered the compost’s organic matter loss and 

enhanced the calcium, potassium, phosphorus and nitrogen 

contents. Recent studies demonstrate, biochar prepared 

from spent black fungus substrates and spent Shiitake 

mushroom has enhanced surface area and high porosity. SMS 

biochar offers advantageous properties that allow for 

improved microbial attachment and growth that promote 

plant growth, including as adequate surface area, pore size 

and functional groups (71). Among the beneficial uses of SMS, 

the application of SMS along with different bioinoculants in 

soil and its disease controlling property is quite interesting. 

Larkin and Fravel demonstrated the reduction of bacterial 

wilt and damping off diseases in tomato which are serious 

soil borne diseases (72). SMS extract of Hericium erinaceus 

showed high antagonistic activity against some 

phytopathogenic bacteria (73). Under invitro condition 

fortified SMS by P. fluorescens and B. subtilis effectively reduced 

incidence of Ralstonia solanacearum, Fusarium oxysporum, 

Phytophthora palmivora, Pythium aphanidermatum, Sclerotium 

rolfsii and Rhizoctonia solani and tomato (74). Application of 

both PGPR and SMS significantly reduced the abundance of 

Fusarium oxysporum in the rhizosphere (75). In addition, SMS 

along with compost, chicken manure significantly reduced 

the abundance of pathogenic fungi, specifically Magnaporthe 

grisea in rice seedlings (76). SMS from Pleurotus florida and P. 

sojar-caju with the antagonist Pseudomonas aeruginosa and 

B. subtilis are used to control the nursery disease of black 

pepper (77). SMS of Pleurotus ostreatus was biofortified with 

Trichodrema asperellum shows higher multiplication rate of 

12.37 × 1013 conidia/g substrate and effectively controls F. 

oxysporum f. sp. lycopersici in tomato (78). SMS with Serratia 

sp., Bacillus cereus and B. subtilis controls rice sheath blight 

and root knot nematode disease (79). Furthermore, the high 

carbon-to-nitrogen (C:N) ratio in SMS can cause nitrogen 

immobilization, leading to nutrient deficiencies and reduced 

crop performance. In some cases, fungal secondary 

metabolites present in SMS may exhibit allelopathic effects, 

potentially inhibiting the growth of certain crops or disrupting 

beneficial microbial communities. Therefore, while SMS holds 

significant potential as a sustainable agricultural input, its use 

must be carefully managed through appropriate pre-

treatment, dosage regulation and regular monitoring to 

ensure environmental safety and agronomic efficacy. 

Chicken manure: Rural poultry production technology, one of 

the components of integrated farming systems, has been 

estimated to increase the benefit–cost ratio by 2.5 times, 

significantly improving the small and marginal farmer income 

by diversifying revenue streams and lowering input cost (80). 

In addition, it can be effectively utilized by farmers as organic 

fertilizer because of its high macro and micronutrient content 

(81). For macro and micronutrients, particularly N, P, K and S, 

chicken dung is a valuable resource (82). Soil physical 

qualities are improved by using chicken dung. Furthermore, it 

minimizes the danger of nutrient loss and preserves soil 

fertility (83). Adding chicken manure helps the soil's physical 

characteristics, giving it a crumb structure and enhancing soil 

aeration by increasing the porosity, or pore space, which 

influences root development. This chicken manure is 

effectively used as a substrate for the multiplication PGPR. 

Chicken manure and PGPR are used for shallot plants (Allium 

ascalonicum L.) which can increase the growth of the plant, 

number of bulbs per hill and number of leaves per clump (84). 

Under greenhouse conditions, the application of animal (cow, 

sheep and chicken) manures mixed with Bacillus spp. 

decreases galls and reproduction of root knot nematode 

Meloidogyne incognita in cucumber (85). However, despite its 

agronomic potential, chicken manure presents several health 

and environmental risks if not properly treated or applied. 

Pathogen contamination is a major concern, as raw manure 

can harbor harmful microorganisms such as Salmonella, 

Escherichia coli and Clostridium perfringens, posing threats to 

food safety and human health. Improper application may 

also lead to excessive ammonia emissions, contributing to air 

pollution, odor issues and soil acidification. Moreover, 

chicken feed additives can introduce heavy metals into the 

manure, which may accumulate in soils and be taken up by 

crops, impacting food safety. Over-application of manure can 

result in nutrient overload, especially nitrogen and 

phosphorus, leading to runoff, water pollution and 

eutrophication of nearby water bodies. The absence of 

proper drying, composting, or treatment measures may 

exacerbate these risks. Therefore, while chicken manure is a 

valuable input for sustainable agriculture, its application 

should be guided by best practices including composting, 

dosage regulation and periodic soil and water quality 

assessments to ensure environmental safety and crop 

productivity. 

 

Conclusion  

The post-Green Revolution era has seen tremendous strides 

in agricultural productivity, yet it has also brought serious 

ecological consequences due to the overuse of chemical 

inputs and intensive farming practices. Valorizing agricultural 

waste such as crop residues (rice straw, sugarcane trash, 

maize stalks) and agro-industrial byproducts (press mud, 

paddy husk, peanut shells) offers an innovative path toward 

improving soil health and managing soil-borne pathogens in 

a sustainable manner. Biofertilizers and microbial 

bioinoculants, when combined with organic substrates like 

biochar, spent mushroom substrate and animal manures, 

have shown promise in enhancing soil fertility, nutrient 

availability and microbial diversity. These eco-friendly inputs 

represent a potential alternative to synthetic agrochemicals, 

aligning with the goals of sustainable agriculture. However, 

this approach is not without challenges. Many agricultural 

and agro-industrial wastes may contain residual pesticides, 

heavy metals, or pathogens if not properly treated or 
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composted. Such contaminants pose a risk to soil, crops and 

human health. Moreover, overapplication of organic inputs 

may lead to nutrient imbalances, altered soil pH, or disrupted 

microbial equilibrium. The effectiveness of biofertilizers also 

varies with environmental factors such as soil type, climate 

and existing microbial communities. In some cases, 

introduced PGPR strains may compete with or suppress 

native soil microbiota, while their slow-release nature 

demands consistent, long-term application to achieve 

noticeable improvements. Therefore, the promotion of 

biofertilizers and waste-derived soil amendments should be 

coupled with strict quality control, scientific validation and 

region-specific application strategies. Government support, 

public awareness programs and farmer training are essential 

to ensure the safe and effective use of these materials. 

Financial assistance and incentives can further encourage 

entrepreneurship in biomass valorization. A SWOT analysis 

(Fig. 3) has been included to summarize the key strengths, 

weaknesses, opportunities and threats associated with using 

bioinoculants and agricultural waste. This holistic perspective 

will help guide future research, inform policy frameworks and 

support the transition toward sustainable, climate-resilient 

farming systems. 
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