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Introduction 

Pesticide like herbicides, insecticides, fungicides, rodenticides and 

nematicides whether natural or synthetic, were used to control 

pests, weeds and diseases in various agricultural practices and 

Since World War II, synthetic pesticide use had rapidly increased to 

control pests, reduce crop losses and improve yields and food 

quality (1). Crop losses due to insect pests remained high in both 

developing and developed countries and minimizing these losses 

and improving pest management for diseases and weeds  required 

significant effort. With the advent of agricultural development that 

involved the enhancement of crop production and protection, 

pesticides became vital components for use to improve crop 

production and agriculture in general to boost agricultural 

productivity worldwide and Pesticides were generally categorized 
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Abstract  

Agrochemicals had enabled more than double the food production over the past century and the continued need to feed a growing global 
population remained the basis for the widespread application of pesticides and fertilisers. Asia alone consumed over half of all pesticides 

manufactured worldwide. Population growth over the 20th century was highly correlated with increased food production, many of which 

had relied upon pesticide use. Agriculture provided 70 % of employment in India and hence formed the prime sector of the country's 

economy with around one-third of agricultural output being dependent on the use of pesticides. Crop production would drastically have 
come down without the use of pesticides. The critical question was that liberal use of pesticides posed acute environmental and public 

health risks, where improper and unregulated application left soil, water and food systems contaminated. With increasing food 

production, there was an urgent need to minimize toxic contaminants and enhance food quality. Bio-pesticides had emerged as a 

promising alternative to chemical pesticides in supporting sustainable agricultural development while reducing pollution. Another 
growing development in India was in bio-pesticides, an effective alternative to chemical options. Organic residues for the improvement of 

soil health could have been another cost-effective and sustainable means of reducing pesticide pollution. However, all such measures 

were pointless in the absence of a clear understanding of the interplay between pesticides and soil properties further governing their fate 

and transport in the ecosystem. 
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based on a variety of classifications and were grouped mainly on 

the types of pests they were designed to destroy including 

herbicides, insecticides, fungicides, rodenticides and nematicides. 

While pesticides offered better quality and quantity of food and led 

to reduction in insect-borne diseases, they also posed to potential 

environmental damage with particular implications for water 

systems. The major concern that arose from persistent and 

intensive pesticide use resulted in serious effects on biodiversity    

(2, 3). According to previous studies the global population was 

projected to grow to approximately 8.5 billion by 2030, 9.7 billion 

by 2050 and 10.9 billion by 2100 and population growth, especially 

in developing countries, was expected to increase the demand for 

food production (4). This demand was driven by shifting dietary 

preferences toward higher-quality foods, including greater 

consumption of meat and dairy, along with increased use of grains 

for livestock feed (5). Unfortunately, more than half of these 

pesticides sprayed on crops ended up in environment  causing 

harmful ecological damage. Pesticides  tended to spread in rivers 

and lakes due to runoff from agricultural fields nearby and 

industrial discharges. Although soil acted as a reservoir for 

agrochemicals due to their affinity to soil particles, the intimate 

relation between soil and water bodies created a risk of 

contamination in surface water sources-such as streams, estuaries 

and lakes-as well as groundwater. Even small pesticide 

concentrations in water had the potential to accumulate through 

the food chain, affecting aquatic species  and, through 

consumption, ultimately impacting human health (6, 7). 

 Pesticide contamination negatively affected soil quality, 

changing its chemical and biological properties, which in turn 

affected crop yields. The most widely used pesticides included 

organochlorines such as DDT, Lindane and Endosulfan; 

organophosphates like Malathion, Dichlorvos and Diazinon; 

carbamates such as Carbaryl, Carbofuran and Aminocarb; and 

pyrethroids such as Permethrin, Cypermethrin and Fenvalerate. 

Poor management of pesticides had resulted in increased 

pollution of surface and groundwater over the past years. 

Precipitation levels, as well as irrigation, had increased overland 

flow and more pesticide leaching into the soil (8, 9). This review 

explored new strategies for pesticide removal, focusing on their 

impact on living systems, bioremediation methods and 

complete residue elimination. 

Mode of action of pesticides 

Pesticides were widely used to enhance agricultural output and 

food preservation, often ignoring their risks. To address issues like 

overuse and exposure, careful application and diverse pesticide 

categories were essential. The extensive use of pesticides had led 

to negative impacts, emphasizing the need for effective waste 

management (Fig. 1). Pesticide biodegradation offered an 

environmentally friendly solution for long-term pollution control, 

with microorganisms playing a crucial role in breaking down 

pesticides. Recent studies had shown that microbes from sewage 

and soil could effectively degrade these chemicals. However, 

information on pesticide classifications (Fig. 2), toxicity and 

remediation remained limited (10-12). Most pesticides were 

applied to agricultural land. Herbicides killed weeds, insecticides 

targeted insects in different settings and fungicides prevented 

fungal infections in plants or seeds. Pesticide toxicity was largely 

determined by the dose and exposure time, affecting both acute 

and chronic effects. Acute toxicity referred to short-term harmful 

effects on animal, plants and humans, with highly toxic pesticides 

being lethal even in small amounts. Pesticides could also be 

divided based on their action, in which they either killed pests, 

reduced the number or severity of pest infestation, or repelled it. 

Fig. 3 illustrated structures on commonly employed pesticides 

such as organochlorines, organophosphates, carbamates and 

pyrethroids (9, 11). The WHO classified pesticides based on acute 

toxicity using the LD50 and the category was divided into acute 

dermal and acute oral toxicities (Table 1) (13).Pesticides targeted 

specific sites or processes in pests, disrupting their physiology to 

make them harmless. This interaction, involving enzymes, 

receptors, or membranes, could harm or kill the pest. Insecticides 

and herbicides typically focused on 4 to 6 targets, making up 75 % 

of global sales. Insecticides acted quickly, affecting 

neurotransmission to prevent damage, while herbicides 

disrupted plant-specific pathways, killing weeds over time. 

Fungicides targeted essential functions in fungi, often acting as 

fungi stats, allowing the plant's immune system to finish off the 

disease. The primary interaction typically occurred with the 

pesticide at picomolar or nanomolar levels, with secondary 

interactions at higher concentrations (14). Green plant pigments 

absorbed light and converted it into ATP in chloroplasts.  

Fig. 1. Flow chart: Need for pesticidal residue management. 

Class 
LD50 of rat 

Hazardous level 
Dermal Oral 

Ia 
 < 50 mg/kg body 

weight < 5 mg/kg body weight 
Extremely 
hazardous 

Ib 
50 to 200 mg/kg body 

weight 
5 to 50 mg/kg body 

weight Highly hazardous 

II 
200 to 2000 mg/kg 

body weight 
50 to 2000 mg/kg body 

weight 
Moderately 
hazardous 

III > 2000 > 2000 Slightly hazardous 

U >/= 5000 >/= 5000 
Unlikely to present 

acute hazard 

Table 1. Pesticides classification according to WHO guidelines (13) 
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Fig. 2. Classification of pesticides (12). 

Fig. 3. Chemical structures of some commonly used pesticides (9, 11). 
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 Herbicides targeting plant-specific processes had low 

toxicity to mammals and PSII, an early herbicide target, remained 

crucial with over 50 compounds affecting it. Resistance to one PSII 

inhibitor didn’t affect others due to different target sites. 

Herbicides like paraquat (Fig. 4) disrupted PSI, while 26 targeted 

protoporphyrinogen IX oxidase, causing cell damage. 

Carotenoids protected chlorophyll from light damage and their 

absence led to bleaching. Phytoene desaturase and lycopene 

cyclase are sensitive to specific herbicides and other herbicides 

caused bleaching via different pathways (14, 15).  

 Plants synthesized their own amino acids, while animals 

needed them from their diet, making amino acid biosynthesis a 

prime target for herbicides, which didn't affect mammals. Key 

targets included EPSP synthase (glyphosate), AHAS/ALS 

(sulfonylureas and imidazolinones) and glutamine synthase 

(glufosinate) (Fig. 5). Resistance often arose from overexpressing 

these enzymes. Other herbicides also targeted microtubule 

systems, cell division and fatty acid synthesis, including ACCase 

inhibitors, while some inhibited cell wall biosynthesis, like 

dichlobenil (14, 16). Pesticide exposure often suppressed 

cholinesterase enzymes, such as acetylcholinesterase (AChE) 

and caused oxidative stress that led to many health problems. It 

interfered with the way organisms-maintained energy, resulting 

in the loss of stored energy and changed physiological activities. 

The effect depended on the type of pesticide, concentration, 

species, preventive measures, adsorption in the soil, weather 

and persistence, which made the risk assessment difficult for 

both organisms and the environment. Organophosphates and 

carbamates were widely used pesticides that inhibited 

cholinesterase and affected multiple organ systems, including 

nervous and respiratory systems (1, 17). AChE, which degraded 

acetylcholine, interacted more with muscarinic receptors than 

nicotinic ones. Inhibition of AChE caused acetylcholine 

accumulation, leading to overstimulation of the brain, 

especially at muscarinic sites (12). 

 

Fig. 4. Inhibition by Atrazine and Paraquat (14). 

 

Fig. 5. Herbicides like glyphosate inhibiting amino acid synthesis (14). 
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Factors affecting application and absorption of pesticide 

in soil  

Adsorption and desorption were factors that controlled the 

availability of pesticides in soil. They were influenced by factors 

such as clay content, organic matter, pH and salinity. Adsorption 

was the process in which pesticide particles interacted with the 

soil surface through physical or chemical bonds. It influenced 

pesticide degradation and movement. Though adsorption 

retarded microbial degradation, it might have facilitated non-

biological degradation. Desorption determined whether soil was 

a permanent or temporary reservoir for pesticides, depending on 

the soil composition and the strength of the bond (18, 19). The 

water solubility of nonionic pesticides, like Diuron, did indicate an 

adsorption potential because its interaction with water represented 

the dominant process in a soil setting. Low soluble compounds 

showed poor adsorption and also higher biodegradation levels. 

However, no generalisations could be made between adsorption 

mechanisms (Fig. 6) (9, 20). Ionizability, based on functional groups, 

improved adsorption and the ionization of pesticides depended on 

the pH of the soil. Acidic pesticides were anionic at higher pH and 

basic ones were cationic at lower pH, both of which improved 

adsorptions. Nonionic pesticides might have become temporarily 

polarized, while hydrophilicity and lipophilicity also affected 

binding in soil (21-23).  

 Soil organic matter, though a small fraction of total soil 

mass, was vital for pesticide adsorption due to its chemical 

interactions with pesticides. Its complex structure, particularly 

humic substances, contained reactive groups like hydroxyls and 

carboxyl’s that enhanced this process (22, 24, 25). Clay minerals 

also aided in pesticide retention, with their large surface area and 

hydrophilic nature reducing pesticide mobility and leaching (26). 

Soil microorganisms played a major role in pesticide degradation 

through enzymatic reactions that changed the pesticide 

properties. Bacteria, actinomycetes and fungi were the primary 

agents, though adsorption within the soil could have slowed 

down the degradation process over time (22, 27). Climate change 

impacted soil properties and pesticide application by decreasing 

the soil organic matter, increasing the erosion rate and 

increasing the movement of water and chemicals. Climate 

change affected crop distribution, pests and diseases, which 

indirectly impacted pesticide application. Changes in 

temperature, rainfall and CO2 could have  altered crop growth 

and yields, requiring changes in the type and quantity of 

pesticides and erratic rainfall and drought might have  further 

reduced crop performance (28).  

 Climate factors like temperature, humidity, precipitation, 

radiation and dew substantially affected the type and distribution 

of crop diseases because these factors affected the plant host, 

pathogen and vectors to enhance disease severity and crop 

losses. High rainfall and high temperatures increased infectious 

diseases as well as spore germination. Milder winters enhanced 

the survival of pest and disease. Fluctuations in humidity and 

temperature also influenced fungal growth as well as disease 

incidence. Transformation, degradation, which consisted of 

photolysis and microbial breakdown and movement, which 

included volatilization, runoff and leaching, comprised pesticide 

behaviour in the environment and had been affected by climate 

change, as well as by climate variability. The primary contribution 

to pesticide pollution in the atmosphere was volatilization, driven 

by heightened temperatures, increased soil moisture and direct 

sunlight; it accelerated in the humid soil after rainfall (29).  

 The transfer of pesticides to the soil through leaching and 

into surface water through drainage mainly depended on the 

interaction of climate-soil-pesticide, which determined 

precipitation in volume, duration, seasonality, intensity and time. 

Temperature affected leaching primarily by modifying soil 

mineralogy and geochemistry. A negative correlation between 

temperature and leaching usually appeared during the desorption 

process in studies. Temperature also affected the seasonal 

transport of pesticides and decreased the impact of winter rainfall 

on the retention and degradation of residues from spring or 

autumn applications (28, 30). Moreover, global warming  reduced 

the life cycle of vectors such as mosquitoes and increased disease 

transmission rates. Responses to climate varied between diseases; 

for example, pathogenic Escherichia coli showed a very strong 

correlation with temperature and humidity, whereas norovirus 

showed a negative correlation. Global warming increased 

microbial and chemical reaction rates that might have  led to a 

reduction in pesticide concentrations in the environment through 

enhanced degradation of chemical components. Higher soil 

moisture as well as precipitation further enhanced pesticide 

degradation and persistence. Elevated humidity  expedited 

degradation but complicated the initial process (28). 

 Pesticide contamination and its adverse effects on the 

natural environment and human health 

There had been numerous cases of pesticide-related poisoning 

among farmers, rural workers and their families; even the spread 

of pesticide residues had caused mass die-offs of wildlife, which 

included bees, birds, fish and small mammals (31-33). These 

events prompted stricter pesticide regulation and massive 

 

Fig. 6. Fate of pesticides in soil based on soil properties (9). 
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research into the environmental implications of these compounds, 

including persistence, toxicity and global contamination. Around 

the world, substances such as hexachlorocyclohexanes, chlordane 

and toxaphene, used in the southern United States, evaporated 

and were carried by the air, then condensed in cooler regions and 

fell on the Great Lakes and the most volatile compounds travelled 

faster and farther. The persistent chemicals DDT, HCH, toxaphene, 

aldrin and dieldrin were banned under the 2002 Stockholm 

Convention and were replaced with safer alternatives.  

 Organochlorines remained in soils, sediments and the 

environment, still posing risks. For example, toxaphene, though 

no longer used in Nicaragua, continued to contaminate aquatic 

ecosystems through runoff, threatening shrimp farming (8, 34). 

The fate and behaviour of pesticides were affected by processes 

such as adsorption-desorption, degradation, leaching and 

runoff, which determined the movement of pesticides from soil 

to surface water or groundwater. The key factors were how 

pesticides bound to soil organic matter or degraded through 

microbial or chemical action. The effects of these processes 

varied with the specific pesticide and soil characteristics, since 

pesticides differed in properties like hydrophobicity, ionic nature 

and acidity. In addition, soil structure and composition greatly 

influenced pesticide activity, resulting in large variability across 

different soil environments (9). Leaching was the process through 

which pesticides were transported down in the groundwater, 

driven by mass transfer and molecular diffusion. The pollution of 

groundwaters occurred due to pesticides leaching through soil 

layers, depending on soil quality, pesticide properties, type of 

formulation, irrigation practices and hydrogeological characteristics. 

More losses through other processes lowered the leaching potential. 

Thus, soil density and porosity, which dictated flow and retention of 

water, indirectly impacted pesticide transport from the surface to 

deeper layers of soil through macropore flow (35, 36). Soils that 

contained low organic matter and loam and clay content tended to 

have increased leaching risk when there was heavy rainfall, but dry 

conditions significantly reduced leaching. In addition, pesticide loss 

through leaching depended on the solubility and formulation; for 

instance, under similar conditions, propyzamide and benfluralin 

exhibited different leaching behaviours due to their solubility 

differences (37, 38).  

 There were correlations of pesticide properties in regard 

to water solubility, sorption constant, (Koc), octanol/water 

partition coefficient (Kow) and half-life (DT50) and persistence of 

residues of pesticides in soil. Generally, high Kow and Koc values 

were associated with pesticide which was strongly bound with 

the soil and leads to extensive accumulation, especially the 

hydrophobic and bio accumulative type. For example, strongly 

binding organochlorine pesticides such as DDT and endosulfan 

led to bans in several countries, including China. However, less 

persistent pesticides like carbamates and fungicides could still 

leach and run off into the environment. Thus, the pesticide 

contamination in soil posed severe threats to the food chain and 

water sources (29). Besides this in 2015, over 20000 Indians died 

from pesticide self-poisoning. While suicides had steadily 

increased since 1981, little change occurred in suicide or pesticide 

suicide rates since 2001. In contrast, Sri Lanka and Bangladesh saw 

significant declines in both after enforcing pesticide regulations. 

India’s 2011 endosulfan ban led to a small decrease in overall 

suicides and a larger drop in pesticide-related suicides, similar to 

Sri Lanka's decline after banning Class I pesticides (39). Updated 

list of pesticides banned for manufacture, import and use was 

displayed in Table  2 (40).  

 Over the years, synthetic pesticides such as herbicides, 

insecticides and fungicides were applied to increase crop yields. 

But through overuse and runoff during rainfalls, they 

contaminated water bodies, which might have harmed aquatic life 

and increased the harmful chemicals in fish, leading to diseases 

like cancer, diabetes and liver damage. Synthetic pesticides also 

harmed the soil, plants and animals. This shifted toward organic 

biopesticides (Table 3) that were cheaper, eco-friendly and 

sustainable. Biopesticides included microbial pesticides, plant-

derived substances and nanoparticles. These alternatives were 

1 Carbaryl (S.O 3951(E) dated 8th August, 2018) 26 Toxaphene (Camphechlor) (S.O. 569 (E) dated 25th July 1989) 
2 Pentachloro Nitrobenzene (PCNB) (S.O. 569 (E) dated 25th July 1989) 27 Phenyl Mercury Acetate 
3 Linuron (S.O 3951(E) dated 8th August, 2018) 28 Trichloro acetic acid (TCA) (S.O. 682 (E) dated 17th July 2001) 
4 Menazon 29 Tridemorph (S.O 3951(E) dated 8th August, 2018) 
5 Dibromochloropropane (DBCP) (S.O. 569 (E) dated 25th July 1989) 30 Fenarimol (S.O 3951(E) dated 8th August, 2018) 

6 Sodium Cyanide (banned for Insecticidal purpose only S.O 3951(E) 
dated 8th August, 2018)* 

31 Fenthion (S.O 3951(E) dated 8th August, 2018) 

7 Calcium Cyanide 32 Chlordane 
8 Chlorbenzilate (S.O. 682 (E) dated 17th July 2001) 33 Triazophos (S.O. 3951 (E), dated 08.08.2018) 
9 Methomyl (S.O. 4294(E) dated 3rd October, 2023) 34 Ethylene Dibromide (EDB) (S.O. 682 (E) dated 17th July 2001) 

10 Paraquat Dimethyl Sulphate 35 Chlorofenvinphos 
11 Phosphamidon (S.O. 3951 (E), dated 08.08.2018) 36 Ethyl Parathion 
12 Dichlorovos (S.O. 3951 (E), dated 08.08.2018) 37 Metoxuron 
13 Phorate (S.O. 3951 (E), dated 08.08.2018) 38 Dinocap (S.O(S.O. 4294 (E) dated 3rd October, 2023) 
14 Dieldrin (S.O. 682 (E) dated 17th July 2001) 39 Sodium Methane Arsonate 

15 
Endosulfron (ad-Interim order of the Supreme Court of India in the 
Writ Petition (Civil) No. 213 of 2011 dated 13th May, 2011 and finally 

disposed of dated 10th January, 2017) 
40 Diazinon (S.O 3951(E) dated 8th August, 2018) 

16 Thiometon (S.O 3951 (E) dated 8th August, 2018) 41 Nitrofen 
17 Methyl Parathion (S.O 3951 (E) dated 8th August, 2018) 42 Endrin 
18 Alachlor (S.O. 3951 (E), dated 08.08.2018) 43 Heptachlor 
19 Lindane (Gamma-HCH) 44 Copper Acetoarsenite 
20 Maleic Hydrazide (S.O. 682 (E) dated 17th July 2001) 45 Dicofol (S.O. 4294(E) dated 3rd October, 2023) 
21 Aldicarb (S.O. 682 (E) dated 17th July 2001) 46 Trichlorfon (S.O. 3951 (E), dated 08.08.2018) 
22 Benzene Hexachloride 47 Pentachlorophenol 
23 Benomyl (S.O 3951(E) dated 8th August, 2018) 48 Ethyl Mercury Chloride 
24 Aldrin 49 Tetradifon 
25 Methoxy Ethyl Mercury Chloride (S.O 3951(E) dated 8th August, 2018)   

Table 2. List of banned pesticides of India (manufacture, import and use) (40) 
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more targeted, have fewer health risks and were biodegradable. 

Biopesticides were effective in pest management due to their 

multiple modes of action, including disrupting gut function, 

growth and metabolism, as well as denaturing proteins, causing 

paralysis and releasing toxins (41). These actions helped 

overcome pest resistance more effectively than chemical 

pesticides. Studies showed that biopesticides were eco-friendly, 

biodegradable, low in toxicity and target-specific, with minimal 

impact on non-target organisms. The adoption and use of 

biopesticides in agriculture faced several challenges despite its 

advantages. They were often considered less effective and 

slower in pest control, were expensive and were not widely 

available. Additionally, biopesticides suffered from quality 

control issues, short shelf life and concerns about dosage and 

pest resistance. While biopesticides offered benefits, their 

efficacy depended on the source and composition, with some 

acting by disrupting protein translation or plasma membrane 

permeability in pathogens (42-45).  

 Biopesticides had been found to be an effective and cost-

efficient solution for the management of insect pests and weeds 

in agriculture and public health in India since over 50 years. 

Biopesticides positively contributed to improving agricultural 

productivity and farmers' global income. Currently, India was self

-sufficient in the production of biopesticides and exported them 

as well. One of the most frequently used species in the Indian 

biopesticide industry was Trichoderma viride (46). Biopesticides, 

by 2023, grew at an average annual rate of 8.64 % and made up 

more than 7 % (USD 4.5 billion) of the global crop protection 

market. Biopesticides were also expected to be comparable to 

synthetic pesticides in market size by the late 2040s or early 

2050s. However, there existed huge uncertainties regarding their 

adoption rates, especially in regions such as Africa and Southeast 

Asia, which made the variability in these projections (47, 48). 

Biotechnological and biochemical degradation of pesticides 
from the environment 

Microorganisms, including bacteria and fungi, were efficient in 

pesticide bioremediation, although the efficiency of single strains 

was usually low. Therefore, there has been a focus on microbial 

consortia, which have greater potential for breaking down 

pesticides. The rate of degradation depends on the chemical 

properties of the pesticide and available metabolic pathways, 

with some pesticides like atrazine degrading faster than others 

like pentachlorophenol (PCP), polychlorinated biphenyls (PCBs). 

While axenic cultures have been handy in studying metabolism, 

mixed microbial cultures were more effective because they 

distribute tasks between species to handle complex compounds 

in the same way microbes' work in nature (50, 51). Microbial 

consortia were present everywhere in nature and can efficiently 

degrade pesticides through various metabolic pathways. Unlike 

monocultures, they perform complex functions and were more 

resilient to environmental changes. Quorum sensing helps to 

distribute degradation tasks within the consortium, which can 

further be involved in neutralism, commensalism, amensalism, 

competition, predation and cooperation. Consortia may include 

various species that collectively help to achieve complex 

functions such as syntrophic pesticide degradation. It thus 

involves signalling molecules, specifically acyl-homoserine 

lactones (AHL) in Gram-negative bacteria and peptides in Gram-

positive bacteria. The principal challenges in engineering stable 

microbial consortia were the problems of maintaining efficient 

metabolic interaction and preventing cheating strains (52-54).  

 Computational tools were used to model microbial 

behaviour and design new metabolic interactions for large-scale 

pesticide degradation. The molecular tools, including CRISPR-

Cas9, had advanced gene editing for bioremediation. While 

consortia presented benefits like faster metabolism and 

environmental stability, challenges still existed in their 

development, including strain interactions, stability in soil and 

preservation. Despite the challenges, microbial consortia held 

much promise for pesticide degradation (51, 55). Pesticide 

biodegradation mainly occurred through microbial systems that 

produced specific enzymes to break down pesticides in 

contaminated environments. Pure and mixed cultures of 

bacteria and fungi, especially microbial consortia, effectively 

removed pesticide residues from soil and water (51). The key 

bacterial genus involved were Streptomyces, Burkholderia and 

Pseudomonas, while other types of phyla such as Actinomycetota 

and Proteobacteria had a strong degradative ability. Recent 

advances in microbial cellular immobilization (CI) enhanced the 

longevity and reusability of microbes for degradation. Factors 

such as microbial culture, cultivation techniques and 

environmental conditions influenced degradation efficiency (56). 

Compared to pure cultures, microbial consortia improved 

breakdown in bio-purification systems while Biobed systems 

fostered specialized microorganisms for pesticide degradation in 

wastewater. However, the effectiveness of bioaugmentation in 

high concentration wastewater was still under researched (11). 

The ability of microbes to metabolically remediate pollutants 

was related to their genetic makeup. Biotechnological methods 

helped extract genes from contaminated areas for study; 

however, they often were applied for one gene or enzyme, which 

is limiting large-scale study. Sequencing techniques including 

16S rRNA for bacteria and internal transcribed spacer regions for 

S. No. Year 

AREA UNDER (Unit: '000' Hectare) 

Cultivation 

Pesticides 
Not under use of 

pesticides 
Chemical Bio Both chemical and bio Total 

1 2018-19 141555 81120 7119 10572 98812 45628 

2 2019-20 198552 108035 14636 37874 160545 52874 

3 2020-21 188595 111289 14014 22046 147349 59942 

4 2021-22 195875 96042 16868 14075 126985 68891 

5 2022-23 207562 108216 15636 21273 145126 62436 

Table 3. The all India statistics included in data on the total area under cultivation and the extent of of chemical & bio- pesticides use (49) 
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fungi  helped identify and analyze the phylogenetics of microbial 

communities and metagenomics allowed community analysis. It 

was demonstrated that specific genes, such as the 

organophosphate-degrading opd gene, were upregulated in 

response to pesticides and microbial community structures 

changed during degradation. Heterologous gene expression was 

effective for isolating pesticide-degrading genes, with advances in 

genetic engineering facilitating detection (51, 57-59). 

Understanding gene expression in bioremediation was crucial, as 

there was often a correlation between bioremediation genes and 

contaminants and mRNA levels could indicated degradation rates 

(60). This method combined mRNA quantification with 16S rRNA 

analysis to identify effective microbial strains. However, factors 

such as nutrient levels and pH could  limit microbial growth 

during degradation. Evaluating metabolites linked to 

contaminated sites enhanced bioremediation efforts. Genomics-

based studies had evolved to include microbial consortia, 

marking a new era for understanding pesticide-degrading 

microbes. Numerous complete genomic sequences were now 

available, supporting the development of effective degradation 

strategies through whole-genome analysis (61, 62).  

 The chemical and physical methods of cleaning pesticide 

residues often released more toxic compounds, thus making 

harmful and eco-friendly bioremediation methods like 

phytoremediation, microalgae bioremediation, myco-remediation, 

which used plants, algae, fungi and bacteria a low-cost and safe 

approach for contaminant removal. Phytoremediation was an 

inexpensive, solar-powered process that employed specific plants to 

remove or reduce harmful chemicals from contaminated sites. For 

instance, notable species included Kochia sp., Triticum spp., Ricinus 

communis and Ceratophyllum demersum, which could completely 

degrade atrazine, lindane, chlorpyrifos and endrin. These plants 

broke down the dangerous substances into less harmful types via 

phytovolatilization, rhizo-degradation, phytodegradation and 

phytoextraction mechanisms. Also, landscapes were beautified 

and erosion decreased through preventing pollutants leakage and 

the pollutants leaking into the soil, so safe and environmental-

friendly waste disposal. Microalgae were very good biosorbents 

for heavy metals and pesticides and they could remove these 

contaminants from contaminated areas. They removed 

substances such as atrazine very effectively. These organisms 

converted light energy into chemical energy with the production of 

oxygen that supported environmental balance and bacterial 

biodegradation. Microalgae performed several functions, such as 

nutrient recovery from wastewater, biomass production and 

contaminant removal by bioaccumulation and biosorption. 

Bioaccumulation was an active process where it involved living 

organisms, while biosorption was energy-independent and 

included both living and dead cells. This technology enabled the 

accumulation of pesticides and transformed toxic compounds 

into less harmful forms. The major factors affecting pesticide 

degradation were the type of microalgae, environmental 

conditions and pesticide characteristics such as molecular 

weight and water solubility. Microalgae could consume both 

light and organic carbon during stress, hence their superiority 

over bacteria and fungi in the degradation process (11, 63, 64). 

Contribution of organic residues in pesticide degradation 

and improving soil health 

Modern agriculture largely utilized organic waste products like 

farmyard manure, crop residues and marine animal remains to 

improve crop growth, especially in Europe and the USA. Soil 

under intensive farming was susceptible to degradation and 

required high addition of fossil fuels for fertilizers, pesticides and 

irrigation. Yet, these measures  enabled pollution of the 

environment, health hazards, loss of habitat, increased energy 

consumption and eventually unsustainable agriculture (65). The 

organic amendments improved soil properties, promoted soil 

health and reduced landfill waste. They provided essential 

nutrients for microbial activity and plant growth while improving 

soil structure, porosity and water retention. They modified the 

pesticide behaviour, which eventually favours adsorption as it 

discouraged groundwater contamination. Moreover, the most 

usual addition was biochar; it, further helped in soil 

contaminations control. The carbonous pyrolyzed substance 

derived from biomass had its major application in combating eco-

contaminations. That was due to its excellent specific area and 

porosity, which helped in absorbing a wider concentration of 

pesticides in question while reducing their level toxicity in the 

environment. Biochar also supported mine tailing rehabilitation, 

reduced salt stress in plants and enhanced oil-polluted soil 

biodegradation.  

 Pesticide degradation was a function of environmental 

conditions and microbial action and organic matter content 

appeared to play a significant role. It had been found that organic 

amendments modified herbicide bioavailability and degradation 

in some cases and reduced dissipation by enhancing adsorption 

(9, 66). Soil health improvement contributes to food security also 

the FAO also launched the "Global Soil Partnership" to fight soil 

degradation and encourage healthy soils for international food 

security. There were four dimensions of food security such as 

food production and availability through soil management, food 

supply stability, food access through physical and economic 

means and food safety and nutritional quality (67, 68). 

 

Conclusion 

For many years, pesticides had served as a quick and affordable 

solution to control pests and weeds in Indian agriculture, boosting 

crop yields and farmer incomes. While India was self-sufficient in 

pesticide production, the country urgently needed proper 

regulation to curb large-scale environmental pollution. 

Biopesticides offered a sustainable and eco-friendly alternative, 

but their adoption required strong collaboration between public 

and private sectors to improve policy frameworks. The use of 

organic residues in farming helped reduce pesticide 

contamination in soil and groundwater. Future research was 

expected to focus on the development and understanding of 

microbial consortia, particularly their diversity and function in pest 

management. Databases containing information on nutrient 

needs, metabolic profiles and microbial interactions supported the 

design of effective microbial consortia. Synthetic microbial 

communities could have played a major role in large-scale 

pesticide degradation. Meanwhile, innovations like GMO crops had 

to be developed cautiously, with thorough risk assessments and 

international cooperation to ensure food safety and security based 

on scientific and ethical principles. 
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