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Abstract

Microplastic pollution has become a critical environmental challenge particularly in agricultural ecosystems, where excessive plastic use
contributes to its accumulation in soils. Microplastic originate from various sources including plastic mulch films, irrigation systems,
fertilizers, packaging materials and factories also gradually breaking down into microscopic particles that infiltrate the soil. Their presence
disrupts soil structure, alters physicochemical properties and negatively affects water retention, nutrient cycling and microbial diversity
ultimately reducing soil fertility and crop productivity. Besides disturbing soil health, microplastic enter the food chain through plant
uptake, posing potential health risks to humans and even animals ingestit directly. Long-term exposure to microplastic has been linked to
toxic effects including the accumulation of harmful chemicals and heavy metals. To mitigate these impacts, sustainable strategies such as
biodegradable plastic alternatives, regulatory frameworks and bioremediation techniques involving plants and microorganisms must be
implemented. Additionally, improved waste management practices particularly the 4Rs (Reduce, Reuse, Recycle and Recover) can
significantly reduce microplastic contamination. Addressing microplastic pollution in agroecosystems requires a collaborative global
effort involving policymakers, industries, researchers and local communities. By promoting sustainable agricultural practices and
enforcing stricter regulations on plastic use, we can safeguard environmental health, ensure food security and protect future generations
from the long-term consequences of microplastic pollution.
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Introduction Plastics are long-chain polymeric materials made up of
monomers of varying lengths. The most widely used plastics
include polyethylene (PE), polystyrene (PS), polyethylene
terephthalate (PET), polyvinyl chloride (PVC) and polypropylene
(PP). Plastics are extensively used in numerous sectors such as
agriculture, packaging, industrial manufacturing, textiles and
medicine due to their excellent plasticity, cost-effectiveness and
durability as stable compound materials (4). Plastic waste is
gradually building up in the environment because of its low
recyclability and strong resistance to degradation. These
materials can remain for long periods, slowly breaking into tiny
plastic particles, a process known as "White pollution" (5).
Prolonged exposure of plastics to environmental factors like
hydrolysis, ultraviolet (UV) radiation, mechanical wear, soil
erosion, animal ingestion (such as earthworms) and microbial
activity gradually breaks them down into smaller fragments,
including microplastics (6).

Following industrialization, global plastic production increased
significantly and was initially necessary. Over the last twenty
years, excessive production and improper disposal of plastic
have resulted in significant environmental pollution. The
massive production and consumption of plastics serve as a
distinctive indicator of human activity. According to Plastic
Europe (2024) (1) statistics, worldwide plastic production
amounted to 413.8 million metric tons in 2023. It is projected
that global plastic production will reach 902 million metric tons
by 2050 (2). In 2023, Asia was the leading producer of plastics
globally, contributing 33 % of total production. China,
produced an average of around nine million metric tons of
plastic products per month in recent years. The rest of Asia
ranked second in global plastic production, holding a 19 %
share in 2023. However, only around 20 % of plastics are

recycled, while the remaining 80% accumulate in soil, rivers
and oceans (3). Microplastic pollution is emerging as a worldwide issue

because of its durability, long-lasting presence and strength
across various ecosystems. Microplastics measuring from 1 um
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to 5 mm, were first identified in the 1970s and are considered a
potential cause of the next global disaster if they continue to
accumulate in the environment at this rate. Microplastics are
small plastic particles typically 1 um to 5 mm in size, with a
common lower size limit of 1 um. They originate from the
fragmentation of larger plastic items or are manufactured at
small sizes for specific applications. Unlike macroplastics (plastic
debris larger than 5 mm), microplastics are not always visible to
the naked eye. Owing to their small size as well as high surface-
area-to-volume ratio, they pose distinct environmental and
biological risks. Although the effects of microplastics on aquatic
ecosystems and organisms have been extensively researched,
their accumulation in agricultural soils has only recently been
identified, leaving many aspects of theirimpact still uncertain. An
estimate of mismanaged waste including sewage sludge
application, suggests that the amount of microplastics in
terrestrial ecosystems is 4 to 23 times greater than the quantity of
plastics released into the oceans (7).

Microplastics remain in the environment for extended
periods and can endure for centuries (8). It has been detected in
a range of polymer compositions, sizes, shapes and
concentrations across agro-ecosystems as well as in terrestrial
and aquatic environments (9). This review gathers and examines
all published literature on microplastic in agroecosystems. It
starts with an overview of plastics in agriculture, followed by a
discussion on microplastics, their types, sources, transport,
impact on soil and plant functions, toxins released and
concludes with prevention and control strategies.

Plastics in agriculture

Plastics are extensively utilized in agriculture to enhance
productivity and resource use efficiency, a practice referred to as
"Plasticulture." They enhance both the quantity and quality of
yields while reducing the use of inputs such as water, pesticides
and fertilizers. This encompasses materials like bale wraps,
mulch and silage films, landscape fabrics, row and tunnel cover,
irrigation pipes, drip tape and packaging materials (10) (Table 1).
Plasticulture is regarded as a biosecure agricultural system
because it helps control insects, pests and soilborne diseases
while minimizing weeds and supporting crop intensification.
Consequently, it leads to faster and higher crop yields (11). In
agriculture, plastic materials are utilized for managing soil
fumigation, facilitating irrigation systems (such as drip and
sprinkler irrigation), packaging and enhancing the appearance of
agricultural products, as well as shielding and safeguarding
harvests from precipitation among other applications (12). For
instance, plastic mulch film offers several agronomic advantages
such as controlling weeds and pests, preserving soil moisture,
regulating soil and air temperatures along with improving
nutrient absorption (13). At the same time, plastics have become
a major environmental concern in recent years, with their

Table 1. Plastic equipment in agriculture (18)

2

pollution having a significant effect on soil, water, and plant life
(14). Over the past 70 years, their usage has risen significantly,
reaching approximately 12.5 million tons per year. As a result,
substantial amounts of macro (>25 mm), micro (1-5 mm) and
nano plastics (1-100 mm) have accumulated in soils and other
affected environments (15). In March 2022, representatives from
175 nations committed to developing a legally binding global
Plastics Treaty (UNEA-5.2) to eliminate plastic pollution (16). This
international policy framework seeks to mitigate the
environmental and human health risks associated with the
entire plastic lifecycle, including its impact on agriculture. It is
expected that governments and non-governmental entities will
need to provide regular reports on their progress and
effectiveness in reducing plastic pollution (17).

Microplastic and its types

Microplastic have recently attracted considerable attention for
their environmental impact as they are smaller in size, widely
distributed, bioavailable and pose risks to ecosystems (18).
Microplastic particles smaller than 5 mm are formed as plastic
debris in the environment; breaks down into finer fragments
and particles through physical, chemical or biological
processes over time (19). They are water-insoluble, persist in
the environment and actively interact with their surroundings.
These contaminants are considered highly hazardous to the
sustainability of ecosystems, as they can alter the physical and
chemical properties of soil and plants (20). Microplastics break
down into smaller particles which include nanoscale fragments,
due to prevailing external environmental factors. Over time, they
can break down into carbon dioxide (CO,), water (H,0) and
methane (21). Microplastic can be categorized as primary or
secondary depending on their source of origin (Fig. 1). Primary
microplastics are deliberately produced by industries and
chemical manufacturers for applications in cosmetics, personal
care products, dermal exfoliators and other related items (22).
Secondary microplastics are generated when larger plastic
materials undergo fragmentation from commercial products.
These primarily consist of fibres released during the washing of
synthetic fabrics, particles from the wear and tear of plastic
coatings and vehicle tires, food packaging and synthetic textiles
(23, 24). Microplastics have emerged as ecological toxins that
seriously endanger the environment, human health and other
life forms; this subject has gained international attention.

Sources of microplastic in agriculture
Plastic film mulching

Plastic mulching is commonly practiced in agriculture, especially
in arid and semi-arid regions. Plastic films are extensively utilized,
as they aid in modulating the soil temperature and enhance the
water use efficiency, ultimately promoting better crop growth
and quality. Plastic film mulching is regarded as a major source
of microplastics in terrestrial ecosystems because of its extensive
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Fig. 1. Classifications of plastics based on size.

use, the presence of plastic residues and improper disposal
practices (25). When plastic mulch is incorporated into the soil, it
undergoes various processes including physical fragmentation,
chemical degradation and biodegradation eventually breaking
down into Microplastics (MPs) (26). Along with microplastic, soils
also accumulate toxins added during plastic production and
organic pollutants absorbed throughout their movement. Soils
with mulch contain more plastic film residues than those without
mulch (27). Furthermore, the longer the duration of continuous
mulching, the higher the concentration of microplastic in the soil.
For example, in Shihezi City, the concentration of microplastic
rises considerably with prolonged continuous mulching, ranging
from 10.10 to 61.05 mg/kg over a period of 5 to 30 years (28).
Shearing forces acting on plastic debris in farmland come into
play during ploughing and other cultivation activities, causing
already fragile plastics to break down further into smaller
fragments (29). Simultaneously, plastic fragments buried in the
soil are further broken down mechanically by factors such as
freezing and thawing cycles, pressure from snow or soil and
damage from the interactions with organisms. In recent years,
the worldwide use of agricultural films has surged; introducing
additional concealed risks for microplastic contamination in
the soil (30).

Irrigation

The occurrence of microplastics in water supplies used for
agricultural irrigation has been widely confirmed (31).
Worldwide, the main sources of irrigation water are rivers, lakes,
groundwater and reservoirs. When surface water bodies are
contaminated with microplastics, irrigating with such polluted
water can transfer these particles to agricultural soils (32). Thus,
microplastics present in the water become a source of
contamination in the soil through irrigation.

Sewage sludge

The use of sewage sludge and wastewater contributes to
microplastic pollution, with the accumulation of microplastics
in soil through repeated sludge application. The concentration
of microplastic in the soil increases with the duration and
amount of sludge application (33). Microbeads from personal
care products, polymer fibers shed during the laundering of
fabrics, plastic masterbatch discharged from manufacturing
facilities and microplastic from vehicle tires end up in sewage.
These microplastics travel through and accumulate during
wastewater treatment. Although some are released from the
sewage system, most are removed through the sedimentation
process and eventually end up in the sewage sludge (34).

When waste sludge contaminated with microplastic is
used as biosolid fertilizer on farmland, significant amounts of
microplastic are reintroduced into the cropland (35). Although
the reported increase in microplastics varies, the use of sludge
leads to microplastic pollution.

Compost

The use of compost as a soil amendment can also serve as a
route for microplastics to enter the soil. Typically, organic waste
is composted and fermented before being applied to farmland
as a nutrient source, enabling the recycling of nutrients & trace
elements. Composts derived from biological waste especially
contain plastics, which is caused by improper disposal and
inadequate waste sorting (25). A study identified 24 microplastic
particles per kilogram ranging from 1 mm to 5 mm in German
compost made from green clippings and municipal organic
waste (36).

According to Gui et al., 2021 (37), polyether sulfone (PES),
Polypropylene (PP) and Polyethylene (PE) were the most
prevalent polymers making up 70 - 80 % of the total microplastic
detected in compost. This significant number makes compost
one of the key pathways through which microplastic enters the
soil.

Coated pesticides and fertilizers

The fertilizer and pesticide industry employs plastic polymers as
coating materials for slow-release fertilizers and pesticides.
Polymer-coated fertilizers (PCF) are formulated with soluble
nutrient cores and thermoset polymer coatings, which facilitates
the gradual and controlled release of nutrients (38). Once these
substances are released, the plastic coating on the fertilizer
pellets stays in the soil and acts as a potential source of
microplastic in agricultural land (32).

Twine

Plastic twine primarily composed of polypropylene (PP), is
widely used for various agricultural purposes (39). During
harvest, twine is cut and frequently left unmanaged in the fields;
eventually it can break down into microplastics polluting the
agricultural soil. So far, no studies have evaluated the impact of
plastic twine on soil microplastic accumulation (32).

Urban runoff and floodwaters

In addition to intentional irrigation, urban runoff and flooding
serve as significant pathways for transporting and accumulating
microplastics in the soil (26). Urban runoff and flooding can
transport improperly disposed waste near roads, along with tire
abrasion particles (which contain rubber) into the soil (35). Some
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are microplastics already, while others slowly turn into
microplastics through different environmental interactions.

Transport of microplastics into agroecosystem

The movement of microplastics in soil, both horizontally and
vertically is influenced by soil properties, soil organisms, soil
management practices and climatic factors (40, 41). In
agricultural soils containing diverse mineral types, cracks and
fissures may form as the soil dries and these cracks act as entry
points for particles, enabling their rapid movement into deeper
soil layers. Soil organisms including earthworms, mites and
springtails aid in the transport of microplastics through their
feeding and burrowing behaviours (42). As macroaggregates
form in soils with a hierarchical structure, microplastic particles
and microaggregates become integrated with organic matter,
microbes and primary soil particles (43).

Ploughing is a common practice in agroecosystems and
through this process microplastic particles can be effectively
transported into the soil to the plough's depth. Furthermore,
under conventional tillage, different ploughing techniques may
vary in their effectiveness at incorporating microplastic into the
layer impacted by the machinery (44). Besides, the
bioturbation resulting from plant roots in the soil can impact
the movement of microplastic including processes such as root
growth, expansion and water uptake. In addition, the
characteristics of microplastic may influence their movement.
The size, hydrophobicity, charge, density and shape are all
likely to exert a considerable effect on the movement of
particles. For instance, microplastic containing -COOH
functional groups move more readily than those with -NH.,
while hydrophilic polystyrene particles are more mobile than
their hydrophobic counterparts (45).

Lightweight polymers can be carried by wind erosion
across soil environments and ultimately transported to
streams and rivers. Plastic transport is likely to occur across the
soil surface through runoff and water erosion following
hydrological and sediment transport routes shaped by surface
morphology, topography and land use. Plastics can indirectly
influence runoff formation and erosion by altering soil
properties that impact runoff generation and susceptibility to
erosion (46).

Impact on soil health and function

Microplastics frequently present in agricultural soils can affect
the soil's physicochemical characteristics, reduce fertility and
alter the soil microbial community ultimately impacting nutrient
cycling and thereby soil health. Microplastic can interact with the
soil to create different types of aggregates: loose aggregates form
with plastic debris; meanwhile denser aggregates are created
with MP fibers (47). Soil aggregates are fundamental
components of soil structure and play a vital role in forming
habitats for soil organisms, influencing gas and water flow, as
well as the activity of associated microbial communities (48).
Microplastics can either raise or lower the pH of soil. For instance,
Polyamide Microplastic (PA-MPs) and High-density Polyethylene
Microplastic (HDPE-MPs) may raise soil pH, whereas Polystyrene
Microplastic (PS-MPs) and Polytetrafluoroethylene (PTFE) may
decreaseit (49).

Microplastics can speed up water evaporation in soil by
creating pathways that promote water movement and this

effect intensifies with higher microplastic concentrations.
Furthermore, microplastics accumulation can weaken the
soil's structure, resulting in surface cracks and drying (50).

In addition, microplastics can alter the soil nutrient
cycle. While high-concentration PP-MPs (28% w/w) greatly
enhanced Soil Organic Matter accumulation and facilitated the
release of soil nutrients like Dissolved Organic Carbon (DOC),
Dissolved Organic Nitrogen (DON) and Dissolved Organic
Phosphorus (DOP). On the other hand, low concentration
microplastic (7 % w/w) did not significantly affect DOM
solutions in the first 7 days but led to a considerable increase in
soil nutrient levels from 14 to 30 days (51).

Soil microorganisms are responsive to shifts in the soil
ecosystem that changes in abiotic factors (physicochemical
and structural properties) due to microplastic could influence
the composition, distribution and functionality of these
microorganisms (52). Furthermore, DOM is essential for
microbial metabolism and energy supply, changes in carbon
levels due to microplastic could influence soil functions and
microbial communities with extensive functional redundancy
along with high diversity (53). Additionally, influence on soil
microorganisms by altering the functional groups responsible
for nutrient cycling. These changes in nutrient cycling could
affect the availability of nutrients for crops (54).

By examining the impact of soil microplastics on
microbial evolution, we can establish an accurate baseline for
soil ecology regarding the effects of this varied contaminant
group and gain insights into how soil microbiome might
respond in the future.

Impact of microplastics on plant growth

Plant growth refers to the expansion in volume or mass of a
plant, which can take place with or without the formation of
new structures. It involves physical cell differentiation,
reproduction and various physiological functions; however, it is
highly dependent on growth conditions. Microplastic stress
limit plant growth and development via exerting (i) direct
effects associated with physical blockage and (ii) indirect
effects resulting from the alterations in soil properties (Fig. 2).

Direct effects associated with physical blockage
Seed germination and root development

Due to their small size and high adsorption capacity,
microplastics can attach to the surfaces of seeds and roots;
thereby preventing seed germination and root growth.
Microplastic inhibits seed germination by blocking the pores in
the seed capsule, limiting water intake and the imbibition
process (55) (Table 2); a decrease in the imbibition process
leads to a lower germination rate (56). Microplastics obstruct
intercellular connections in roots, hindering nutrient transport
and resulting in reduced biomass, lower catalase activity in
higher plants, and stunted growth at elevated microplastic
concentrations (57). The microplastics that adhere to root hairs
and cell wall pores reduce transpiration, hinder nutrient and
water absorption as well as impact root respiration. (58).

As microplastics fragments, their particle size decreases
while their specific surface area increases, enhancing their
potential to adhere to the root surface. However, microplastic
can also be absorbed into the root through the endocytosis
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Fig. 2. Impact of microplastics on plant growth.
Table 2. Impacts of microplastics on plant growth and development
Plant species Microplastic (Polymers) Impacts Reference
Hordeum vulgare L. Polystyrene (PS), Polymethyl Disruption of metabolic systems and enzyme (60)
Methacrylate (PMMA) activity.
Oryza sativa L. Polystyrene (PS) Shoot and root reduction (68)
Triticum aestivum L. Polystyrene (PS) Reduction in micronutrient (69)
Root and leaves reduction,
Daucus carota L. Polystyrene (PS) + Arsenic ROS increasement (70)
Cucumis sativus L. Alteration in Photosynthetic, Biomass and
Polystyrene (PS) Antioxidant system (71)
Lolium multiflorum Lam. High Density Polyethylene (HDPE)  Reduced seed germination and Root shoot length (72)
: Decreased root length, Induced cytogenetic toxicity
Allium cepa L. Polystyrene (PS) & Increased ROS production (73)
Decreased maize growth, Modified bacterial
Zeamays L. Polyethylene (PE) communities in soil & Impacted antioxidants gene (74)

expression.

process (59). Auxin and cytokinin control root system
development by directing the growth of root hairs, lateral roots
and crown roots. Microplastics decrease rootlet numbers and
the levels of three phytohormones- Orthophthalic acid (OPA),
Indole-3-butyric acid (IBA) and cis-zeatin riboside in the roots,
suggesting that it influences root development by altering
cytokinin and auxin concentrations (60).

Furthermore, the influence of microplastics on Reactive
Oxygen Species (ROS) generation in crop roots decreases the
viability of root cells, which leads to disruptions in the
antioxidant defence system and causes damage or modifications
to the cellular system (61).

Crop growth and tissue development

Microplastic particles may accumulate on leaves due to
atmospheric deposition, which can interfere with stomatal
function and in turn influence photosynthesis and transpiration.
In addition, microplastic could impair photosynthesis by
affecting chlorophyll production in the shoots or leaves of plants
(62). Microplastics that accumulate in the stem vascular bundles
and leaf veins could block the absorption and transport of water
and nutrients, limiting stem growth and tissue development (63).
Microplastics lowered the levels of elemental and soluble
molecules, as well as organic compounds, total sugar content
which could account for the decrease in the crop's stem biomass
(64).

Crop metabolic processes

Microplastic could raise Reactive Oxygen Species (ROS)
production and enhance antioxidant enzyme activity. Increased
ROS production could reduce the synthesis of lipids, amino
acids, nucleic acids and other secondary metabolites surpassing
the antioxidant system's ability to neutralize them, led to
impaired membrane functions (65). As a protective mechanism,
crops generate extra antioxidant enzymes to counteract stress
caused by excessive ROS. Consequently, microplastic - induced
abiotic stress in crops can interfere with energy metabolism by
modifying anabolic processes and causing damage to cell lipids,
proteins and nucleic acids. These physical damages to cells
could undermine their integrity and function, triggering various
responses in the crops (54).

Alterations in gene expression

Microplastics exposure expedited root aging or caused root
death by altering the expression of CDC2, a gene that controls
the cell division cycle and CDK, the gene that encodes cyclin-
dependent kinase (65). For example, studies in Arabidopsis
thaliana and Lactuca sativa (lettuce) have demonstrated that
microplastics can alter root architecture, reduce biomass
accumulation and disrupt hormonal signalling pathways such
as auxin transport which is also linked to root development.
These gene-level disruptions collectively lead to reduced plant
vigour and vyield potential under microplastic stress. It
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particularly limits plant nutrient growth during the vegetative
stage, mainly by inhibiting the expression of genes that control
nitrate transport within the roots as well as those associated with
photosynthesis (66). They also downregulate photosynthesis-
related genes including those encoding chlorophyll a/b binding
proteins and photosystem components like psbA and rbcL,
thereby reducing photosynthetic efficiency.

Nutrientimmobilization

Plastic particles are rich in carbon content, with most of it
remains relatively inert due to the material's resistance to
decomposition. Over time, the plastic will gradually break
down and due to its wide carbon-to-nitrogen (C:N) ratio, this
process will lead to microbial immobilization. However, since
most plastics decompose extremely slowly; this effect is
unlikely to have significant biological implications (62).

Indirect effect in the alterations of soil properties

The growth and productivity of plants are significantly affected
by soil properties, the composition of the soil's biological
community and its overall diversity. Microplastics impact soil's
physical and chemical characteristics as well as microbial
populations, potentially resulting in changes in the rhizosphere,
plant growth environment and nutrient availability which
ultimately affects plants indirectly.

For example, microplastics modify the soil-based bacterial
ecosystem and decreases soil organic matter and bulk density.
Microplastics greatly influence soil enzymatic activity such as
catalase (CAT), peroxidase (PO), fluorescein diacetate esterase
(FDAase) and urease leads to temporary alterations in soil health
(52). Moreover, microplastic can lower the diversity of soil
microbes or reduce the number of rhizosphere fungal partners,
which potentially leads to a decline in plant diversity (67).

Toxic leachates from microplastics

Various additives are present in plastic products including
plasticizers, antioxidants, flame retardants, light and heat
stabilizers, lubricants and pigments. These additives are
typically not chemically bound to plastic polymers, making
them prone to leaching into the soil. For instance, plasticizers
greatly hinder wheat seed sprouting, affect plant antioxidant
enzyme functions and initiate programmed cell death in seed
cells (75). Plastic additives as well as environmental
contaminants like organic pollutants and heavy metals
adhered to the surface of microplastic can also impact
agricultural soil (76). For example, phthalate (PAE) often called
an "environmental hormone", particularly when subjected to
prolonged environmental exposure (77, 78). When PAEs are
released into the soil from plastic film remnants, it lowers soil
microbial biomass activity (SMbA) by disrupting soil respiration
and enzyme functions (78). As a result, they may present a
hidden threat to the ecological functions of soil.

Risk to human health

The potential risks to both the ecosystem and human well-being
from microplastic exposure are key concerns in microplastic
research. Microplastics transfer from one trophic level to
another, ultimately accumulating at the highest level of the
human food chain (79). Research suggests that microplastics can
infiltrate the seeds and fruits of crops, eventually entering the
human body through dietary intake. Once inside, they may pose

health risks due to particle toxicity, chemical toxicity and their
potential to carry pathogens as well as parasite vectors (80).
Microplastics present in agricultural soil can reach human body
through food consumption, inhalation and direct contact. This
exposure may lead to asthma, respiratory irritation, obesity,
cardiovascular diseases and gastrointestinal disorders posing a
significant risk to human health. Once absorbed into the human
body, microplastic can accumulate in the intestines; potentially
triggering local inflammation, disrupting endocrine regulation
and impairing gastrointestinal functions. Furthermore, they may
change the composition and diversity of gut microbes, leading to
imbalances in the gut microbiome (81).

Prevention and control strategies
Regulatory Measures

Different legal and administrative steps have been taken to
tackle the increasing problem of microplastic pollution across
various countries. The European Union has actively worked to
combat the pervasive issue of microplastics.

In 2018, the EU launched the 'European Strategy for
Plastics in a Circular Economy,' aiming to transform the entire
plastic lifecycle-from design and production to usage and
recycling. The circular economy framework presents a
replacement for the traditional linear economy, which operates
by “make, use and dispose" pattern. Its aim is to prolong the
longevity of resources, derive maximum value from them;
subsequently recover and revitalize goods as well as resources
after their useful life has ended. This approach includes initiatives
to minimize microplastic use in various products and focuses on
advancing innovative plastic recycling technologies (82).

India's Plastic Waste Management Rules, 2016 (amended
in 2021) and global agreements like the Basel Convention aim to
reduce plastic pollution through measures such as Extended
Producer Responsibility (EPR) together with bans on certain
single-use plastics. However, effective enforcement and local-
level implementation are still challenging and need to be
strengthened. Raising public awareness is crucial. Many people
are still unaware of the environmental impact of plastic waste
and proper disposal methods. Awareness campaigns, school
programs and community initiatives can help promote
responsible plastic use and segregation. Proper plastic
management begins with segregation at the source. Use of color-
coded bins, regular waste collection and integrating informal
waste workers can improve recycling. Technologies such as
Material Recovery Facilities (MRFs) and EPR implementation can
further improve plastic waste management and support a
circular economy. The 2019 Basel Convention Plastic Waste
Amendments, which regulate the global transfer of plastic waste,
could be expanded to include agricultural products like soil
amendments and compost (83). At the government regulatory
level, the roles of companies throughout the plastic product life
cycle need to be defined. At the public level, initiatives should
focus on enhancing awareness and concern regarding
microplastic pollution.

Biodegradable alternatives

To address microplastics in soil, it is essential to eliminate
plastics at the source as removing them from large agricultural
areas is relatively challenging. Therefore, an effective alternative
to plastic disposal is to use biodegradable materials. At the end
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of their life cycle, biodegradable materials can be added to the
soil; where they are broken down by microflora into carbon
dioxide or methane, water and biomass. Biodegradable plastics
have brought fresh insights into waste management strategies,
as they are designed to decompose under environmental
conditions (84). For instance, biodegradable mulch films break
down in the soil after ploughing eliminates the need for film
collection and disposal (85).

In addition, possessing properties like those of
conventional plastics bioplastics (biopolymers), sourced from
microorganisms or genetically engineered plants to produce
these polymers are anticipated to substitute the plastics in use
today (86).

Various communities in India have embraced creative and
eco-friendly alternatives to plastic. In regions like Assam and
Meghalaya, where bamboo is plentiful, bamboo-based bottles
and utensils are becoming more common. These products are
biodegradable, long-lasting and help support local craftsmanship
(99).

In the rural regions of Tamil Nadu and Kerala, banana
leaves and areca palm leaf plates are commonly utilized during
cultural ceremonies, weddings and temple festivals as
substitutes for disposable plastic plates. These plates are
entirely biodegradable and have cultural significance. One
notable example is Kumbalangi village in Kerala, India’s first
model tourism village where plastic use has been prohibited in
favour of sustainable materials like coir, bamboo and leaves.
Similarly, Hiware Bazar in Maharashtra renowned for its focus
on sustainable development has worked to minimize plastic
consumption and embrace eco-friendly practices (100).

4Rs (Reduce, Reuse, Recycle and Recover) Concept

The most effective approach to prevent the creation of
microplastic is by reducing the amount of plastic waste.
Recycling and processing various forms of plastic waste can
transform them into useful raw materials, alleviating the
environmental contamination resulting from improper disposal
along with facilitating the reuse of materials and energy from
plastic waste. Improved solid waste systems and management
will reduce plastic litter which contaminates rivers and marine
environments, consequently lowering the rate of microplastic
buildup. The repeated use of plastic materials can greatly
minimize plastic waste and lower microplastics formation.
Utilizing plastic waste as an energy resource and converting it
into valuable products will also contribute to reducing the
emergence of microplastic particles (87).

Need of teaching an environment-based curriculum among the
students

This growing environmental issue highlights the urgent need to
teach students about the environment from an early age. By
introducing an environment-based curriculum in lower classes,
children can learn about the importance of protecting nature,
reducing plastic use and making eco-friendly choices. Early
education helps students build awareness and responsibility
encouraging them to care for the planet as they grow. When
students understand the impact of pollution like microplastics,
they are more likely to adopt sustainable habits and spread
awareness. Therefore, including environmental topics in school
education from the beginning is not just important-it is essential
for building a greener, healthier future.

Bioremediation approach

Bioremediation is a technique that utilizes living organisms like
bacteria, fungi or plants to degrade or neutralize environmental
contaminants such as chemicals, heavy metals or waste to
restore and enhance the ecosystem’s health. Phytoremediation
is an on-site restoration technique that employs plants and their
related soil microorganisms to reduce the pollutant
concentrations such as microplastic within soil ecosystems (88).
Plant roots trap microplastics, preventing their movement and
lowering their accessibility to other parts of the plant thus
minimizing the possible threat to other soil organisms. For
instance, water plants such as Lemna minor, Thalassia
testudinum and Fucus vesiculosus can adsorb microplastic,
thereby reducing their movement and bioavailability in aquatic
agroecosystems (89).

Earthworms play a vital part in soil ecosystem stability by
accumulating heavy metals and breaking down microplastic.
Drilodefensins, a metabolite found in the guts of earthworms,
play a protective role by mitigating oxidative stress induced by
plant polyphenols (90). When exposed to microplastics,
earthworms like Eisenia fetida enhance their antioxidant defence
mechanisms by secreting enzymes such as, glutathione-related
enzymes, acetylcholine esterase, superoxide dismutase,
malondialdehyde, catalase and lipid peroxidation enzymes (50).

Microplastics made of synthetic polymers containing
carbon and hydrogen are vulnerable to microbial attack (Table
3). The development of biofilms on their surface, formed by
microbial communities like bacteria, fungi, algae, archaea,
viruses and protozoans is known as the "Plastisphere." The
spread of microbial communities as biofilms on microplastic
takes place in several stages and follows a sequential pattern
over time (91). The process begins with the colonization of
microplastic by primary microorganisms that grow and expand
across the microplastic surface. As the biofilm develops, thereis a
shift in the microbial population. The degradation process
changes the functional groups, chemical composition, molecular
weight and tensile strength of the polymer. The microbial
community progressively breaks down microplastic via
enzymatic hydrolysis, reducing the polymer into oligomers,
dimers and monomers. These simpler compounds act as the
main sources of carbon and energy, eventually being fully
broken down into carbon dioxide and water (92).

Bacillus cereus, a gram-positive bacterium has been
found to degrade low-density polypropylene (LDPP), a plastic
widely used in packaging and bags. This microorganism

Table 3. List of microorganisms capable of degrading various types
of microplastics

Microorganism Microplastic degraded Reference
. Low -density polypropylene
Bacillus cereus (LDPP) (93)
P h hth
Ideonella sakaiensis olyethylene terephthalate (94)
(PET)
Pseudomonas L
. Polylactic acid (PLA) (95)
mendocina
Thermobifida alba Modified polyethylene (96)
AHK119 terephthalate (Modified PET)
Alcaligenes faecalis
I NDR-1 Polyethylene (PE) (97)
Rhizopus delemer Polylactic acid (PLA) (98)
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facilitates the breakdown of LDPP by secreting enzymes that
break down the polymer chains, converting the plastic into
smaller biodegradable substances (93). Ideonella sakaiensis, a
bacterium discovered in a recycling plant in Japan can break
down polyethylene terephthalate (PET) the plastic commonly
used in beverage bottles. This bacterium produces two essential
enzymes namely PETase and MHETase, which work in tandem to
decompose PET into its basic components i.e. terephthalic acid
and ethylene glycol. The discovery of /. sakaiensis has marked a
significant advancement in bioremediation and current research
is focused on improving its efficiency for industrial use (94).
Pseudomonas mendocina, a soil bacterium can degrade
polylactic acid (PLA), a biodegradable plastic frequently used in
packaging and disposable items. The degradation of PLA by P.
mendocina occurs through enzyme-driven hydrolysis of the
polymer resulting in the release of lactic acid, which the
bacterium can further metabolize. This microorganism offers a
sustainable alternative to conventional methods of plastic waste
disposal (95). Thermobifida alba is a thermophilic bacterium that
can break down modified polyethylene terephthalate (Modified
PET). It generates heat-tolerant enzymes that can decompose
polyester-based plastics offering a potential solution for
addressing plastic waste from the textile and packaging sectors
(96). Alcaligenes faecalis, a bacterium found in a variety of
environmental samples has demonstrated the ability to degrade
polyethylene (PE) a commonly used plastic. It does so by
secreting enzymes that break down the long hydrocarbon chains
in PE thus contributing to the reduction of plastic waste. A.
faecalis is especially notable for its ability to thrive in challenging
environments making it ideal for large-scale applications (97).
Rhizopus delemer is a fungus known to degrade PLA. Like P.
mendocina, it produces enzymes that break down PLA into
simpler compounds which can be further processed or
metabolized by the organism. This fungus shows promise in
bioremediation efforts, especially in composting systems for
managing biodegradable plastic waste (98).

Conclusion

This review highlights the prevalence, dispersion and
environmental  dynamics  of  microplastics  within
agroecosystems. The extensive use of plastics in farming has led
to their accumulation in soils, where they persist due to their
resistance to degradation. Microplastics do affect soil structure,
reduce fertility, disrupt microbial communities and ultimately
impact crop growth. They also hinder seed germination, nutrient
absorption and photosynthesis, whilst introducing toxic
additives into the soil. Additionally, microplastic enters the food
chain posing health risks to humans through ingestion and
inhalation.  Effective strategies such as biodegradable
alternatives, recycling and bioremediation are crucial in
mitigating this issue. Governments and industries must enforce
regulations to limit plastic use and promote sustainable
practices. Raising public awareness about microplastic pollution
is essential for long-term environmental sustainability. A
collective global effort is needed to reduce plastic waste and
protect soil health. Therefore, careful management and evidence
-based policies are essential to effectively safeguard the global
ecosystem.
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