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Introduction 

Celosia cristata, an annual shrub naturally grown in the tropical 

regions belonging to the Amaranthaceae family, has been 

widely recognized for its vibrant aesthetic appeal and 

medicinal properties. Traditionally, its flowers have been used 

in various cultures to treat ailments such as diarrhoea, 

inflammation and wounds. The leaves and flowers are rich in 

bioactive and nutritionally important compounds (1). Gas 

Chromatography & Mass Spectrometry (GC-MS) is a robust 

analytical technique used for the identification and 

quantification of volatile and semi-volatile organic compounds 

and it plays a crucial role in plant defence (2). In agriculture, C. 

cristata is appreciated for its ability to thrive in diverse 

environments and its role in enhancing soil fertility through its 

nitrogen-fixing properties. Previous studies have primarily 

focused on  Celosia argentea emphasizing the development of 

tissue culture media for growth induction and yield 

enhancement (2, 3). Further in vitro and in vivo studies (4) have 

been conducted on Celosia plumosa to enhance growth (5),   

establish cell suspension cultures (6) and improve disease 

resistance (7), whereas limited research has been conducted 

on the chemical composition of Celosia cristata flowers. 

Meanwhile, the emergence of antibiotic resistance in 

pathogens such as the Gram-positive bacterium S. aureus and 

the Gram-negative bacterium E. coli, has developed resistance 

to several antibiotics, including methicillin. As a promising 

alternative, the identification of plant-derived natural products 

with antibacterial activity is gaining increasing attention. 

Hence, this study utilizes GC-MS and molecular docking to 

complement the antibacterial activity, identify bioactive 

compounds and evaluate their antibacterial potential through 

possible interactions between the tested compounds and 

bacterial target proteins. 

 

Materials and Methods 

The flower samples were collected from the TNAU Botanical 

Garden, Department of Floriculture and Landscaping, TNAU, 

Coimbatore, in 2024. The region experiences a subtropical to 

tropical climate, with temperatures ranging from 28 to 32 °C 

and humidity levels between 60 % and 75 %. To ensure optimal 

phytochemical preservation, the flowers were harvested early 

in the morning and shade-dried at room temperature (25 °C) 

for 4 to 6 days to preserve heat-sensitive secondary 

metabolites. After drying, the flowers were ground into a fine 
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Abstract  

Celosia cristata, an annual shrub belonging to the family Amaranthaceae, is widely cultivated in India for its vibrant flowers. This study 

investigates the GC-MS profiling and antibacterial activity of Celosia cristata flower extract. Antibacterial efficacy of the extracts was 
tested against Escherichia coli and Staphylococcus aureus using the agar well diffusion method at concentrations ranging from 10–50 

µL. The extract exhibited moderate antibacterial activity, with inhibition zones of 10 –15 mm against E. coli. GC-MS analysis identified 

25 major phytochemical constituents, namely Hentriacontane (19.52 %), Benzoic acid, 4-ethoxy-, ethyl ester (11.87 %), Heptacosanol 

(10.97 %), Cyclotetracosane (6.01 %) and Butane, 2-phenyl-3-(trimethylsilyloxy) (1.57 %). Many of these compounds are known for 
their antioxidant, antimicrobial and anti-inflammatory properties. Further, molecular docking studies revealed that diphenyl sulfone 

may have potential inhibitory activity against E. coli haemolysin E (1QOY). Collectively, these findings highlight the therapeutic 

potential of Celosia cristata in pharmaceutical applications and antimicrobial drug development. 
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powder and stored in airtight containers until analysis. Then 

samples were promptly transported to the laboratory in sealed, 

moisture-proof containers to prevent environmental 

degradation. 

Sample preparation for GC-MS 

For extraction, 10 g of powdered flower material was soaked in 

100 mL of ethanol (99.9 %). The extraction was carried out by 

maceration for 72 hrs with periodic shaking and was 

subsequently filtered using Whatman No. 1 filter paper to 

remove the insoluble residues. The filtrate was concentrated to 

a viscous crude extract using a rotary evaporator under 

reduced pressure at 40 °C. The final extract was stored at 4 °C in 

amber-coloured vials to prevent photodegradation. The 

analysis was performed using an Agilent Technologies GC-MS 

system (Model 7890B GC coupled with 5977A MSD). Helium was 

use as the carrier gas at the flow rate was 1.0 mL/min. 1 µL 

aliquot of the prepared sample was injected in spitless mode. 

The initial oven temperature was set at 50 °C for 2 mins, then 

ramped to 300 °C at 10 °C/min. 

Antibacterial Activity Assessment 

Bacterial growth was assesses using the Kirby-Bauer method. 

Firstly, five isolated colonies from an agar plate culture were 

selected. A loop was used for transferring the selected colonies 

into a tube containing 4 to 5 mL of Muller-Hinton broth, which 

was then incubated at 35 °C until it reached the desired 

turbidity. The turbidity of the actively growing broth culture 

was then adjusted to achieve a bacterial concentration of 

approximately 1 to 2 × 10⁸ CFU/mL for S. aureus and E. coli. For 

inoculation, a sterile cotton swab was dipped into the adjusted 

bacterial suspension and gently pressed against the inner wall 

of the tube to remove excess inoculum. The dried surface of a 

Muller-Hinton agar plate was inoculated by streaking the swab 

evenly across the sterile agar in three directions, ensuring 

uniform distribution. The plate was then left undisturbed for 3 

to 5 minutes to absorb excess moisture before placing the drug

-impregnated disks. A well of 6 mm in diameter was then 

excised in the agar and filled with 10-50µL of either the 

standard antibiotic (gentamicin) or the sample. to ensure 

complete diffusion, these plates were incubated at 37 °C for 24 

hrs in an inverted position. 

Molecular docking  

Molecular docking was performed using the protein target 1QOY 

(Hemolysin E). Haemolysin E (HlyE) is a pore-forming toxin 

present in E. coli that facilitates host cell invasion by creating 

transmembrane pores, that cause cell lysis and immune evasion. 

By promoting tissue penetration and inflammation, it breaks 

down epithelial barriers and promotes systemic infection, 

thereby increasing the pathogenicity of E. coli, particularly in 

cases of extraintestinal infections. The chemical compounds 

identified via GC-MS analysis, namely Diphenyl sulfone, 9,12-

Octadecadienoic acid (Z, Z)-, Tetrasiloxane, decamethyl-, 

Butane, 2-phenyl-3-(trimethylsilyloxy)- and Cyclotrisiloxane, 

hexamethyl, were selected as ligand based on their documented 

antibacterial effects as presented in Table 1. The Auto Dock vina 

module in PyRx 0.8 was employed in this study to carry out 

molecular docking (8). Target proteins were uploaded and 

transformed into macromolecules using the "make 

macromolecule" option in PyRx. The binding sites of target 

proteins  were identified using the Computed Atlas of Surface 

Topography of Proteins (CASTp) (9). Additionally, AutoDock4 and 

Autogrid4 parameter files were used for grid layout and docking. 

 

Result and Discussion 

Phytochemical Composition of GC-MS 

The Library Search Report identified the compounds using the 
NIST08 database. Table 1 represents the primary identified 

compounds along with their area percentage, retention times 

and their potential biological relevance. The GC-MS analysis of 

C. cristata flowers revealed a diverse range of secondary 

Name of the Compound & Molecular formula  Retention                     
time 

Activity Reference 

Benzoic acid, 4-ethoxy-, ethyl ester C11H14O3 10.064 Antioxidant activity (15) 

Ar-tumerone C15H20O 11.208 Antimicrobial& Antidiabetic activity (16) 

Diphenyl sulfone C12H10O2S 13.164 Antifungal& Antibacterial activity (17) 

9,12-Octadecadienoic acid (Z,Z)- C18H32O2 14.330 Antioxidant & Antibacterial activity (18) 

2-Chloroethyl linoleate C20H35ClO2 14.330 Antioxidant activity (19) 

2-Methyl-7-phenylindole C15H13N 17.352 Antioxidant & Anticancer activity (20) 

Cyclotetracosane C24H48 17.474 Antifungal activity (21) 
1-Heptacosanol C27H56O 17.474 Antioxidant, Anti-Inflammatory & Antimicrobial (22) 
2,4,6-Cycloheptatrien-1-one C7H6O2 17.885 Anti Inflammatory& Antioxidant activity (23) 

Trimethyl[4-(1,1,3,3,-tetramethylbutyl)phenoxy]silane C9H22O3Si 17.885 Antioxidant activity (24) 

1,1,1,3,5,5,5-Heptamethyltrisiloxane C7H21O2Si3 18.007 Antioxidant& Anti-Inflammatory activity (25) 

Tetrasiloxane, decamethyl- C10H30O3Si4 18.118 Antibacterial activity (26) 

2-Methyl-7-phenylindole C15H13N 18.174 Antioxidant & Anticancer activity (27) 

Butane, 2-phenyl-3-(trimethylsilyloxy)- C7H16Si 18.241 Antibacterial activity (28) 

Octacosane C28H58 18.463 Antioxidant activity (29) 

1-Heptacosanol C27H56O 18.729 Antioxidant and Anti-Inflammatory Activity (21) 

1-Docosanol, methyl ether C23H48O 18.729 Antimicrobial activity (30) 

Cyclotrisiloxane, hexamethyl- C6H18O3Si3 19.252 Antioxidant & Antibacterial activity (31) 

Triacontane C30H62 20.007 Antihepatotoxic activity (32) 

Eicosane C20H42 20.363 Anti-Inflammatory activity (33) 

Tetracosane C24H50 20.363 Antimicrobial activity (10) 

Hentriacontane C31H64 20.363 Anti-Inflammatory (34) 
dl-.alpha.-Tocopherol C29H50O2 20.751 Antioxidant activity (35) 
4-Methyl-2-trimethylsilyloxy-acetophenone C12H18O2Si 22.818 Antioxidant& Anti-Inflammatory activity (36) 

Table 1. Compounds identified through GC-MS in Celosia cristata flower extract  
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metabolites, including alcohols, esters, acids and phenolic 

compounds. Notable compounds such as Benzoic acid, 4-ethoxy

-, ethyl ester (10.064), Ar-tumerone (11.208), Diphenyl sulfone 

(13.164), 2-Chloroethyl linoleate (14.330), Cyclotetracosane 

(17.474), 2,4,6-Cycloheptatrien-1-one (17.885), Tetrasiloxane, 

decamethyl-(18.118), Cyclotrisiloxane, hexamethyl-(19.252), 

Eicosane (20.363), 4-Methyl-2-trimethylsilyloxy-acetophenone 

(22.818) were identified, which are known for their significant 

bioactive properties (Fig. 1). The presence of these metabolites 

align with reports from other medicinal plants, where similar 

compounds have been linked to antioxidant, antimicrobial and 

anti-inflammatory activities (10). Comparative studies on other 

floral species, such as Calendula officinalis, have also reported a 

high prevalence of phenolic and furan derivatives, suggesting a 

shared biochemical pathway for secondary metabolite 

synthesis (11). The identified metabolites in C. cristata flowers 

underscore their pharmacological and ecological significance, 

associated with potent antioxidant and antimicrobial 

properties. This highlights, C. cristata as a promising candidate 

for pharmaceutical applications targeting oxidative stress-

related disorders (12). Among the identified compounds, 2-

Methoxy-4-vinylphenol, a phenolic compound, exhibits both 

anti-carcinogenic and anti-inflammatory properties, which 

could be leveraged in the development of anti-inflammatory 

drugs (13). The presence of these compound enhances the 

utility of C. cristata in pharmaceutical formulations (14). 

Antibacterial Potential 

Antimicrobial resistance to drugs poses a significant challenge 

to the treatment of different diseases caused by pathogens 

(14). The antibacterial activity of C. cristata can also contribute 

to its ecological defence against pathogens. The selection of 

crude extracts for screening offers greater potential than 

testing pure compounds isolated from natural products. The 

antibacterial activity of the flower extract was assessed against 

two bacterial strains: S. aureus and E. coli, using the zone of 

inhibition (mm) as the evaluation parameter. The extract 

demonstrated a notable inhibitory effect against E. coli, with 

the zone of inhibition increasing dose-dependently from 11 

mm at 10 µL to 15 mm at 50 µL (Fig. 2). In contrast, S. aureus 

exhibited resistance at lower concentrations (10-40 µL), with 

only a mild inhibition zone of 10 mm observed at the highest 

concentration (50 µl) (Fig. 3). These findings indicate that C. 

cristata flower extract possesses selective antibacterial 

potential, particularly effective against E. coli. This selective 

inhibition may be attributed to the presence of specific 

bioactive compounds identified through GC-MS analysis, such 

as Diphenyl sulfone, 9,12-Octadecadienoic acid, Tetrasiloxane 

decamethyl and Butane, 2-phenyl-3-(trimethylsilyloxy) which 

are known to possess antibacterial properties. Consistent with 

previous studies on the antibacterial effects of plant extracts, 

including jasmine flower (15), marigold leaves (16) and 

tuberose flowers (17), the current results further support the 

potential of botanical sources as natural antibacterial agents 

against various pathogenic bacteria (18), particularly E. coli.  

Molecular docking 

A ligand's affinity for its target protein is indicated by its binding 

score, with greater negative value indicating a stronger 

binding. With the lowest binding score (-4.5), diphenyl sulfone 

demonstrated the highest interaction with E. coli Haemolysin E 

(1QOY). In contrast, the binding score of 9,12-Octadecadienoic 

 

Fig. 1. GC-MS chromatogram of Celosia cristata flower extract. 
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acid was positive (0.3), suggesting a weak or unfavourable 

interaction with the target. The binding potential of 

tetrasiloxane, decamethyl and butane derivatives is moderate, 

with scores ranging from -2.9 to -3.8. Cyclotrisiloxane, 

hexamethyl-, recorded a score of -3.1, which indicates a weak 

interaction (Table 2). The stronger binding of diphenyl sulfone 

is supported by a variety of interaction types, including 

hydrophobic (π-alkyl) interactions with PHE221 and TYR54, as 

well as a hydrogen bond with ARG49. The chemical 

compounds namely tetrasiloxane and butane derivative did 

not exhibit hydrogen bonding but maintained hydrophobic 

interactions, which can still contribute to binding, although 

generally weaker than hydrogen bonds.  Despite hydrogen 

bonding with LYC214, 9,12-Octadecadienoic acid, primarily 

Ligand Docking details Hemolysin E 1QOY Docking images 

Diphenyl sulfone 
  

Binding score (G-Score) -4.5 

 

Conventional H bond ARG49 

Alkyl and pi= alkyl6 
PHE:221 
TYR:54 

9,12-Octadecadienoic acid (Z,Z)- 
  

Binding score (G-Score) 0.3 

 

Conventional H bond LYC214 

Alkyl and pi= alkyl6 
PHE:221 
GLU:46 

Tetrasiloxane, decamethyl- 
  

Binding score (G-Score) -2.93 

 

Conventional H bond ARG49 

Alkyl and pi= alkyl6 PHE221 

Butane, 2-phenyl-3-
(trimethylsilyloxy)- 
  

Binding score (G-Score) -3.8 

 

Conventional H bond - 

Alkyl and pi= alkyl6 SER217 

Cyclotrisiloxane,                          
hexamethyl- 
  

Binding score (G-Score) -3.1 

  
 

Conventional H bond - 

Alkyl and pi= alkyl6 
LYS:214 
ARG:49 

 

Fig. 3. Antibacterial activity of C. cristata flower against S. aureus 

(10 - 50 are concentration in µL). 

Fig. 2. Antibacterial activity of C. cristata flower against E. coli                             
(10 - 50 are concentration in µL). 

Fig. 2. Antibacterial activity of C. cristata flower against E. coli (10 - 50 are concentration in µL). 
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exhibited hydrophobic interactions, which can contribute to 

binding, even though they are typically weaker than hydrogen 

bonds. Among the tested compounds, diphenyl sulfone 

emerged as the most promising candidate for inhibiting E. coli 

Hemolysin E, indicating is significance in developing anti-

bacterial agents. Compounds with moderate scores (butane 

derivative, siloxanes) may serve as leads for further 

optimization, especially if they demonstrate favourable 

bioavailability or synthetic accessibility. These results are in 

accordance with the previous report indicating that diphenyl 

sulfone complexes possess antibacterial activity against both 

Gram-positive and Gram-negative bacteria, including E. coli, 

Klebsiella pneumoniae and S. aureus. These findings also 

highlights the potential of sulfone derivatives in antimicrobial 

drug development (37). 

 

Conclusion 

This study reports the presence of a diverse array of bioactive 
phytochemicals in C. cristata flowers. These constituents are 

recognized for their antioxidant, antimicrobial and anti-

inflammatory properties, supporting the plant's potential in 

pharmaceutical, nutraceutical and cosmetic applications. 

Antibacterial assays revealed selective activity against 

Escherichia coli, with inhibition zones increasing in size with 

higher extract concentrations, suggesting a dose-dependent 

effect. Molecular docking results validated the antibacterial 

efficacy of diphenyl sulfone, against E. coli, underscoring its 

potential as a lead compound for further antibacterial drug 

development. Overall, the phytochemical composition, 

antibacterial efficacy and docking analysis establish C. cristata 

as a promising natural source for developing therapeutics 

against microbial infections and oxidative stress. 
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