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Introduction 

Genomic selection encompasses a variety of approaches, all 

of which are designed to predict breeding values for 

quantitative traits using whole-genome genotypic data by 

estimating marker effects simultaneously in a single step; it 

was first introduced by Meuwissen et al., 2001 (1) as wide 

genome selection, which enhances quantitative traits by 

utilizing genetic information across the entire genome (2). 

The first empirical validation of genomic selection was 

observed in dairy cattle (3) Selection in plant breeding has 

long been established based on breeding values estimated 

from mixed model based on pedigree (4-6) and in animal 

breeding it has been validated successfully across various 

species and population (7-9). Genomic selection involves 

developing a predictive model using a training population 

that possesses both genotypic and phenotypic data, which 

have only genotypic data that is applied to estimate the 

breeding values of individuals and the selection is based on 

the predictions. Subsequent studies have explored how 

factors such as, training population size, effective population 

size, marker density, trait heritability predict the impact 

accuracy of a breeding program (8-10). For over two decades, 

DNA engineering has been expected to revolutionize genetic 

improvement programs and enhance genetic gain through 

selection (11-12), yet marker aided selection has yet to deliver 

substantial improvements in polygenic traits (13). Its 

effectiveness is limited when numerous alleles with small 

effects are segregating, making it challenging to detect 

significant and consistent impacts (14). DNA-based molecular 

markers serve as essential tools for assessing genetic 

variation within germplasm collections and breeding lines. 

Over the past two decades, a range of molecular markers for 

principal crop species have been established to enable the 

creation of compact molecular genetics and physical maps 

and the markers have found widespread applications to 

detect genes or quantitative trait loci (QTLs) associated with 

economically important traits for MAS (15-16) divergent from 

MAS the genomic selection utilizes a reference population 

with both DNA sequence and trait data to create a model as 

predictive (17). 

Genomic selection 

Genomic selection relies on dense genetic markers spread 

across the complete set of genetic material to predict an 

individual reproduction value (1). The aim of genomic 

assessment is to determine the best prediction approach for 

precise estimation of the genetic values of candidates. 

Several genomic evaluation approaches have been 

suggested (18). The Finding implies that the accuracy of 
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Abstract  

Genomic selection has been considered as a novel methodology beyond traditional marker assisted selection methods (MAS). GS can be 
considered as a variant of MAS selecting favourable individuals largely based on estimated breeding values derived genomically. It 

involves genotyping markers and phenotyping individuals in reference population then predicting phenotypes of candidates for selection 

using statistical machine learning models. New candidate individuals get predictions performed on them post trained model output if 
genotypic information happens to be available somehow. Selection of training population proves highly crucial for testing purposes and 

ultimately determines accuracy in genomic selection processes. Genomic selection models frequently utilize involve stepwise regression, 

ridge regression, genomic best linear unbiased prediction, Ridge regression best linear unbiased Prediction, Bayes A, Bayes B, Bayes care 

Bayesian model and least absolute shrinkage selection operator. This review aims to present an overview of genomic selection as an 
advanced breeding strategy that integrates genome wide markers and statistical model to accelerate genetic improvement in plants. It 

highlights the principles, methods and applications of genomic selection in enhancing crop traits and breeding efficiency. 
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genomic estimated breeding values (GEBV) is much greater 

compared to that of estimated breeding values (EBV) using 

pedigree data (8). While polygenic breeding values and 

genomic data provide valuable insights, quantitative trait loci 

(QTL) that are not detected through marker effects may still 

be captured via progeny testing based on pedigree 

information (19). For multifactorial traits with many genes 

influencing them, the estimation of genetic lines' breeding 

values needs genetic markers throughout the whole genome, 

a procedure termed genomic selection (20) as well as, 

including meta-GWAS signals as fixed effect covariates within 

GS models was found to enhance prediction precision and 

minimize bias when predicting Jersey and Holstein bulls' 

stature (21). Here, the bar charts representing the accuracy 

the GEBV prediction using different genotypes under random 

mating and assortative mating selection method in Fig. 1. 

Genomic estimated breeding value  

 In genomic prediction the total genetic variance is estimated 

by considering the effects of all markers in the dataset, 

without applying a significance threshold, based on the 

assumption that disequilibrium linkage is present in markers 

with quantitative trait loci (QTLs) and the result of these 

markers are determined using individuals with both trait and 

DNA data. The genomic estimated breeding value (GEBV) 

calculates the marker effects are then combined with an 

individual marker information as well as Improve a cross-

validation approach is employed, where a testing population 

and a training population are used to assess predictive 

performance. The training population offers genotypic and 

phenotypic information for marker effect estimation, which is 

utilized to estimate GEBVs for individuals in the test 

population (21). The predictive accuracy of the model is 

evaluated by measuring the correlation between GEBVs and 

the actual phenotypes of the test population. Fig. 2 depicts 

the genomic selection using a training population to estimate 

marker effects to get a genomic estimated breeding value 

(GEBV) of lines in the test-population. Classification of 

genomic selection methods is given in Table 1 

Prediction based genomic selection 

Genomic prediction serves as the initial step in genomic 

selection (GS) within plant breeding programs (22-23). 

Traditional approaches, including regression-based 

techniques, have limited capacity to process high-

dimensional datasets and to model complex, multivariate 

relationships between predictors and response variables. 

 Prediction in GS involves building statistical models 

that learn from a training set (genotyped and phenotyped 

individuals) to estimate the genetic merit of individuals in a 

testing set based solely on their genotypes. This predictive 

Fig. 1. The bar chart represents the accuracy of the GEBV prediction using different genotypes under random mating and assortative mating 
selection. 

 

Fig. 2. Flow chart of population genomic selection (159). 

https://plantsciencetoday.online


3 

Plant Science Today, ISSN 2348-1900 (online) 

framework facilitates early selection and reduces the need for 

extensive phenotyping, especially in crops and animals with 

long reproductive cycles. Cross-validation is widely used to 

evaluate model performance and ensure the robustness of 

predictions (24). The selection of an appropriate method 

depends largely on the genetic architecture of the target trait. 

For instance, traits governed by a few major QTLs may benefit 

from sparse models like Bayes B, whereas highly polygenic 

traits often suit models like RR-BLUP or GBLUP (25). In 

genomic selection, cross-validation (CV) methods are 

essential for assessing the predictive accuracy of genomic 

prediction models is given in Table 2 

Drawback of traditional breeding methods 

Marker Assisted Selection 

Conventional approaches, like regression-based methods, 

struggle to handle high-dimensional data and are often 

inadequate for capturing complex, multivariate relationships 

between predictor and response variables Integrating 

molecular marker technologies like MAS into breeding 

programs is becoming increasingly important for faster and 

more precise genetic gains (26). Although MAS shows promise 

for improving polygenic traits efficiently, its full potential is 

still unrealized (27). Simply mapping QTLs is not enough for 

trait improvement; MAS applies DNA markers at key selection 

points to boost effectiveness (28). Marker-assisted selection 

(MAS) combines molecular genetics with traditional 

phenotype-based selection. Selection indices are developed 

to optimize the improvement of quantitative traits by using 

both marker data and phenotypic information from 

individuals and their relatives (29). Genomic selection uses 

dense markers covering the whole genome so that markers 

exist in strong LD with all genes affecting the trait. This is also 

the strategy of genome wide association studies (e.g. Moffat 

et al. 2007). New breeding selection techniques, including the 

selection index, best linear unbiased prediction (BLUP) (30), 

marker-assisted selection (MAS), genome-wide association 

study (GWAS) and genomic selection (GS) (3), have been 

widely employed in both animal and plant breeding. GS is a 

type of MAS; whole genome markers are used to estimate 

breeding values; these estimations are called genomic 

estimated breeding values (GEBV). GEBV based on the 

genotypes of individuals have been remarkably accurate (31, 

32). This accuracy has been verified in empirical studies in 

beef cattle, mice and chicken (33-35). 

 Marker aided selection has proven valuable for plant 
breeding, yet its effectiveness in improving complex traits 

has been limited, partly because it does not account for 

small-effect quantitative trait loci (36). The usable marker 

for Ppd-D1 has demonstrated its utility in marker-assisted 

selection by enabling the prediction of heading time 

variation. In European wheat breeding, the serviceable 

marker for Ppd-D1 serves as a key tool, describe genotypic 

variation is 30 % in heading time. Likewise, functional 

markers for Ppd-D1 (37) and Rht-B1 and Rht-D1 (38), are 

extensively utilised to enhance the breeding of wheat, 

Features Parametric Nonparametric Semi parametric 

Definition 

Models that describe data using a 
predefined set of parameters, with 

the model structure (such as linear or 
logistic) specified in advance. 

Models that do not rely on a predetermined 
structure; instead, their form is inferred 

directly from the data. 

Combine a parametric component (with a 
finite set of parameters) with a non-

parametric component (infinite-dimensional 
structure). 

Flexibility Low high moderate 

Data 
requirement 

Low high moderate 

Interpretability high Often low moderate 

Example Linear Regression, Logistic 
Regression 

K-Nearest Neighbours, Kernel density 
estimation 

Cox Proportional Hazards Model, Generalized 
Additive Models (GAMs) 

Advantages 

 Simple and interpretable. 
Requires less data to estimate 

parameters. 
Efficient if model assumptions are 

correct. 

Highly flexible and adaptive. 
Better for discovering unknown 

relationships.  

 Flexible yet interpretable. 
Reduce the risk of model misspecification.  

Disadvantage 
Model misspecification risk (wrong 

functional form). 
 Less flexible for complex patterns.  

Require large datasets. 
Often computationally intensive. 

Harder to interpret.  

Estimation can be more complex. 
Balance between bias and variance is 

delicate.  

Reference (152) (153) (65) 

Table 1. Comparison and integration of various models such as parametric, semi parametric and non-parametric statistical model  

Cross validation methods Description Purpose Reference 

Fivefold cross validation 

The dataset is divided randomly into five 
equal segments. In each round, the 

model is trained on four of these 
segments, while the remaining one is 

used for validation. 

To evaluate overall prediction accuracy across the 
entire population, without accounting for temporal 

or environmental factors. 
 (149) 

Leave-One-Year-Out Validation 
(LOOV) 

Data from one year is excluded at a time 
to be used as the validation set, while the 

model is trained on data from the 
remaining years. 

Evaluates the model's capability to forecast 
upcoming years, simulating real-world breeding 

scenarios where predictions are required for 
seasons that haven't been tested. 

(150) 

Forward validation 
The model is trained exclusively on data 

from past years and used to predict 
outcomes for future years. 

Represents a realistic breeding context in which 
genomic selection models are built using historical 

data to predict newly untested generations. 
 (151) 

Table 2. Cross validation methods  
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contributing to about 40 % of the genotypic variation in 

plant height. Molecular markers have enabled breeders to 

decrease the necessity for large-scale phenotyping and 

conduct high-accuracy early-stage selection. MAS is 

exceptionally efficient for simple traits governed by a main 

gene (20). Diverse MAS, genomic selection employs 

genome-wide markers to predict the genetic potential of 

future individuals, bypassing the marker-detection step by 

incorporating all markers into genomic value prediction, 

when the number of markers exceeds the sample size, 

individual marker effects may not be uniquely estimated, 

yet the overall genomic value remains predictable. 

Consequently, genomic prediction focuses on the overall 

predictive power derived from the collective influence of 

all markers rather than on precise estimations of 

individual marker effects (39). Genomic selection (GS) 

estimates the effects of numerous genome-wide markers 

simultaneously to determine the genetic values, known as 

genomic estimated breeding values (GEBV), for untested 

populations, rather than relying on just a subset of 

markers for selection as done in marker-assisted selection 

(MAS) (40). Marker used in different crops of genomic 

selection is given in Table 3 

Genomic wide associated selection  

Marker-assisted selection (MAS) relies on the presence of 
genetic markers that are linked to the trait of interest. 

However, pinpointing the genetic regions connected to a 

specific phenotype is often challenging, as many traits are 

influenced by multiple genes, making their relationship 

with the phenotype more complex (41, 42). The common 

method for connecting genetic regions to specific traits, 

referred to as genetic mapping, involves two primary 

strategies: linkage mapping (LM), which uses biparental 

populations and association mapping (AM) (43). 

Association mapping (AM) has gained growing significance 

in genetic research thanks to the availability of cost-

effective, high-throughput technologies for genotyping 

single nucleotide polymorphisms (SNPs), which allow for 

dense marker coverage (44). A specific approach within 

association mapping, known as genome-wide association 

studies (GWAS), has become a widely used method for 

exploring complex traits in plants overall, as well as in 

various crop species such as wheat (45). The main benefit 

of GWAS is its ability to examine thousands to millions of 

genetic variants (such as SNPs) across numerous 

individuals from diverse populations on a genome-wide 

level, enabling the identification of more complex 

genotype-phenotype relationships compared to linkage 

mapping (LM). However, conducting a genome-wide 

analysis relies heavily on having detailed knowledge and 

characterization of SNPs, which is made possible through 

whole-genome sequencing of the target organism. For 

wheat, its complete genome was successfully sequenced 

in 2018 (46). GWAS uses various statistical models, mainly 

linear and Bayesian approaches. Linear models apply 

equations to test each marker’s link to the phenotype 

separately, reducing computational complexity despite 

genetic data intricacies (47) 

Limitations of GWAS 

GWAS still face notable limitations in both their design and 

use (45). The number of apparent causal variants could be 

minimized by using data from genetically diverse 

populations, making it essential to ensure proper 

population representation to avoid potential biases (48). 

GWAS has become an essential tool for identifying loci 

linked to traits of interest. Among these traits, drought 

stands out as one of the most significant abiotic stress 

factors impacting wheat yield (49). Since many GWAS 

approaches rely on linear regression models, exploring 

non-linear models could help address the issue of missing 

heritability (50). Collinearity is another factor that can 

reduce the efficiency and statistical power of GWAS 

methods, highlighting the need for new strategies to 

overcome the challenge (51). Various AI techniques have 

been utilized to address the limitations and drawbacks of 

GWAS (52-53). Many traits targeted by GWAS are highly 

quantitative and complex. For example, grain yield and 

drought stress tolerance are influenced by interactions 

among various underlying component traits (54). 

Statistical tools used in genomic selection 

Ridge regression  

One of the first techniques proposed for genomic selection 

was ridge regression, in the framework of mixed models, is 

equivalent to best linear unbiased prediction (BLUP) (55). 

It is represented as:  

                                                       y = W Gu + ε, 

u is the marker effects of vector, 

G represents the matrix genotype and 

W is the design matrix that connect lines to observations (y). 

 When applying genomic selection to develop lines 

for commercial varieties, the focus extends beyond just 

the additive value to encompass the entire genotypic value 

(56). A modified version of RR-BLUP, known as W-BLUP, was 

developed to incorporate specific weights is known 

functional markers. All statistical computations for genomic 

selection techniques were done (57). In maize and sorghum, 

from a GWAS conducted on training populations by 

Crop Source Trait analyzed Marker used Genotypes Reference 

Wheat 
International wheat and maize 

improvement centre 
Grain yield 234 DArT markers 94 25 

Maize Drought tolerance of maize for Africa 
Northern corn leaf blight 

Greay leaf spot 
1,152 SNP markers 300 25 

Wheat Cornell university Yield and heading data 1158 DArT Markers 374 148 

Wheat CIMMYT Yield 1279DArT 599 149 

Maize Lima grain Europe Yield and moisture content 355SNP 
332 

  
 148 

Table 3. Comparison genomic selection of marker used in different crop  
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incorporating peak-associated markers into an RR-BLUP 

model led to improvements out of 216 only 60 simulated 

genetic traits (58). Whereas RR-BLUP assumes an 

infinitesimal model, Bayes B has the premise that only a 

certain number of single-nucleotide polymorphisms (SNPs) 

affect the genotypic variation of a trait, but the Bayes B has 

been examined with experimental maize data and it 

observed only slight variations in accuracy between 

statistical models and no definitive relationship with genetic 

architecture (59). 

Genomic Best Linear Unbiased Predicition 

In genomic selection, various statistical methods estimate 

marker effects in the training population. These methods fall 

into two categories and one assumes all markers influence 

the trait equally, in RR-BLUP, follow different statistical 

distributions which allows marker effects (55), in plant 

breeding, animal and tree BLUP has been widely used for 

decades, with its predictive accuracy for individuals lacking 

phenotypic data relying on the structure of the random effect 

variance covariance matrix (60) it implement of recombinant 

inbred lines to estimate the genomic value and BLUP is also 

referred to as genomic BLUP (61). Current implementations 

of the random regression model (RRM) follow the 

infinitesimal model (62) and the method for estimating GEBVs 

using RRM is known as GBLUP (63). Quantitative trait loci 

mapping studies indicate that many quantitative traits are 

under the effect of a few significant genes (64). Statistical 

procedures used in the selection of key variables it is referred 

as 'variable selection methods,' include Bayes A and Bayes B 

(1).    

Application of BLUP 

Best linear unbiased prediction technology has been utilized 

to forecast hybrid corn performance by leveraging existing 

hybrids and their pedigree relationships with untested 

hybrids. Advances in genomic research have significantly 

expanded the availability of molecular markers that span the 

entire genome, enabling the calculation of relationship 

matrices. This advancement has led to the development of 

genomic best linear unbiased prediction (GBLUP) (65). 

Current genomic prediction methods include Bayes B, 

empirical Bayes (66) and the least absolute shrinkage 

selection operator (LASSO) (67). Extensive research has 

demonstrated that GBLUP often achieves breeding values as 

accurately or more accurately than traditional pedigree-based 

BLUP in livestock breeding programs (65). GBLUP is particularly 

advantageous when a trait is primarily influenced by polygenes, 

making it potentially more robust compared to selective 

shrinkage methods. These genomic selection techniques 

predominantly focus on additive genetic effects (68). 

Bayes A 

Bayes A method variances assume the marker effect vary 

across loci (69). While Bayes A functions similarly to BLUP 

at the data level, it differs in that chromosome segment 

variances are model using an inverted chi-square 

distribution (70). Compared to Bayes A, the GBLUP method 

requires less computational time (71). Colombani 

demonstrated that Bayes B outperforms a modified version of 

Bayes A, in terms of genomic estimates accuracy which 

incorporates a polygenic effect (72). 

 

Bayes B 

Bayes B is generally more precise if large QTL exist, but its 

precision becomes comparable to gBLUP when many QTL 

have small effects (73) and the use of best linear unbiased 

prediction (BLUP) has resulted in significant genetic 

improvements in most livestock breeding schemes. Certain 

nonlinear methods, such as Bayes A, Bayes B and Bayes C 

(74) have also been considered. But few differences in 

precision between gBLUP and nonlinear models like Bayes 

B and Bayes A (71). 

Bayseian analysis 

Bayesian methods estimate marker effects collectively to 

predict genomic values for quantitative traits without the 

need for marker selection (75). Bayesian analysis is 

increasing due to its broader assumptions compared to 

classical methods and its adaptability in addressing 

various biological challenges (76-77). In recent time, 

Bayesian model has been widely applied to overcome 

limitations of traditional statistical methods, expanding 

their use in animal and plant breeding data analysis (78). 

Bayesian inference integrates prior knowledge about a 

statistical system, represented as prior probability 

distributions, with new observed data. The formula of 

Bayesian is: 

                P(θ|y) P(y|θ) P(θ) 

where P(θ) represents the prior distribution, 

 P(y|θ) assesses how likely the observed data is given θ, 

P(θ|y) α combines both prior knowledge and observed 

data for more precise inference. 

 Bayesian methods based on their predictive accuracy 

with other genomic selection techniques (70). Several 

Bayesian statistical models have been applied in genomic 

assessment with different assumptions regarding marker 

effect distributions. Bayesian methods assuming the prior 

distribution of SNPs (1), which have the potential to enhance 

the accuracy of breeding values beyond the conventional 

BLUP methodology (8-9). Studies have also reported 

increased accuracy using Bayesian models over BLUP (79) 

 In Bayesian Lasso models, hyperparameters are 

usually assumed to be random, but in Student's t-based 

models, they are usually set fixed, though there are 

exceptions (80). In traditional genomic analyses, breeding 

values are estimated when the components of variance 

are known, but in Bayesian approaches, variance 

components and genomic breeding values are 

simultaneously estimated (77). Bayesian methods employ 

marker-based genomic relationship matrices rather than 

pedigree-based numerator relationship matrices in a 

mixed-model setup (81). The Bayesian formulation of G-

BLUP that estimates the variance components 

concurrently has shown marginally better accuracy than 

the frequentist one with known heritability (82). 

Integration of omics data 
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The Greek-derived suffix “ome,” meaning “body,” signifies 

the complete set of a biological component. For example, 

the genome includes all genes, the transcriptome all 

transcripts, the proteome all proteins and the 

metabolome all metabolites of an organism (83). In recent 

years 2016, high-throughput omics (HTO) technologies 

including genomics, epigenomics, transcriptomics, 

proteomics and metabolomics have advanced 

significantly across various areas of biology. These 

developments have driven the rise of the systems biology 

era, with applications extending to animal production and 

health traits (84). Transcriptomic and phenomics datasets 

tailored to complex traits can help clarify how genetic 

variants such as single nucleotide polymorphisms (SNPs), 

insertions, deletions and copy number variations (CNVs) 

influence the traits (85). Combining genomic and 

transcriptomic data such as through the expression 

quantitative trait loci (eQTL) method helps identify 

genomic regions linked to gene expression levels (86) SNPs 

are chosen using a more rigorous genome-wide 

significance threshold than is usually applied in 

conventional GWAS. SNPs' epistatic interactions are then 

calculated. The association weight matrix (AWM), which 

combines findings from several GWAS by evaluating SNP 

interactions based on the size of their estimated additive 

effects, is another useful technique (87) 

Transcriptomics 

The concept of genetical genomics (GG), which involves 

genome-wide genetic analysis of gene expression data, was 

initially introduced by Jansen and Nap (2001) and Jansen 

(2003) and is also referred to as transcriptome mapping (88). 

Beyond stats, leveraging biological and functional data from 

layers like the epigenome, transcriptome, proteome and 

metabolome linking DNA to phenotype can offer key insights 

into genetic architecture. As these layers become more 

accessible across species, they enhance our understanding of 

complex traits (89). At the statistical level, omics data such as 

sequence polymorphisms and transcriptomics are likely to 

exhibit some degree of overlap or interdependence (90-91). 

Techniques such as genomics and transcriptomics offer a 

balance between cost and efficiency for modern researchers, 

helping to bypass the lengthy and labour-intensive 

traditional breeding processes in developing improved 

genotypes (92). Genomic and transcriptomic data aid in 

identifying genotypes with superior performance compared 

to neighbouring, related, or parental lines and in revealing 

phylogenetic and evolutionary relationships among 

genotypes (93). Genomics provides a new basis for crop 

breeding systems, especially when integrated with advanced 

automated phenotyping methods and functional genomics 

research (94). Genomics and transcriptomics techniques like 

DNA Sequence, RNA-Sequence, Methyl-Sequence, have 

significantly enhanced our understanding of gene expression 

and regulation in plants (95). As costs and complexity 

continue to drop, these preferred methods are being widely 

adopted, routinely producing millions of sequencing reads. 

Genomics and transcriptomics data, such as RNA-Sequence 

outputs, are inherently large and require high-performance 

computing systems for effective analysis (96). Genome and 

transcriptome-based analyses facilitate the identification of 

valuable alleles in both cultivated and wild relatives, while 

also revealing genomic regions where diversity may have 

been altered during the domestication process (97). 

Advanced genomics enables the identification of specific 

genome segments associated with a particular trait (98). A 

pantranscriptome combines multiple genomes or 

transcriptomes to represent variant effects and structural 

variations, aiding plant variation analysis alongside SNPs and 

CNVs and identifying variant presence or absence (99). 

Proteomics 

 Genomic and proteomic sequence databases from various 

organisms, equipped with integrated bioinformatics tools, 

now provide an extensive and ever-growing resource for 

biologists and geneticists (100). In the past decade, omic 

technologies like genomics, proteomics and metabolomics 

have advanced significantly, allowing high-throughput 

analysis of molecular and biological processes methods are 

widely used to identify biomarkers, study complex systems 

and understand disease mechanisms by analyzing genes, 

mRNA, proteins and metabolites (101). protein abundance 

cannot be reliably predicted based on the corresponding 

mRNA levels on bacteria and yeast (102). In proteomics, 

proteins are digested into peptides, analysed by mass 

spectrometry and matched to genomic databases for 

identification. Modern proteomics relies on this sequence 

matching, with mass spectrometry becoming increasingly 

sensitive and high throughput, as seen in shotgun proteomics 

(103). Mass spectrometry is key for protein quantification, 

comparison and detecting post-translational modifications. 

Bioinformatics plays a crucial role in proteomics, just as in 

genomics and transcriptomics (104). Cancer progression is 

driven by genomic alterations and instability that result in a 

series of genomic changes including mutations, methylation, 

copy number aberrations or translocation (105). Proteomics 

differs from genomics and transcriptomics in two keyways: 

proteins can't be amplified like DNA or RNA, requiring prior 

purification and effective large-scale protein arrays are still 

lacking (106). Proteomics-based gene annotation has been 

successfully used in both model and non-model organisms. 

Proteogenomic annotation typically involves searching 

peptide mass spectra against a six-frame translation of a 

reference genome (107). The Proteogenomic Mapping 

Pipeline uses string search algorithms to map peptides to a 

genome translated in six reading frames. However, the tools 

are not designed for visualization, making their output files 

incompatible with genome browser tools (108). 

Metabolomics 

Metabolomics, the study of small molecules and metabolites, 

is widely used to explore interactions between gene/protein 

products and environmental factors (109). Metabolomics is 

widely used to investigate diseases like type 1 diabetes and 

cancer, aiming to identify biomarkers for early detection, 

prognosis and treatment monitoring (110). Due to 

technical limitations, researchers traditionally focused on 

a few key metabolic traits important for industrial or 

nutritional value, such as carotenoid content in tomatoes, 

protein content in maize and starch content in potatoes 

and rice (111). The majority of metabolomic studies on 

https://plantsciencetoday.online
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natural variation have been conducted in Arabidopsis, but 

crop species are increasingly becoming the focus of 

metabolomic research (112). 

Multi-trait Genomic selection 

Multi-trait genomic selection allows for the improvement 

of low-heritability traits by leveraging information from 

highly heritable traits. In humans, multivariate gBLUP has 

already been used to predict genetic risk for multiple 

diseases (113). Its first use in plants, the MT-GS statistical 

framework, has been widely implemented in different 

breeding schemes and human genetic research (114). 

 In plant breeding, MT-GS has been assessed using 

data from crops such as soybean (115), rye (116), cranberry 

(117) and for predicting hybrid wheat disease resistance. The 

effectiveness of MT-GS over single-trait genomic selection has 

been demonstrated through simulated data in animal 

breeding studies, particularly for genetically correlated traits 

(118). In addition, MT-GS models can be augmented to a 

multi-trait and multi-environment Bayesian system by 

utilizing the R package BMTME (Bayesian Multi-Trait and Multi

-Environment) (119). Trait-assisted genomic selection was 

demonstrated to increase prediction precision more than 50 

% greater compared to single-trait choice methodologies 

(120). Wide genome regression model explained in Fig. 3. 

Phenotypic data analysis 

The phenotypic data analysis was performed in two 

steps.The adjusted entry means for each location were 

first estimated (121). In the second step, the adjusted entry 

means were used to estimate the genetic variance 

components of hybrids and parents, as well as the 

variance due to genotype-by-location interactions, 

according to the procedure suggested by Möhring et al., 2009 

(122). The general combining ability (GCA) can be assessed 

using a linear model following the g BLUP (genomic Best Linear 

Unbiased Prediction) approach. This method uses a genomic 

relationship matrix from whole-genome markers to make 

predictions of phenotypic values (20). 

Genotypic data analysis   

Genotyping was done with a 9K SNP array based on the 

Illumina Infinium assay (123). Because complex traits are 

under the control of many genes, the breeding values for 

genetic lines need to be estimated based on genetic 

markers placed throughout the entire genome, an 

approach called Genomic Selection. The genotype-photo-

thermal time relationship was described as a genotype-

specific reaction norm and gave a quantitative expression 

of genotype-by-environment (G×E) interactions' 

contribution to phenotypic variation (124). Flowering time 

can be predicted if information on the genotype of an 

inbred line and the photo-thermal time of various 

locations is available, thereby allowing the identification 

of the optimal environment for the inbred line and helping 

construct training populations (20). Genomic selection has 

the potential to realize genetic gains faster than classical 

selection approaches based on pedigree and phenotypic 

information. Genome-wide evaluation approaches employ 

statistical models that combine phenotypic data with 

dense marker data to forecast the genetic potential of 

individuals for complex traits (125). 

Machine learning and deep learning 

Genomic selection is a new agriculture technique that 

increases productivity by utilizing molecular genetic 

markers to formulate superior breeding programs and 

marker-based genetic assessment techniques for plants 

and animals (126). It entails building a prediction model 

with individuals that have known genotypic and 

phenotypic information. The model is subsequently 

employed to estimate genomic estimated breeding values 

(GEBVs) for specific traits, enabling the ranking of 

individuals with unobserved phenotypes for selection. The 

growing use of GS is primarily facilitated by the reducing cost 

of acquiring enormous numbers of DNA markers in plant and 

animal genomes, coupled with robust empirical evidence 

that proves this approach increases genetic gains per unit 

time. This, in turn, shortens breeding cycles and enables 

rapid selection of high-quality genotypes (127).  

 Machine learning applications 

 Machine learning software in genomic selection has been 

investigated (128) and the genomic BLUP can also be 

considered as a ML expert method. Current developments in 

ML for genomic prediction now also include multiple ML 

 

Fig. 3. Classification of whole genome regression models used in genomic selection. 
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areas, including deep learning, which has been contrasted to 

other ML methods in crops like wheat. ML techniques have 

been used with randomly assigned cross-validation methods 

to big populations for single phenotype prediction (129). 

 Unsupervised learning entails discovering patterns, 

associations, or clusters in input data without reference to an 

output response variable (130). Deep learning, a branch of 

ML, can be applied to both supervised and unsupervised 

learning and converts input data into progressively abstract 

representations by using multiple layers of neural networks. 

The main goal of deep learning is to learn the weights of 

neural networks using input data. Popular neural network 

structures are densely connected networks, convolutional 

neural networks (CNNs) and recurrent neural networks (119). 

Supervised learning-based ML algorithms are especially well 

suited for genomic prediction (131). GWAS is one important 

method, which applies genome-wide marker data for 

genomic prediction. This method determines the best 

number of markers for prediction using suitable statistical 

models combined with machine learning and deep learning 

techniques and then choosing the most effective model (132). 

Integrated genomic selection 

Breeding programs are planned with fewer replications in the 

early segregating generations and more replications, larger 

plot sizes and multi-location testing in subsequent generations 

(133). When incorporating genomic selection, breeders need to 

consider the tiered structure of the breeding program, as it 

affects genetic gain and implementation costs. Using GS in the 

initial generations can greatly reduce the breeding cycle by 

eliminating one or two selfing cycles (134). Using genomic 

selection (GS) in subsequent generations to assess the 

performance of lines will enhance selection accuracy but not 

reduce the breeding cycle. Although reduced genotyping costs 

make GS attractive in advanced generations, its benefits over 

phenotypic selection at this point are minimal (135). Effects of 

dominance were observed while predicting grain yield 

genomic estimated breeding values in maize single crosses 

employing the BLUP [N Cantelmo F] for additive and 

dominance model (136). In addition, epistasis has also been 

identified to be an influential element in expressing traits when 

addressing the genetics and improvement of intricate traits. It 

has been identified to reduce imperative contribution to 

characteristics like flowering time in rice (137). As well as oil, 

protein and starch levels of corn (24). Genomic selection is 

known as an effective tool for breeding qualitative traits, 

drastically reducing the duration of breeding cycles and 

facilitating its extensive and uniform use in routine crop 

breeding schemes (138). 

Genomic selection implications in crop improvement 

Genomic selection in cereals 

Grains are an essential food source, contributing 50 % of the 

world's dietary energy intake. The four principal cereal crops 

such as wheat, rice, maize and barley these are grown on 

arable land globally and the total yield is 2817 million tonnes 

(139). Their growth, however, is confronted with enormous 

challenges, such as climate change-related disasters and the 

increased demand due to population growth (140). To solve 

these urgent problems, crop production should be efficient 

and sustainable with reduced environmental impact. This can 

be achieved through the design of high-yielding, resource 

saving crop varieties that can tolerate these conditions. 

However, breeding these variable and tolerant crops is a slow 

process because the major portion of crop productive traits lies 

under the influence of polygenic systems, in which there are 

many genes with small effects. Low heritability and complex 

gene interactions like epistasis further add to the complexity. 

Although the classical methods have contributed significantly, 

their genetic gains remained behind those realized through GS. 

However, classical methods can nonetheless speed up the 

breeding cycle (141). GS offers a distinct advantage by enabling 

the identification of individuals with the highest breeding 

values within early-generation populations, significantly 

reducing the need for extensive phenotyping. This approach 

has recently proven effective in cereal crops, particularly 

wheat, rice, maize and barley. The application of GS in these 

crops has led to the development of predictive models that 

accurately assess trait performance and identify the most 

valuable breeding material are given in Table 4   

Genomic selection in oilseeds 

Oilseeds are crucial for Asian and African smallholder farmers, 

but their potential yield remains underexploited owing to 

abiotic and biotic stresses (142). Genomic selection has been 

used for crops such as groundnut and Brassica, enhancing 

prediction precision for traits that include oil yield and quality 

(143). In sunflower, GS was superior to general combining 

ability (GCA) when parent lines were unknown (144). In 

soybean, NAM populations increased precision for yield and oil 

content whereas high genetic relatedness and training 

population size still improved the predictions. GS has also 

been applied to evaluate embryogenesis capacity with 

Model Application in cereal Strength Reference 

GBLUP Wheat, Rice, Maize, Barley Simple, robust, good for polygenic traits  (1) 

Bayesian models Wheat, Rice, Maize, Barley Good for traits with major genes (large QTL effects)  (1) 

Random forests Mainly Maize, Wheat Captures non-linear gene interactions  (119) 

Deep learning models Maize, Wheat, Rice Excellent for complex traits; high accuracy  (154) 

Table 4. Genomic selection models used for cereal crops  
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great precision (145). Genomic model used and strength of 

sunflower, soybean, groundnut and Brassica are given in 

Table 5. 

Genomic selection in pulses 

The multi-trait Bayes B as the best GS approach for lentil 

using the STL-A11 marker, while single-trait GS (STGS) is 

better in the absence of major-effect QTLs. They also noted 

that multi-trait GS (MTGS) enhances prediction accuracy for 

low-heritability traits affected by genotype-by-environment 

(G×E) interactions. In Phaseolus cumingii, GS was applied to 

predict cooking time as a selection criterion for fast-cooking 

genotypes in different populations, including RILs, MAGIC 

populations and Andean and Mesoamerican breeding lines. 

Heritability of cooking time was high (0.64-0.89), with MAGIC 

populations being predicted with the highest accuracy (0.55) 

and Mesoamerican genotypes with reduced accuracy (0.22). 

Also, when genetic similarity between training and prediction 

populations is low, whole-genome re-sequencing (WGRS) 

markers increase accuracy of prediction (146) employing all 

the SNPs from whole-genome re-sequencing (WGRS) gave 

poor prediction accuracy for yield under drought (0.148-

0.186) (124). Accuracy increased appreciably (0.56-0.61) when 

only yield-causal SNPs were considered. In addition, GS was 

utilized to resistance to root rot in Phaseolus with high 

prediction accuracies (0.7-0.8) for Pythium and Fusarium rots, 

signifying its viability for the promotion of quantitative 

resistance (147) Genomic model used for pulses are given 

in Table 6. 

 

Conclusion  

The future of genomic selection (GS) is headed toward 

deeper integration with real-time, high-throughput 

phenotyping and advanced big data analytics. With the 

progression of machine learning, GS models are expected 

to become more flexible, non-linear and better equipped 

to manage complex traits shaped by gene-environment 

interactions. Emerging technologies like deep learning and 

ensemble methods will work alongside traditional 

parametric and semi-parametric models to boost 

prediction accuracy. On the ground applications, such as 

real-time genomic selection in crops and precision 

breeding in livestock, will grow more common with the use 

of portable sequencing devices. Furthermore, cloud-based 

computing and AI driven platforms will enable faster, 

decentralized training and deployment of models. 

However, ethical considerations, data privacy concerns 

and computational hurdles will need to be carefully 

managed as GS becomes more widespread. In the long 

run, genomic selection is poised to be a key driver in 

promoting sustainable agriculture and advancing 

personalized medicine.  
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Crop GS model used Strength Reference 

Sunflower RKHS (Reproducing Kernel Hilbert Space 
regression), GBLUP, 

RKHS was more effective in capturing non-additive 
effects such as general combining ability (GCA) 

 (155) 

Soybean 
Deep learning, Bayes B, Support Vector Machine 

(SVM), GBLUP, 

Nested Association Mapping populations enhanced the 
accuracy of genomic selection, while deep learning 

models are increasingly being used for predicting yield 
and oil-related traits. 

 (156) 

Brassica Bayesian LASSO, GBLUP, BayesB, Particularly useful for complex traits such as oil content, 
flowering time and resistance to diseases 

 (157) 

Groundnut Bayesian Ridge Regression (BRR), GBLUP, 
drought tolerance, quality traits, 

Used for oil yield 
(141) 

Table 5. Genomic selection models used for oilseed crops 

Crop GS model used Strength Reference 

Lentil Multi-trait Bayes B, Single-Trait GS 
(STGS) 

Oil content, low-heritability traits under G×E 
interaction 

(146) 

Phaseolus cumingii (Common bean relative) GBLUP, possibly Bayesian Ridge 
Regression (BRR) 

Cooking time, yield under drought, disease 
resistance (root rots) 

(147) 

Common bean (Phaseolus vulgaris) GBLUP, WGRS-based GS Resistance to Pythium and Fusarium root 
rots 

 (158) 

Table 6.  Genomic selection models used for pulse crops  
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