
  

Plant Science Today, ISSN 2348-1900 (online) 

Introduction 

Sweet corn (Zea mays var. saccharata) is globally known for its 

sweetness, flavor and nutritional content. Unlike field corn, it is 

harvested at the immature stage, making it a staple food and 

an essential raw material in the food industry. This hybrid 

variety, bred for higher sugar content, matures within 75-90 

days after sowing. It contains approximately 5-6 % sugar, 10-11 

% starch and 70 % water, along with moderate amounts of 

protein, vitamins and potassium (1). The choice of sweet corn 

variety varies regionally, with the standard yellow type being 

the most widely consumed. 

 Seed priming is a pre-sowing technique involving 

controlled hydration, enabling metabolic processes associated 

with germination to initiate without triggering radical 

emergence (2). During phase II of germination, priming 

facilitates seed hydration, activating pre-germinative 

biochemical and metabolic pathways while preventing radical 

protrusion (3, 4). This pre-germination improvement method 

promotes early seedling emergence by modulating metabolic 

activities during the initial stages of germination (5). 

Additionally, seed priming enhances germination rate and 

uniformity by shortening the imbibition phase (6), stimulating 

pre-germinative enzyme activity, boosting metabolite 

synthesis (7) and modulating osmotic balance. Various seed 

priming techniques, including water-based, Plant Growth 

Regulator (PGR)-based, osmotic solution-based and chemical-

based methods, are extensively utilized to improve 

germination, seedling vigour and resistance to multiple biotic 

and abiotic stresses in numerous crop species. While all these 

approaches share a common principle partial pre-hydration 

and early activation of germination processes their 

effectiveness is largely influenced by the specific plant species 

and the selected priming method (8). Among these, the use of 

nanoparticles as priming agents has gained significant 

attention due to their unique physicochemical properties. 

Efficient priming agents, including SiO₂, Ag and ZnO, can be 

synthesized into NPs form and applied in seed priming 
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Abstract  

Sweet corn (Zea mays var. saccharata) is a widely cultivated crop valued for its high sugar content and nutritional profile. Seed priming is a 
pre-sowing technique that enhances germination and seedling vigour and nanopriming has gained prominence with the advent of 

nanotechnology (NPs). This study aimed to standardize the green synthesis protocol for zinc oxide nanoparticles (ZnO NPs) using Moringa 

oleifera (MO) leaf extract and assess their impact on sweet corn seed priming. ZnO NPs were synthesized by co-precipitation method, 
characterized via XRD, FTIR, UV-Vis, TEM and EDAX analyses and subsequently applied in seed priming treatments at concentrations 

ranging from 100–500 ppm. The laboratory experiment, conducted in a Completely Randomized Design (CRD), evaluated germination 

parameters such as Germination Percentage (GP), Germination Rate (GR), Seedling Vigour Index (SVI), Mean Germination Time (MGT) and 

Coefficient of Velocity of Germination (CVG). Results revealed that ZnO NP priming significantly improved germination performance, with 
the 100 ppm as an ideal priming treatment exhibiting improvement in germination percentage (89.33 %), seedling length and vigour index 

(3873). The study suggests the potential of biogenically synthesized ZnO NPs in enhancing seed germination and seedling vigour, 

demonstrating their applicability as an eco-friendly priming agent These findings not only demonstrate the potential of green-synthesized 

ZnO NPs as an eco-friendly priming agent but also underscore their broader applicability in advancing sustainable agriculture through 

enhanced crop establishment and resource-efficient seed treatments.                                                       

Keywords: biogenic synthesis; seed priming; sweet corn; zinc oxide nanoparticle 
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treatments to enhance seed germination and vigour (9, 10). A 

notable increase in shoot length and seed fresh weight was 

observed when treated with ZnO NPs at a concentration of 20 

mg/L, compared to both the control and other priming 

methods (10).  

 The biogenic synthesis of NPs using plant extracts has 

emerged as a transformative approach, offering a distinct 

advantage over conventional methods due to its 

environmentally friendly nature and reduced ecological impact 

(11). Several studies have explored the green synthesis of ZnO 

NPs using various plant extracts. The physical properties and 

formation mechanisms of ZnO NPs synthesized using Moringa 

oleifera extracts (12). The structural and optical characteristics 

of ZnO NPs derived from Aspalathus linearis extracts (13). The 

fabrication of nanoscale electrocatalytic and optically 

modulated ZnO NPs via a green synthesis approach using 

Punica granatum L., along with their antibacterial properties 

(14). Additionally, the green synthesis of ZnO NPs utilizing 

Agathosma betulina extracts (15). In this study, we have used 

MO leaf extracts at 10 % concentration and 0.1 M zinc oxide 

hexahydrate following the co-precipitation method, optimised 

with unique and novel combinations of synthesis parameters, 

to obtain zinc oxide NPs for application in agriculture. 

 

Materials and Methods 

The materials, methods and specific details of experiments 

conducted are described below.  

Nanoparticle synthesis and characterization 

Zinc oxide NPs were synthesized using co-precipitation 

method (16).  Biogenic synthesis of zinc oxide NPs was carried 

out using Moringa oleifera (MO) leaf extract as a reducing and 

stabilizing agent and zinc nitrate hexahydrate as precursor. MO 

leaves (15 g) were boiled in 150 ml of double distilled water 

(DD.H2O), the solution was kept stirring at 850 rpm for 2 hrs at 

50 °C. MO extract was cooled to room temperature and filtered 

through Whatman No.42 filter paper and stored in refrigerator 

at 4 °C for further studies. 50 mL of 0.1M Zinc nitrate 

hexahydrate solution was prepared with DD.H2O. MO leaf 

extract (50 mL) was taken in a burette and added gently into 50 

mL of zinc nitrate solution under constant stirring. pH was 

maintained at neutral by adding required volume of 2M 

Sodium hydroxide solution (NaOH). A yellow colour precipitate 

was obtained. Resultant solution was kept under vigorous 

stirring (500 rpm) at 90 °C for 4 hrs. After the solution was kept 

idle for 24 hrs in a sealed beaker for the formation of 

nanoparticle. Mixture was centrifuged at 3500 rpm for 30 min 

and the supernatant was discarded. The precipitate was 

washed with ethanol followed by distilled water and dried in 

hot air oven at 60 °C for 6 hrs. After fully drying, the particles 

were finely ground using a mortar and pestle, weighed and 

stored for future use. ZnO nano particles were annealed at 600 °

C for 2 hrs in muffle furnace. White powder of zinc oxide NPs 

was obtained and stored. The characterization of the 

synthesized NPs was carried out using TEM with EDAX, XRD, 

FTIR and UV-Vis Spectroscopy. 

 

 

The seed priming experiment 

The laboratory study was conducted at Department of Seed 

Science and Technology, Tamil Nadu Agricultural University, 

Coimbatore to evaluate the impact of seed priming, using the 

synthesized nanoparticles, on germination and growth 

performance of sweet corn variety ‘Sugar 75’. The experiment 

was laid out using CRD with seven treatments replicated thrice 

The duration for seed priming was standardized with a 

preliminary experiment in which three replicates of 25 seeds 

each were primed for 2, 4, 6, 8 and 10 hrs and then kept for 

germination test by roll towel method in a controlled 

germination room maintained under standard conditions of 25 

± 2 ºC temperature and 95 ± 2 % relative humidity. The best 

duration was identified to be 4 hrs by assessing germination 

percentage, seedling length and vigour index.  

 The priming was carried out for 4 hrs in 250 mL glass 

beakers, with a concentration of ZnO NPs prepared by green 

synthesis methods following the detailed protocol described 

previously and later kept for germination. The seed priming 

treatments given were T1- 100 ppm, T2 -200 ppm,                    T3 - 

300 ppm, T4 - 400 ppm, T5 - 500 ppm, T6 - Priming with distilled 

water and T7 - No priming. After priming, seeds were air-dried 

and kept for germination test by roll towel method (three 

replicates, each of 25 seeds) and top of paper method (three 

replicates each of 10 seeds), in the germination chamber under 

standard conditions as mentioned above. The growth 

performance of the primed seeds was observed after 7 days, 

while germination count was observed daily. The parameters 

like daily germination count, shoot length and root length were 

recorded. Germination Percentage (GP), Seedling Vigour Index 

(SVI), Germination Rate (GR), Mean Germination Time (MGT) 

and Co-efficient of Velocity of Germination (CVG), were 

computed later with the observed data.  The fresh weight of 

seedlings was recorded and the samples were subjected to 

drying at 72 ºC in a hot air oven for recording the seedling dry 

weight. The GP, GR, MGT and CVG were calculated using the 

following formula given by (17): 

GP (%) = (No. of normal seedlings/Total No. of seeds sown) x 100 

                                                                                          (Eqn. 1) 

GR = Σ (ni / di)       

                                                                                          (Eqn. 2) 

MGT = Σ (ni × di) / Σ ni      

                                                                           (Eqn. 3) 

CVG = Σ ni / Σ (di × ni)       

                                                                                          (Eqn. 4) 

ni - number of seeds germinated on ith day 

di -number of days counted from the beginning of experiment 

SVI was calculated using the formula given by (18) and 

expressed in whole number,  

SVI = GP (%) x Seedling length (cm) {Shoot length + Root 

length}   

                                                                                                                       (Eqn. 5) 
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Statistical analysis 

Analysis of variance (ANOVA) technique was used to analyse 

the significance of different treatments and the LSD test at P≤ 

0.05 was used to compare treatment means by using GRAPES 

(General R based Analysis Platform Empowered by Statistics) 

computer-based software (19). Correlation analysis was done 

using R software. 

 

Results and Discussion 

Nanoparticle synthesis  

In this study, we have used the co-precipitation method for 

synthesis of zinc oxide NPs as it is one of the easy and cost-

effective methods for synthesis of metal oxide nanoparticles 

(20-22). Various researchers have used different chemical 

combinations of precursors and reducing agents for synthesis 

of ZnO NPs. (12) obtained ZnO NPs of particle size in the 

range of 12-20 nm, with MO leaf extract as biological reducing 

agent. (13) synthesized ZnO NPs with size of 12 nm using 

Aspalathus linearis extract as reducing agent. Similarly, (15) 

and (14), used Agasthoma betulina and Punica granatum 

respectively, as reducing agents in the production of ZnO NPs 

of size 19-20 nm. We have used zinc nitrate hexahydrate as 

precursor in the co-precipitation method and obtained 

nanoparticles of average particle size of 24 nm based on TEM 

result. For this size achievement, MO leaf extract worked as 

the reducing and stabilizing agent as MO is reported to be 

composed of several biomolecules like flavonoids, saponins, 

tannins, (23) phenolics, crypto-chlorogenic acid, isoquercetin, 

astragalin (24) and vitamins like L-ascorbic acid and niacin 

(25) which may have contributed for the size reduction. 

Zinc oxide nanoparticle characterization 

1. XRD 

The X-ray diffraction (XRD) analysis of the synthesized ZnO 

NPs, using Moringa oleifera leaf extract, revealed the presence 

of a crystalline phase in the NPs. The XRD pattern (Fig. 1) 

displays prominent peaks corresponding to various 

crystallographic planes. Notably, distinct diffraction peaks 

were observed at 2θ values of 31.7°, 34.4°, 36.2°, 47.5°, 56.6° 

and 62.8°. These peaks are indexed to the (100), (002), (101), 

(102), (110) and (103) planes of hexagonal wurtzite ZnO, 

confirming the formation of pure ZnO NPs (JCPDS card no. 36

-1451). The sharpness and intensity of these peaks suggest 

the high crystallinity of the synthesized NPs when compared 

to (26) and (27).   

2. FTIR  

The FTIR spectrum provided further insight into the 

functional groups involved in the biosynthesis of ZnO 

nanoparticles (Fig. 2). A broad absorption band between 2978 

cm-1 and 2900 cm-1 was attributed to O-H stretching 

vibrations, indicating the presence of hydroxyl groups from 

the Moringa extract. Peaks observed at 1381.03 cm-1 were 

attributed to C-H bending (methyl groups) suggesting the 

interaction of carboxylate groups with the ZnO surface. 

Additional bands in the 1149.57-1249.87 cm-1 region 

correspond to C-O-C stretching vibrations, suggesting the 

presence of esters or ethers, likely derived from 

polysaccharides or other biomolecules in the extract. Strong 

Zn-O stretching vibrations were identified at 455.20 cm-1 and 

432.05 cm-1, confirming the formation of ZnO nanoparticles. 

The presence of these functional groups highlights the role of 

Moringa oleifera extract in reducing and capping the ZnO 

nanoparticles, ensuring their stability (28). These results 

demonstrate the efficacy of using Moringa oleifera leaf extract 

as a green synthesis method for ZnO nanoparticles, providing 

a sustainable and environmentally friendly alternative to 

conventional chemical synthesis techniques. 

3. UV–Vis spectra 

The UV-Vis absorption spectrum of ZnO (Fig. 3) NPs 

synthesized using MO leaf extract displays a prominent 

absorption peak at 330 nm. This peak corresponds to the 

characteristic excitonic absorption of ZnO NPs, indicating the 

successful formation of nanosized particles. The absorption 

in this region confirms the presence of ZnO, as it is consistent 

with the band gap of ZnO NPs, typically ranging from 3.3 eV, 

corresponding to a wavelength of around 370 nm (29). The 
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Fig. 1. XRD spectra of the green synthesized ZnO NPs. 
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observed blue shift in the absorption spectrum, compared to 

bulk ZnO, can be attributed to the quantum confinement 

effect. This shift is indicative of a reduction in particle size, 

leading to an increase in the band gap energy. The slight 

fluctuations in the absorbance before and after 330 nm may 

result from slight variations in particle size distribution or 

surface defects. 

4. TEM analysis  

Zinc oxide NPs were characterized by Transmission Electron 
Microscopy (TEM) to evaluate particle size, morphology and 

agglomeration. The TEM image (Fig. 4) reveals a 

heterogeneous distribution of ZnO NPs with sizes ranging 

from 16 nm to 51 nm. The NPs exhibit an average size 

distribution predominantly within the 20-30 nm range. 

 The morphology of the ZnO NPs appears 

predominantly quasi-spherical, in nature. These 

agglomerates could be indicative of weak van der Waals 

interactions or the influence of biomolecules acting as 

capping agents during synthesis. The variation in particle size 

may result from the natural complity of green synthesis 

methods, where factors such as extract concentration, 

temperature and reaction time influence NPs growth. Despite 

these variations, the ZnO NPs synthesized via this eco-

friendly, plant-mediated method exhibit well-defined 

nanoscale properties, supporting the efficacy of Moringa 

oleifera extract as a reducing and stabilizing agent (12). 

5. EDAX 

X-ray (EDX) techniques were employed to further investigate 
and obtain more information about the elemental 

composition of the ZnO NPs. The spectra displayed in Fig. 5 

reveal three distinct zinc peaks at energies of 1.01 keV, 8.63 

keV and 9.57 keV, alongside a single oxygen peak at 0.53 keV, 

all associated with ZnO NPs. The high intensities of the zinc 

and oxygen peaks indicate that the predominant component 

of the sample is ZnO. The two peaks of copper lying between 

8.04 keV and 10keV indicate the presence of copper, which is 

present in the grid used in sample coating during TEM 

imaging. 

 

Fig. 2. FTIR spectra.  

 

Fig. 3. UV-Vis. 
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Germination and growth parameters 

Seed priming using green synthesized ZnO-NPs had 

significant effect on various germination parameters in sweet 

corn (Table 1).  

1. Germination percentage 

The highest germination percentage was observed in T1 

(89.33 %), which was significantly higher compared to T7 

(62.67 %), the control. This result is consistent with studies 

indicating that priming with ZnO NPs can enhance seed 

germination due to improved water uptake and cellular 

activities during germination (30, 31). Treatment T2 (84 %) 

also exhibited high germination percentages, suggesting a 

dose-dependent effect of ZnO NPs concentration. 

2. Shoot and root length 

Seed priming with ZnO NPs at 100 ppm (T1) resulted in the 

highest shoot (19.14 cm) and root (24.20 cm) lengths. In 

contrast, T7 (control) showed the lowest shoot and root 

lengths, emphasizing the positive impact of priming 

treatments. Zinc is involved in the biosynthesis of endogenous 

hormones like auxins and gibberellins, which are crucial for cell 

division and elongation, thus supporting efficient growth and 

development of seedlings (32). Similar results were noted in 

maize (31). ZnO NPs at lower concentrations enhanced 

seedling growth in rice, higher concentrations had negative 

effects on early growth stages. The study suggested that 

excessive ZnO NPs could induce oxidative stress, leading to 

reduced root and shoot lengths, which explains the reduction 

in growth and germination in higher doses (33).  

(GP - Germination Percentage; SFW - Seedling Fresh Weight; SDW - Seedling Dry Weight; SL - Shoot Length; RL - Root Length; SVI - Seedling 
Vigour Index *Germination percentage data was arc sine transformed 

Treatments GP (%) SFW (g) SDW (g) SL (cm) RL (cm) SVI 

T1 1.11 (89.33) 4.94 0.52 19.14 24.20 3873 

T2 1.01 (84.00) 4.82 0.49 16.84 23.20 3357 

T3 0.88 (76.67) 4.67 0.45 16.54 22.40 2982 

T4 0.79 (70.67) 4.30 0.44 14.30 21.30 2523 

T5 0.75 (68.00) 4.20 0.40 13.60 21.10 2367 

T6 0.80 (72.00) 4.13 0.38 13.03 20.70 2428 

T7 0.68 (62.67) 3.88 0.35 11.10 19.50 1916 

SE(d) 0.06 0.10 0.03 1.01 1.04   

LSD 0.133 0.209 0.058 2.156 2.236   

p-value <0.001 <0.001 <0.001 <0.001 0.008   

Table 1. Effect of seed priming with zinc oxide nanoparticles on germination parameters in roll towel method  

Fig. 4. TEM Image. 

 

Fig. 5. EDAX. 
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3. Seedling Vigour Index (SVI) 

The highest SVI was observed in T1 (3873), which was 

significantly higher than the control (1916). The SVI, a reliable 

indicator of seedling vigour, reflects the overall quality of 

seedlings. Similar results in wheat, which indicate that ZnO 

NP priming at lower concentrations can significantly improve 

seedling vigour, likely due to the enhanced early growth and 

root development (34). ZnO NPs regulate amylase activity, 

accelerating the hydrolysis of starch into soluble sugars, 

which provide essential energy for radicle emergence and 

seedling establishment, thereby enhancing SVI. Additionally, 

zinc stabilizes plasma membranes by modulating membrane-

bound phospholipids and proteins, leading to improved 

water uptake efficiency. This facilitates higher osmotic 

adjustment, resulting in greater seed turgidity and uniform 

germination (35), which may have contributed to the superior 

SVI observed in T1. 

4. Seedling fresh and dry weight 

T1 (100 ppm) also recorded the highest fresh (4.94 g) and dry 

(0.52 g) weights, indicating that ZnO NPs priming not only 

enhances seedling growth but also contributes to better 

biomass accumulation. The findings of this study are in line 

with reports that NPs priming improves metabolic processes 

that contribute to increased biomass production (30). Zinc is 

a cofactor for numerous enzymes involved in protein 

metabolism and carbohydrate development and such 

enzymatic activity being vital for energy production, may 

have led to improved biomass accumulation in growing 

seedlings (36). 

5. GR, MGT and CVG 

The data pertaining to GR, MGT and CVG is shown in Table 2. 

The highest germination rate (5.75) and the highest CVG 

(0.53) were observed in T1, indicating that ZnO NPs priming 

accelerates germination speed, which is essential for 

uniform crop establishment. Conversely, the highest MGT 

(2.52) was observed in T7 (control), suggesting slower 

germination in untreated seeds. A reduced MGT and 

increased CVG reflect improved seedling establishment and 

early growth, as observed by (37). The highest coefficient of 

velocity of germination (CVG) was observed in seeds treated 

with ZnO NPs suspensions at 150 mg/L, showing a 14.7 % 

increase compared to the control. Furthermore, ZnO NP 

treatments at 50 mg/L and 250 mg/L resulted in CVG 

improvements of 9.1 % and 3.5 %, respectively, over the 

control (38). Similarly, ZnO NPs at 100 mg/L significantly 

accelerated seed germination in pea cultivars, increasing 

germination rates from 60 % to 80 %, while higher 

concentrations did not produce notable effects on 

germination speed (39). 

Correlation analysis 

The correlation analysis (Fig. 6) revealed strong positive 

associations between germination percentage (GP) and key 

seedling traits, including shoot length (r = 0.95), root length (r = 

0.97), seedling vigour index (r = 0.97) and fresh weight (r = 0.95). 

This suggests that effective priming treatments, particularly 

ZnO NPs, enhance both germination success and early 

seedling growth by improving water uptake, enzyme activation 

and metabolic processes. A near-perfect correlation (r = 0.99) 

between shoot and root length suggests that improved shoot 

growth may be associated with a proportional root elongation, 

 

 Treatments GR MGT CVG 
T1 5.75 1.89 0.53 
T2 4.97 2.10 0.47 
T3 4.84 2.18 0.46 
T4 4.54 2.19 0.46 
T5 4.09 2.21 0.45 
T6 3.55 2.29 0.44 
T7 3.37 2.52 0.40 
SE(d) 0.11 0.01 0.02 
LSD 0.227 0.213 0.044 
p-value <0.001 0.001 0.001 

Fig. 6. Correlation plot showing relationship between different germination parameters. 

(GR - Germination Rate; MGT - Mean Germination Time; CVG - 
Coefficient of Velocity of Germination) 

Table 2. Effect of seed priming with zinc oxide nanoparticles on       
germination parameters in top of paper method  
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which in turn is linked to enhanced seedling vigour. However, it 

is important to note that this correlation does not confirm a 

direct causal relationship, as both growth parameters are 

influenced by a range of physiological and environmental 

factors. Additionally, the strong association of seedling dry 

weight with fresh weight (r = 0.97) suggests efficient biomass 

accumulation in well-primed seeds, likely due to enhanced 

nutrient uptake and metabolic activity. 

 Germination kinetics showed an inverse relationship 

between mean germination time (MGT) and growth parameters, 

with MGT negatively correlated with GP (r = -0.90), shoot length (r 

= -0.94), root length (r = -0.95) and seedling vigour index (r =               

-0.93). This indicates that treatments promoting faster 

germination also resulted in better seedling development. The 

CVG exhibited strong positive correlations with GP (r = 0.91), 

shoot length (r = 0.94) and germination rate (r = 0.93), reinforcing 

the role of ZnO priming in synchronizing germination. These 

findings suggest that ZnO NPs enhance seedling establishment 

by accelerating germination and improving early growth, though 

further studies are needed to optimize concentrations and 

mitigate potential toxicity at higher doses. 

 

Conclusion 

The ZnO-NPs synthesized using Moringa oleifera leaf extract 

as a reducing and stabilizing agent, yielded spherical 

nanoparticles with an average particle size of 24 nm was 

confirmed using TEM and X-ray diffraction (XRD). Seed 

priming sweet corn seeds with ZnO nanoparticles, at 100 

ppm, significantly enhances germination parameters. This 

study provides evidence supporting the potential of ZnO 

nanoparticle priming as an effective strategy to improve seed 

performance and seedling vigour in sweet corn, offering a 

sustainable solution for enhancing crop production. At higher 

concentrations, ZnO NPs may induce mild oxidative stress, 

which may negatively affect the growth and germination. As a 

future line of work, one can consider conducting field trials 

using green synthesized ZnO NPs for seed priming in different 

sweet corn varieties to confirm laboratory findings under real

-world conditions. Further refine the optimal ZnO NP 

concentration by testing a narrower range to pinpoint the 

most effective dosage for field conditions. Also assess the 

performance of ZnO NP-primed sweet corn under mild 

abiotic stress conditions (e.g., slight drought or salinity) to 

determine if priming offers additional benefits in stress 

mitigation. 
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