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Abstract

Genomic selection has been considered as a novel methodology beyond traditional marker assisted selection methods (MAS). GS @n be
considered as a variant of MAS selecting favourable individuals largely based on estimated breeding values derived genomicaly. It
involves genotyping markers and phenotyping individuals in reference population then predicting phenotypes of candidates forselection
using statistical machine learning models. New candidate individuals get predictions performed on them post trained model output if
genotypic information happens to be available somehow. Selection of training population proves highly crucial for testing pumposes and
ultimately determines accuracy in genomic selection processes. Genomic selection models frequently utilize involve stepwise regression,
ridge regression, genomic best linear unbiased prediction, Ridge regression best linear unbiased Prediction, Bayes A, Bayes B Bayes care
Bayesian model and least absolute shrinkage selection operator. This review aims to present an overview of genomic selectionas an
advanced breeding strategy that integrates genome wide markers and statistical model to accelerate genetic improvement in plants. It
highlights the principles, methods and applications of genomic selection in enhancing crop traits and breeding efficiency.

Keywords: genomic best linear unbiased prediction; genomic estimated breeding value; genomic selection; testing population;

training population

Introduction

Genomic selection encompasses a variety of approaches, all
of which are designed to predict breeding values for
quantitative traits using whole-genome genotypic data by
estimating marker effects simultaneously in a single step; it
was first introduced by Meuwissen et al., 2001 (1) as wide
genome selection, which enhances quantitative traits by
utilizing genetic information across the entire genome (2).
The first empirical validation of genomic selection was
observed in dairy cattle (3) Selection in plant breeding has
long been established based on breeding values estimated
from mixed model based on pedigree (4-6) and in animal
breeding it has been validated successfully across various
species and population (7-9). Genomic selection involves
developing a predictive model using a training population
that possesses both genotypic and phenotypic data, which
have only genotypic data that is applied to estimate the
breeding values of individuals and the selection is based on
the predictions. Subsequent studies have explored how
factors such as, training population size, effective population
size, marker density, trait heritability predict the impact
accuracy of a breeding program (8-10). For over two decades,
DNA engineering has been expected to revolutionize genetic
improvement programs and enhance genetic gain through

selection (11-12), yet marker aided selection has yet to deliver
substantial improvements in polygenic traits (13). Its
effectiveness is limited when numerous alleles with small
effects are segregating, making it challenging to detect
significant and consistent impacts (14). DNA-based molecular
markers serve as essential tools for assessing genetic
variation within germplasm collections and breeding lines.
Over the past two decades, a range of molecular markers for
principal crop species have been established to enable the
creation of compact molecular genetics and physical maps
and the markers have found widespread applications to
detect genes or quantitative trait loci (QTLs) associated with
economically important traits for MAS (15-16) divergent from
MAS the genomic selection utilizes a reference population
with both DNA sequence and trait data to create a model as
predictive (17).

Genomic selection

Genomic selection relies on dense genetic markers spread
across the complete set of genetic material to predict an
individual reproduction value (1). The aim of genomic
assessment is to determine the best prediction approach for
precise estimation of the genetic values of candidates.
Several genomic evaluation approaches have been
suggested (18). The Finding implies that the accuracy of
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genomic estimated breeding values (GEBV) is much greater
compared to that of estimated breeding values (EBV) using
pedigree data (8). While polygenic breeding values and
genomic data provide valuable insights, quantitative trait loci
(QTL) that are not detected through marker effects may still
be captured via progeny testing based on pedigree
information (19). For multifactorial traits with many genes
influencing them, the estimation of genetic lines' breeding
values needs genetic markers throughout the whole genome,
a procedure termed genomic selection (20) as well as,
including meta-GWAS signals as fixed effect covariates within
GS models was found to enhance prediction precision and
minimize bias when predicting Jersey and Holstein bulls'
stature (21). Here, the bar charts representing the accuracy
the GEBV prediction using different genotypes under random
mating and assortative mating selection method in Fig. 1.

Genomic estimated breeding value

In genomic prediction the total genetic variance is estimated
by considering the effects of all markers in the dataset,
without applying a significance threshold, based on the
assumption that disequilibrium linkage is present in markers
with quantitative trait loci (QTLs) and the result of these
markers are determined using individuals with both trait and
DNA data. The genomic estimated breeding value (GEBV)
calculates the marker effects are then combined with an

2

individual marker information as well as Improve a cross-
validation approach is employed, where a testing population
and a training population are used to assess predictive
performance. The training population offers genotypic and
phenotypic information for marker effect estimation, which is
utilized to estimate GEBVs for individuals in the test
population (21). The predictive accuracy of the model is
evaluated by measuring the correlation between GEBVs and
the actual phenotypes of the test population. Fig. 2 depicts
the genomic selection using a training population to estimate
marker effects to get a genomic estimated breeding value
(GEBV) of lines in the test-population. Classification of
genomic selection methods is given in Table 1

Prediction based genomic selection

Genomic prediction serves as the initial step in genomic
selection (GS) within plant breeding programs (22-23).
Traditional  approaches, including regression-based
techniques, have limited capacity to process high-
dimensional datasets and to model complex, multivariate
relationships between predictors and response variables.

Prediction in GS involves building statistical models
that learn from a training set (genotyped and phenotyped
individuals) to estimate the genetic merit of individuals in a
testing set based solely on their genotypes. This predictive
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Fig. 1. The bar chart represents the accuracy of the GEBV prediction using different genotypes under random mating and assortative mating

selection.
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Fig. 2. Flow chart of population genomic selection (159).
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Table 1. Comparison and integration of various models such as parametric, semi parametric and non-parametric statistical model

Features Parametric Nonparametric Semi parametric
Models that describe data using a : Combine a parametric component (with a
Definition predefined set of parameters, with M(;(tjril(s:ttuhr2t° ?nzpe%tdretlr): :ipfzfnzeigei;%wgéed finite set of parameters) with a non-
the model structure (such as linear or directly from the data parametric component (infinite-dimensional
logistic) specified in advance. y : structure).
Flexibility Low high moderate
Data .
requirement Low high moderate
Interpretability high Often low moderate
Example Linear Regression, Logistic K-Nearest Neighbours, Kernel density =~ Cox Proportional Hazards Model, Generalized
P Regression estimation Additive Models (GAMs)
Simple and interpretable.
Requires less data to estimate Highly flexible and adaptive. Flexible yet interpretable
Advantages parameters. Better for discovering unknown . . P
Efficient if model assumptions are relationships. Reduce the risk of model misspecification.
correct.

Model misspecification risk (wrong
functional form).

Less flexible for complex patterns.
(152)

Disadvantage

Reference

Require large datasets.
Often computationally intensive.
Harder to interpret.

Estimation can be more complex.

Balance between bias and variance is
delicate.

(153) (65)

framework facilitates early selection and reduces the need for
extensive phenotyping, especially in crops and animals with
long reproductive cycles. Cross-validation is widely used to
evaluate model performance and ensure the robustness of
predictions (24). The selection of an appropriate method
depends largely on the genetic architecture of the target trait.
For instance, traits governed by a few major QTLs may benefit
from sparse models like Bayes B, whereas highly polygenic
traits often suit models like RR-BLUP or GBLUP (25). In
genomic selection, cross-validation (CV) methods are
essential for assessing the predictive accuracy of genomic
prediction models is given in Table 2

Drawback of traditional breeding methods
Marker Assisted Selection

Conventional approaches, like regression-based methods,
struggle to handle high-dimensional data and are often
inadequate for capturing complex, multivariate relationships
between predictor and response variables Integrating
molecular marker technologies like MAS into breeding
programs is becoming increasingly important for faster and
more precise genetic gains (26). Although MAS shows promise
for improving polygenic traits efficiently, its full potential is
still unrealized (27). Simply mapping QTLs is not enough for
trait improvement; MAS applies DNA markers at key selection
points to boost effectiveness (28). Marker-assisted selection
(MAS) combines molecular genetics with traditional
phenotype-based selection. Selection indices are developed

Table 2. Cross validation methods

to optimize the improvement of quantitative traits by using
both marker data and phenotypic information from
individuals and their relatives (29). Genomic selection uses
dense markers covering the whole genome so that markers
exist in strong LD with all genes affecting the trait. This is also
the strategy of genome wide association studies (e.g. Moffat
et al. 2007). New breeding selection techniques, including the
selection index, best linear unbiased prediction (BLUP) (30),
marker-assisted selection (MAS), genome-wide association
study (GWAS) and genomic selection (GS) (3), have been
widely employed in both animal and plant breeding. GS is a
type of MAS; whole genome markers are used to estimate
breeding values; these estimations are called genomic
estimated breeding values (GEBV). GEBV based on the
genotypes of individuals have been remarkably accurate (31,
32). This accuracy has been verified in empirical studies in
beef cattle, mice and chicken (33-35).

Marker aided selection has proven valuable for plant
breeding, yet its effectiveness in improving complex traits
has been limited, partly because it does not account for
small-effect quantitative trait loci (36). The usable marker
for Ppd-D1 has demonstrated its utility in marker-assisted
selection by enabling the prediction of heading time
variation. In European wheat breeding, the serviceable
marker for Ppd-D1 serves as a key tool, describe genotypic
variation is 30 % in heading time. Likewise, functional
markers for Ppd-D1 (37) and Rht-B1 and Rht-D1 (38), are
extensively utilised to enhance the breeding of wheat,

Cross validation methods Description Purpose Reference

The dataset is divided randomly into five

equal segments. In each round, the To evaluate overall prediction accuracy across the
Fivefold cross validation model is trained on four of these entire population, without accounting for temporal (149)
segments, while the remaining one is or environmental factors.
used for validation.

Data from one year is excluded at a time Evaluates the model's capability to forecast
Leave-One-Year-Out Validationto be used as the validation set, while the upcoming years, simulating real-world breeding (150)
(LOoV) model is trained on data from the scenarios where predictions are required for

remaining years. seasons that haven't been tested.

The model is trained exclusively on data  Represents a realistic breeding context in which

Forward validation from past years and used to predict ~ genomic selection models are built using historical (151)

outcomes for future years.

data to predict newly untested generations.
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contributing to about 40 % of the genotypic variation in
plant height. Molecular markers have enabled breeders to
decrease the necessity for large-scale phenotyping and
conduct high-accuracy early-stage selection. MAS is
exceptionally efficient for simple traits governed by a main
gene (20). Diverse MAS, genomic selection employs
genome-wide markers to predict the genetic potential of
future individuals, bypassing the marker-detection step by
incorporating all markers into genomic value prediction,
when the number of markers exceeds the sample size,
individual marker effects may not be uniquely estimated,
yet the overall genomic value remains predictable.
Consequently, genomic prediction focuses on the overall
predictive power derived from the collective influence of
all markers rather than on precise estimations of
individual marker effects (39). Genomic selection (GS)
estimates the effects of numerous genome-wide markers
simultaneously to determine the genetic values, known as
genomic estimated breeding values (GEBV), for untested
populations, rather than relying on just a subset of
markers for selection as done in marker-assisted selection
(MAS) (40). Marker used in different crops of genomic
selection is given in Table 3

Genomic wide associated selection

Marker-assisted selection (MAS) relies on the presence of
genetic markers that are linked to the trait of interest.
However, pinpointing the genetic regions connected to a
specific phenotype is often challenging, as many traits are
influenced by multiple genes, making their relationship
with the phenotype more complex (41, 42). The common
method for connecting genetic regions to specific traits,
referred to as genetic mapping, involves two primary
strategies: linkage mapping (LM), which uses biparental
populations and association mapping (AM) (43).
Association mapping (AM) has gained growing significance
in genetic research thanks to the availability of cost-
effective, high-throughput technologies for genotyping
single nucleotide polymorphisms (SNPs), which allow for
dense marker coverage (44). A specific approach within
association mapping, known as genome-wide association
studies (GWAS), has become a widely used method for
exploring complex traits in plants overall, as well as in
various crop species such as wheat (45). The main benefit
of GWAS is its ability to examine thousands to millions of
genetic variants (such as SNPs) across numerous
individuals from diverse populations on a genome-wide
level, enabling the identification of more complex
genotype-phenotype relationships compared to linkage
mapping (LM). However, conducting a genome-wide
analysis relies heavily on having detailed knowledge and

Table 3. Comparison genomic selection of marker used in different crop

characterization of SNPs, which is made possible through
whole-genome sequencing of the target organism. For
wheat, its complete genome was successfully sequenced
in 2018 (46). GWAS uses various statistical models, mainly
linear and Bayesian approaches. Linear models apply
equations to test each marker’s link to the phenotype
separately, reducing computational complexity despite
genetic data intricacies (47)

Limitations of GWAS

GWAS still face notable limitations in both their design and
use (45). The number of apparent causal variants could be
minimized by using data from genetically diverse
populations, making it essential to ensure proper
population representation to avoid potential biases (48).
GWAS has become an essential tool for identifying loci
linked to traits of interest. Among these traits, drought
stands out as one of the most significant abiotic stress
factors impacting wheat yield (49). Since many GWAS
approaches rely on linear regression models, exploring
non-linear models could help address the issue of missing
heritability (50). Collinearity is another factor that can
reduce the efficiency and statistical power of GWAS
methods, highlighting the need for new strategies to
overcome the challenge (51). Various Al techniques have
been utilized to address the limitations and drawbacks of
GWAS (52-53). Many traits targeted by GWAS are highly
quantitative and complex. For example, grain yield and
drought stress tolerance are influenced by interactions
among various underlying component traits (54).

Statistical tools used in genomic selection

Ridge regression

One of the first techniques proposed for genomic selection
was ridge regression, in the framework of mixed models, is

equivalent to best linear unbiased prediction (BLUP) (55).
Itis represented as:

y=WGu +¢,
u is the marker effects of vector,
G represents the matrix genotype and
W is the design matrix that connect lines to observations (y).

When applying genomic selection to develop lines
for commercial varieties, the focus extends beyond just
the additive value to encompass the entire genotypic value
(56). A modified version of RR-BLUP, known as W-BLUP, was
developed to incorporate specific weights is known
functional markers. All statistical computations for genomic
selection techniques were done (57). In maize and sorghum,
from a GWAS conducted on training populations by

Crop Source Trait analyzed Marker used Genotypes Reference
Wheat International wheat and maize Grain yield 234 DAT markers 94 25
improvement centre
Maize Drought tolerance of maize for Africa Northern corn leaf blight 1,152 SNP markers 300 25
Greay leaf spot
Wheat Cornell university Yield and heading data 1158 DArT Markers 374 148
Wheat CIMMYT Yield 1279DArT 599 149
. . . . . 332
Maize Lima_grain Europe Yield and moisture content 355SNP 148

https://plantsciencetoday.online
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incorporating peak-associated markers into an RR-BLUP
model led to improvements out of 216 only 60 simulated
genetic traits (58). Whereas RR-BLUP assumes an
infinitesimal model, Bayes B has the premise that only a
certain number of single-nucleotide polymorphisms (SNPs)
affect the genotypic variation of a trait, but the Bayes B has
been examined with experimental maize data and it
observed only slight variations in accuracy between
statistical models and no definitive relationship with genetic
architecture (59).

Genomic Best Linear Unbiased Predicition

In genomic selection, various statistical methods estimate
marker effects in the training population. These methods fall
into two categories and one assumes all markers influence
the trait equally, in RR-BLUP, follow different statistical
distributions which allows marker effects (55), in plant
breeding, animal and tree BLUP has been widely used for
decades, with its predictive accuracy for individuals lacking
phenotypic data relying on the structure of the random effect
variance covariance matrix (60) it implement of recombinant
inbred lines to estimate the genomic value and BLUP is also
referred to as genomic BLUP (61). Current implementations
of the random regression model (RRM) follow the
infinitesimal model (62) and the method for estimating GEBVs
using RRM is known as GBLUP (63). Quantitative trait loci
mapping studies indicate that many quantitative traits are
under the effect of a few significant genes (64). Statistical
procedures used in the selection of key variables it is referred
as 'variable selection methods,' include Bayes A and Bayes B
(2).

Application of BLUP

Best linear unbiased prediction technology has been utilized
to forecast hybrid corn performance by leveraging existing
hybrids and their pedigree relationships with untested
hybrids. Advances in genomic research have significantly
expanded the availability of molecular markers that span the
entire genome, enabling the calculation of relationship
matrices. This advancement has led to the development of
genomic best linear unbiased prediction (GBLUP) (65).
Current genomic prediction methods include Bayes B,
empirical Bayes (66) and the least absolute shrinkage
selection operator (LASSO) (67). Extensive research has
demonstrated that GBLUP often achieves breeding values as
accurately or more accurately than traditional pedigree-based
BLUP in livestock breeding programs (65). GBLUP is particularly
advantageous when a trait is primarily influenced by polygenes,
making it potentially more robust compared to selective
shrinkage methods. These genomic selection techniques
predominantly focus on additive genetic effects (68).

BayesA

Bayes A method variances assume the marker effect vary
across loci (69). While Bayes A functions similarly to BLUP
at the data level, it differs in that chromosome segment
variances are model using an inverted chi-square
distribution (70). Compared to Bayes A, the GBLUP method
requires less computational time (71). Colombani
demonstrated that Bayes B outperforms a modified version of
Bayes A, in terms of genomic estimates accuracy which

incorporates a polygenic effect (72).

Bayes B

Bayes B is generally more precise if large QTL exist, but its
precision becomes comparable to gBLUP when many QTL
have small effects (73) and the use of best linear unbiased
prediction (BLUP) has resulted in significant genetic
improvements in most livestock breeding schemes. Certain
nonlinear methods, such as Bayes A, Bayes B and Bayes C
(74) have also been considered. But few differences in
precision between gBLUP and nonlinear models like Bayes
B and Bayes A (71).

Bayseian analysis

Bayesian methods estimate marker effects collectively to
predict genomic values for quantitative traits without the
need for marker selection (75). Bayesian analysis is
increasing due to its broader assumptions compared to
classical methods and its adaptability in addressing
various biological challenges (76-77). In recent time,
Bayesian model has been widely applied to overcome
limitations of traditional statistical methods, expanding
their use in animal and plant breeding data analysis (78).
Bayesian inference integrates prior knowledge about a
statistical system, represented as prior probability
distributions, with new observed data. The formula of
Bayesian is:

P(Bly) P(y|6) P(6)
where P(8) represents the prior distribution,
P(y|6) assesses how likely the observed data is given 6,

P(Bly) a combines both prior knowledge and observed
data for more precise inference.

Bayesian methods based on their predictive accuracy
with other genomic selection techniques (70). Several
Bayesian statistical models have been applied in genomic
assessment with different assumptions regarding marker
effect distributions. Bayesian methods assuming the prior
distribution of SNPs (1), which have the potential to enhance
the accuracy of breeding values beyond the conventional
BLUP methodology (8-9). Studies have also reported
increased accuracy using Bayesian models over BLUP (79)

In Bayesian Lasso models, hyperparameters are
usually assumed to be random, but in Student's t-based
models, they are usually set fixed, though there are
exceptions (80). In traditional genomic analyses, breeding
values are estimated when the components of variance
are known, but in Bayesian approaches, variance
components and genomic breeding values are
simultaneously estimated (77). Bayesian methods employ
marker-based genomic relationship matrices rather than
pedigree-based numerator relationship matrices in a
mixed-model setup (81). The Bayesian formulation of G-
BLUP that estimates the variance components
concurrently has shown marginally better accuracy than
the frequentist one with known heritability (82).

Integration of omics data

Plant Science Today, ISSN 2348-1900 (online)
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The Greek-derived suffix “ome,” meaning “body,” signifies
the complete set of a biological component. For example,
the genome includes all genes, the transcriptome all
transcripts, the proteome all proteins and the
metabolome all metabolites of an organism (83). In recent
years 2016, high-throughput omics (HTO) technologies
including genomics, epigenomics, transcriptomics,
proteomics and  metabolomics have advanced
significantly across various areas of biology. These
developments have driven the rise of the systems biology
era, with applications extending to animal production and
health traits (84). Transcriptomic and phenomics datasets
tailored to complex traits can help clarify how genetic
variants such as single nucleotide polymorphisms (SNPs),
insertions, deletions and copy number variations (CNVs)
influence the traits (85). Combining genomic and
transcriptomic data such as through the expression
quantitative trait loci (eQTL) method helps identify
genomic regions linked to gene expression levels (86) SNPs
are chosen wusing a more rigorous genome-wide
significance threshold than is usually applied in
conventional GWAS. SNPs' epistatic interactions are then
calculated. The association weight matrix (AWM), which
combines findings from several GWAS by evaluating SNP
interactions based on the size of their estimated additive
effects, is another useful technique (87)

Transcriptomics

The concept of genetical genomics (GG), which involves
genome-wide genetic analysis of gene expression data, was
initially introduced by Jansen and Nap (2001) and Jansen
(2003) and is also referred to as transcriptome mapping (88).
Beyond stats, leveraging biological and functional data from
layers like the epigenome, transcriptome, proteome and
metabolome linking DNA to phenotype can offer key insights
into genetic architecture. As these layers become more
accessible across species, they enhance our understanding of
complex traits (89). At the statistical level, omics data such as
sequence polymorphisms and transcriptomics are likely to
exhibit some degree of overlap or interdependence (90-91).
Techniques such as genomics and transcriptomics offer a
balance between cost and efficiency for modern researchers,
helping to bypass the lengthy and labour-intensive
traditional breeding processes in developing improved
genotypes (92). Genomic and transcriptomic data aid in
identifying genotypes with superior performance compared
to neighbouring, related, or parental lines and in revealing
phylogenetic and evolutionary relationships among
genotypes (93). Genomics provides a new basis for crop
breeding systems, especially when integrated with advanced
automated phenotyping methods and functional genomics
research (94). Genomics and transcriptomics techniques like
DNA Sequence, RNA-Sequence, Methyl-Sequence, have
significantly enhanced our understanding of gene expression
and regulation in plants (95). As costs and complexity
continue to drop, these preferred methods are being widely
adopted, routinely producing millions of sequencing reads.
Genomics and transcriptomics data, such as RNA-Sequence
outputs, are inherently large and require high-performance
computing systems for effective analysis (96). Genome and

transcriptome-based analyses facilitate the identification of
valuable alleles in both cultivated and wild relatives, while
also revealing genomic regions where diversity may have
been altered during the domestication process (97).
Advanced genomics enables the identification of specific
genome segments associated with a particular trait (98). A
pantranscriptome  combines multiple genomes or
transcriptomes to represent variant effects and structural
variations, aiding plant variation analysis alongside SNPs and
CNVs and identifying variant presence or absence (99).

Proteomics

Genomic and proteomic sequence databases from various
organisms, equipped with integrated bioinformatics tools,
now provide an extensive and ever-growing resource for
biologists and geneticists (100). In the past decade, omic
technologies like genomics, proteomics and metabolomics
have advanced significantly, allowing high-throughput
analysis of molecular and biological processes methods are
widely used to identify biomarkers, study complex systems
and understand disease mechanisms by analyzing genes,
mRNA, proteins and metabolites (101). protein abundance
cannot be reliably predicted based on the corresponding
MRNA levels on bacteria and yeast (102). In proteomics,
proteins are digested into peptides, analysed by mass
spectrometry and matched to genomic databases for
identification. Modern proteomics relies on this sequence
matching, with mass spectrometry becoming increasingly
sensitive and high throughput, as seen in shotgun proteomics
(103). Mass spectrometry is key for protein quantification,
comparison and detecting post-translational modifications.
Bioinformatics plays a crucial role in proteomics, just as in
genomics and transcriptomics (104). Cancer progression is
driven by genomic alterations and instability that result in a
series of genomic changes including mutations, methylation,
copy number aberrations or translocation (105). Proteomics
differs from genomics and transcriptomics in two keyways:
proteins can't be amplified like DNA or RNA, requiring prior
purification and effective large-scale protein arrays are still
lacking (106). Proteomics-based gene annotation has been
successfully used in both model and non-model organisms.
Proteogenomic annotation typically involves searching
peptide mass spectra against a six-frame translation of a
reference genome (107). The Proteogenomic Mapping
Pipeline uses string search algorithms to map peptides to a
genome translated in six reading frames. However, the tools
are not designed for visualization, making their output files
incompatible with genome browser tools (108).

Metabolomics

Metabolomics, the study of small molecules and metabolites,
is widely used to explore interactions between gene/protein
products and environmental factors (109). Metabolomics is
widely used to investigate diseases like type 1 diabetes and
cancer, aiming to identify biomarkers for early detection,
prognosis and treatment monitoring (110). Due to
technical limitations, researchers traditionally focused on
a few key metabolic traits important for industrial or
nutritional value, such as carotenoid content in tomatoes,
protein content in maize and starch content in potatoes
and rice (111). The majority of metabolomic studies on
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natural variation have been conducted in Arabidopsis, but
crop species are increasingly becoming the focus of
metabolomic research (112).

Multi-trait Genomic selection

Multi-trait genomic selection allows for the improvement
of low-heritability traits by leveraging information from
highly heritable traits. In humans, multivariate gBLUP has
already been used to predict genetic risk for multiple
diseases (113). Its first use in plants, the MT-GS statistical
framework, has been widely implemented in different
breeding schemes and human genetic research (114).

In plant breeding, MT-GS has been assessed using
data from crops such as soybean (115), rye (116), cranberry
(117) and for predicting hybrid wheat disease resistance. The
effectiveness of MT-GS over single-trait genomic selection has
been demonstrated through simulated data in animal
breeding studies, particularly for genetically correlated traits
(118). In addition, MT-GS models can be augmented to a
multi-trait and multi-environment Bayesian system by
utilizing the R package BMTME (Bayesian Multi-Trait and Multi
-Environment) (119). Trait-assisted genomic selection was
demonstrated to increase prediction precision more than 50
% greater compared to single-trait choice methodologies
(120). Wide genome regression model explained in Fig. 3.

Phenotypic data analysis

The phenotypic data analysis was performed in two
steps.The adjusted entry means for each location were
first estimated (121). In the second step, the adjusted entry
means were used to estimate the genetic variance
components of hybrids and parents, as well as the
variance due to genotype-by-location interactions,
according to the procedure suggested by Mohring et al., 2009
(122). The general combining ability (GCA) can be assessed
using a linear model following the g BLUP (genomic Best Linear
Unbiased Prediction) approach. This method uses a genomic
relationship matrix from whole-genome markers to make
predictions of phenotypic values (20).

Genotypic data analysis

Genotyping was done with a 9K SNP array based on the
[llumina Infinium assay (123). Because complex traits are

under the control of many genes, the breeding values for
genetic lines need to be estimated based on genetic
markers placed throughout the entire genome, an
approach called Genomic Selection. The genotype-photo-
thermal time relationship was described as a genotype-
specific reaction norm and gave a quantitative expression
of  genotype-by-environment  (GxE) interactions'
contribution to phenotypic variation (124). Flowering time
can be predicted if information on the genotype of an
inbred line and the photo-thermal time of various
locations is available, thereby allowing the identification
of the optimal environment for the inbred line and helping
construct training populations (20). Genomic selection has
the potential to realize genetic gains faster than classical
selection approaches based on pedigree and phenotypic
information. Genome-wide evaluation approaches employ
statistical models that combine phenotypic data with
dense marker data to forecast the genetic potential of
individuals for complex traits (125).

Machine learning and deep learning

Genomic selection is a new agriculture technique that
increases productivity by utilizing molecular genetic
markers to formulate superior breeding programs and
marker-based genetic assessment techniques for plants
and animals (126). It entails building a prediction model
with individuals that have known genotypic and
phenotypic information. The model is subsequently
employed to estimate genomic estimated breeding values
(GEBVs) for specific traits, enabling the ranking of
individuals with unobserved phenotypes for selection. The
growing use of GS is primarily facilitated by the reducing cost
of acquiring enormous numbers of DNA markers in plant and
animal genomes, coupled with robust empirical evidence
that proves this approach increases genetic gains per unit
time. This, in turn, shortens breeding cycles and enables
rapid selection of high-quality genotypes (127).

Machine learning applications

Machine learning software in genomic selection has been
investigated (128) and the genomic BLUP can also be
considered as a ML expert method. Current developments in
ML for genomic prediction now also include multiple ML

y=Xa+Mb+g+e

Mixed linear model

Prior inf : Genomic
rior information |_prediction |

l Machine learning

I

| BayesA | Bayes B | | BayesR
Bayesian methods
Common
variants
Genome-wide
associations
Rare
variants
Missing
Heritability |
Supervised Methods

Unsupervised Methods

Fig. 3. Classification of whole genome regression models used in genomic selection.
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areas, including deep learning, which has been contrasted to
other ML methods in crops like wheat. ML techniques have
been used with randomly assigned cross-validation methods
to big populations for single phenotype prediction (129).

Unsupervised learning entails discovering patterns,
associations, or clusters in input data without reference to an
output response variable (130). Deep learning, a branch of
ML, can be applied to both supervised and unsupervised
learning and converts input data into progressively abstract
representations by using multiple layers of neural networks.
The main goal of deep learning is to learn the weights of
neural networks using input data. Popular neural network
structures are densely connected networks, convolutional
neural networks (CNNs) and recurrent neural networks (119).
Supervised learning-based ML algorithms are especially well
suited for genomic prediction (131). GWAS is one important
method, which applies genome-wide marker data for
genomic prediction. This method determines the best
number of markers for prediction using suitable statistical
models combined with machine learning and deep learning
techniques and then choosing the most effective model (132).

Integrated genomic selection

Breeding programs are planned with fewer replications in the
early segregating generations and more replications, larger
plot sizes and multi-location testing in subsequent generations
(133). When incorporating genomic selection, breeders need to
consider the tiered structure of the breeding program, as it
affects genetic gain and implementation costs. Using GS in the
initial generations can greatly reduce the breeding cycle by
eliminating one or two selfing cycles (134). Using genomic
selection (GS) in subsequent generations to assess the
performance of lines will enhance selection accuracy but not
reduce the breeding cycle. Although reduced genotyping costs
make GS attractive in advanced generations, its benefits over
phenotypic selection at this point are minimal (135). Effects of
dominance were observed while predicting grain yield
genomic estimated breeding values in maize single crosses
employing the BLUP [N Cantelmo F] for additive and
dominance model (136). In addition, epistasis has also been
identified to be an influential element in expressing traits when
addressing the genetics and improvement of intricate traits. It
has been identified to reduce imperative contribution to
characteristics like flowering time in rice (137). As well as oil,
protein and starch levels of corn (24). Genomic selection is
known as an effective tool for breeding qualitative traits,

Table 4. Genomic selection models used for cereal crops

drastically reducing the duration of breeding cycles and
facilitating its extensive and uniform use in routine crop
breeding schemes (138).

Genomic selection implications in crop improvement
Genomic selection in cereals

Grains are an essential food source, contributing 50 % of the
world's dietary energy intake. The four principal cereal crops
such as wheat, rice, maize and barley these are grown on
arable land globally and the total yield is 2817 million tonnes
(139). Their growth, however, is confronted with enormous
challenges, such as climate change-related disasters and the
increased demand due to population growth (140). To solve
these urgent problems, crop production should be efficient
and sustainable with reduced environmental impact. This can
be achieved through the design of high-yielding, resource
saving crop varieties that can tolerate these conditions.
However, breeding these variable and tolerant crops is a slow
process because the major portion of crop productive traits lies
under the influence of polygenic systems, in which there are
many genes with small effects. Low heritability and complex
gene interactions like epistasis further add to the complexity.
Although the classical methods have contributed significantly,
their genetic gains remained behind those realized through GS.
However, classical methods can nonetheless speed up the
breeding cycle (141). GS offers a distinct advantage by enabling
the identification of individuals with the highest breeding
values within early-generation populations, significantly
reducing the need for extensive phenotyping. This approach
has recently proven effective in cereal crops, particularly
wheat, rice, maize and barley. The application of GS in these
crops has led to the development of predictive models that
accurately assess trait performance and identify the most
valuable breeding material are givenin Table 4

Genomic selection in oilseeds

Oilseeds are crucial for Asian and African smallholder farmers,
but their potential yield remains underexploited owing to
abiotic and biotic stresses (142). Genomic selection has been
used for crops such as groundnut and Brassica, enhancing
prediction precision for traits that include oil yield and quality
(143). In sunflower, GS was superior to general combining
ability (GCA) when parent lines were unknown (144). In
soybean, NAM populations increased precision for yield and oil
content whereas high genetic relatedness and training
population size still improved the predictions. GS has also
been applied to evaluate embryogenesis capacity with

Model Application in cereal Strength Reference
GBLUP Wheat, Rice, Maize, Barley Simple, robust, good for polygenic traits (1)
Bayesian models Wheat, Rice, Maize, Barley Good for traits with major genes (large QTL effects) (1)
Random forests Mainly Maize, Wheat Captures non-linear gene interactions (119)
Deep learning models Maize, Wheat, Rice Excellent for complex traits; high accuracy (154)

https://plantsciencetoday.online


https://plantsciencetoday.online

great precision (145). Genomic model used and strength of
sunflower, soybean, groundnut and Brassica are given in
Table 5.

Genomic selection in pulses

The multi-trait Bayes B as the best GS approach for lentil
using the STL-A11l marker, while single-trait GS (STGS) is
better in the absence of major-effect QTLs. They also noted
that multi-trait GS (MTGS) enhances prediction accuracy for
low-heritability traits affected by genotype-by-environment
(GxE) interactions. In Phaseolus cumingii, GS was applied to
predict cooking time as a selection criterion for fast-cooking
genotypes in different populations, including RILs, MAGIC
populations and Andean and Mesoamerican breeding lines.
Heritability of cooking time was high (0.64-0.89), with MAGIC
populations being predicted with the highest accuracy (0.55)
and Mesoamerican genotypes with reduced accuracy (0.22).
Also, when genetic similarity between training and prediction
populations is low, whole-genome re-sequencing (WGRS)
markers increase accuracy of prediction (146) employing all
the SNPs from whole-genome re-sequencing (WGRS) gave
poor prediction accuracy for yield under drought (0.148
0.186) (124). Accuracy increased appreciably (0.56-0.61) when
only yield-causal SNPs were considered. In addition, GS was
utilized to resistance to root rot in Phaseolus with high
prediction accuracies (0.7-0.8) for Pythium and Fusarium rots,
signifying its viability for the promotion of quantitative
resistance (147) Genomic model used for pulses are given
in Table 6.

Conclusion

The future of genomic selection (GS) is headed toward
deeper integration with real-time, high-throughput
phenotyping and advanced big data analytics. With the
progression of machine learning, GS models are expected
to become more flexible, non-linear and better equipped

Table 5. Genomic selection models used for oilseed crops

to manage complex traits shaped by gene-environment
interactions. Emerging technologies like deep learning and
ensemble methods will work alongside traditional
parametric and semi-parametric models to boost
prediction accuracy. On the ground applications, such as
real-time genomic selection in crops and precision
breeding in livestock, will grow more common with the use
of portable sequencing devices. Furthermore, cloud-based
computing and Al driven platforms will enable faster,
decentralized training and deployment of models.
However, ethical considerations, data privacy concerns
and computational hurdles will need to be carefully
managed as GS becomes more widespread. In the long
run, genomic selection is poised to be a key driver in
promoting sustainable agriculture and advancing
personalized medicine.
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Crop GS model used Strength Reference
Sunflower RKHS (Reproducing Kernel Hilbert Space RKHS was more effective in capturing non-additive (155)
regression), GBLUP, effects such as general combining ability (GCA)
Nested Association Mapping populations enhanced the
Sovbean Deep learning, Bayes B, Support Vector Machine  accuracy of genomic selection, while deep learning (156)
y (SVM), GBLUP, models are increasingly being used for predicting yield
and oil-related traits.

. . Particularly useful for complex traits such as oil content,

Brassica Bayesian LASSO, GBLUP, BayesB, flowering time and resistance to diseases (157)
. . . drought tolerance, quality traits,
Groundnut Bayesian Ridge Regression (BRR), GBLUP, Used for oil yield (141)
Table 6. Genomic selection models used for pulse crops
Crop GS model used Strength Reference
Lentil Multi-trait Bayes B, Single-Trait GS  Oil content, low-heritability traits under GxE (146)
(STGS) interaction
P - GBLUP, possibly Bayesian Ridge Cooking time, yield under drought, disease

Phaseolus cumingii (Common bean relative) Regression (BRR) resistance (root rots) (147)
Common bean (Phaseolus vulgaris) GBLUP, WGRS-based GS Resistance to Pythiﬁ)ﬂand Fusarium root (158)
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