RESEARCH ARTICLE

Evaluation of in vitro antioxidant, antidiabetic activities and GC-MS analysis from Amomum nilgiricum leaf extract

Narasimhamurthy Konappa¹, Udayashankar C Arakere¹, Soumya Krishnamurthy², Kusuma Chathrapalya Gangadharaiah³, Vinod Gubbiveeranna¹, Nagaraju Shivaiah³, Srinivas Chowdappa⁴ & Niranjana Siddapura Ramachandrappa†¹

¹Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka, India
²Field Marshal K.M. Cariappa College, A Constituent College of Mangalore University, Madikeri 571 201, Karnataka, India
³Department of Studies and Research in Biochemistry, Tumkur University, Tumkur 572 103, Karnataka, India
⁴Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bangalore 560 056, Karnataka, India

Contributed equally

Email: niranjanasr@rediff.com

ARTICLE HISTORY
Received: 02 July 2020
Accepted: 22 September 2020
Published: 23 October 2020

KEYWORDS
Amomum nilgiricum
Antioxidant
Antidiabetic
Glucose diffusion
Glucose uptake
Insulin secretion
GC-MS

ABSTRACT
In the present study, hexane, ethyl acetate and methanol fraction of Amomum nilgiricum leaf was evaluated for antidiabetic efficacy through in vitro α-amylase and α-glucosidase assays, DPPH and H₂O₂ scavenging activities, followed by estimation of total phenol, total flavonoids and gas chromatography-mass spectrometry analysis. In the present study, a significant amounts of total phenolics (79.92±1.58 mg/g) and flavonoids (21.74± 0.89 mg/g) were showed from Ethyl acetate fraction. Ethyl acetate fraction showed maximum inhibition of DPPH radicals (82.31±2.33%) with IC₅₀ value of 52 µg/ml and H₂O₂ scavenging activity (97.62±2.89%) with IC₅₀ value of 78.57 µg/ml concentrations. The ethyl acetate fraction was revealed maximum α-amylase inhibition (77.23± 3.21%) with IC₅₀ value 76.53 µg/ml. The ethyl acetate fraction recorded maximum α-glucosidase inhibition (85.36±2.58%) with IC₅₀ value 79.54 µg/ml. Ethyl acetate fraction exhibited maximum inhibitory activity of glucose movement into outer solution across dialysis membrane at 250 µg/ml as compared to the control. The ethyl acetate fraction revealed maximum insulin secretory activity (130.5±3.66%) in RIN-m5F cells. Methanol fraction recorded maximum glucose uptake percent in yeast cells (67.08±1.68%) when compared to standard metronidazole (68.06±0.73%). The GC-MS analysis of ethyl acetate fraction was recorded the presence of six phytochemical constituents. This study scientifically validates the antidiabetic activity of A. nilgiricum. Hence, in view of its comparative hypoglycemic strength, it can work as a valuable healing agent in treating diabetes.

© Konappa et al (2020). This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.14719/pst.2020.7.4.857

Plant Science Today, published by Horizon e-Publishing Group, is covered by Scopus, Web of Science, BIOSIS Previews, Clarivate Analytics, etc. Full list at http://www.plantsciencetoday.online

Introduction

Diabetes is an utmost widespread and prolonged endocrine disease disturbing the metabolism of carbohydrate, lipid and protein (1). The abnormal metabolic disarray characterized by hyperglycemia occurs while either the pancreatic cells do not secrete adequate insulin, or while body cells are unable to successfully use the insulin formed (2). The long-term problems of diabetes contain heart disease, stroke, atherosclerosis leading to dysfunction and organs failure. Based on 2015 World Health Organization (WHO) reports, globally, about 422 million people (aged 20–79) were living with diabetes, and by 2040 it may rise to 650 million (3, 4). In India, diabetes population is estimated to be 61.3 million, and it may increase up to 101.2 million until 2030 (5). This large number which accounts for nearly 20% of the global patients, has deemed India as the world’s capital of diabetes (6, 7). During the hyperglycemic condition, there is a constant formation of reactive oxygen species (ROS). It is evident that diabetes influences modifications in the actions of the antioxidant...
enzymes in numerous tissues. This oxidative stress further involved in the improvement and advancement of diabetes related problems. Antioxidants show significant functions in free radicals scavenge with defending cells by oxidative pressure (8–10). The treatment of diabetes remains a global health challenge. Early-stage diabetes treatment includes the postprandial reduction hyperglycemia by delaying the breakdown of hydrocarbons into absorbable monosaccharides over the prevention of hydrocarbons degrading enzymes viz., α- amylase and α-glucosidase present in the gastrointestinal strip. Consequently, declining the pace of glucose absorption also, in turn, dampening the postprandial glucose increase (11).

At present, there are a variety of therapeutic approaches comprising hypoglycemic agents viz., α-glucosidase inhibitors (miglitol, voglibose and acarbose), insulin secretagogues (sulfonylureas and glinides), insulin sensitizers (thiazolidinediones – metformin and pioglitazone). These drugs have limitation in their usage such as generating hypoglycemia at more doses, liver cell injury, lactic acidosis, headache and diarrhoea (12–16). Control of diabetes mellitus (DM) without any side effects is still a challenge to the remedial system. Medicinal plant/plant extracts are effectively used since ancient time for management of diabetes as they are reported to be more effective, less side effects and relatively low cost. According to WHO (2002), medicinal plant/plant extracts are being used to treat diabetes in about 90% of the population in developing countries. Therefore, identifying and evaluating such plants have become more important (17–20). The WHO has registered 21,000 medicinal plants used around the world and 150 plant species used commercially. Among these 2500 species are reported from the Indian subcontinent. There are about 800 species reported to have antidiabetic activity (21). Most of the plants are known to possess antioxidant with antidiabetic activities. It has been observed that the reduction of lipid peroxidation plus improved antioxidant could decrease diabetes complaints (22).

Amomum nilgiricum V. P. Thomas & M. Sabu is a recently described species of the family Zingiberaceae (23), from the Western Ghats, Kerala, India. The family comprises with 53 genera with more than 1200 species, numerous of them are generally known for therapeutic uses (24). *A. nilgiricum* is robust, clump forming habit, stout and non-stoloniferous rhizomes, lanceolate to elliptic-lanceolate, 32–41 × 6.5–8 cm. Lamina, 2–8 mm long, petiole, tomentose beneath leaves, 4.5–9 cm long and persistent ligule, corolla tube is longer than labellum, labellum is not trilobed, uniformly yellow and emarginate anther crest and reduced staminodes (23).

During the current study, the antidiabetic and antioxidant activity of different extracts from *A. nilgiricum* leaves was performed. To assess the efficacy of *A. nilgiricum* extract as antidiabetic agents, we examined the influence on the ability of α-glucosidase, α-amylase inhibitory, glucose transport across yeast cell membrane, glucose diffusion and insulin secretion.

Materials and Methods

Reagents

Folin Ciocalteu reagent, NaNO₂, NaOH, 2,2-Diphenyl-1-Picrylhydrazyl- (DPPH), Ascorbic acid, hydrogen peroxide, gallic acid, NaCl, nitrophenyl -D-glucopyranoside (p-NPG), Na₂CO₃, glucose, KCl, NaCl, MgCl₂, NaH₂PO₄, CaCl₂.

Plant material collection and extraction

Amomum nilgiricum was obtained from the region of Western Ghats, Kerala, India at an altitude of 1150 m mean sea level (MSL). The leaves of the plants were rinsed in water and washed in sterilized distilled water and shade dried. The dehydrated leaf samples were powdered and used for the extraction process. Powdered leaves (100 g) were extracted using a water-ethanol mixture (ratio of 80:10) on a magnetic stirrer for 24 hr. The leaf extract was filtered and dried at 40 °C using vacuum evaporator. The dried crude leaf extract was dissolved in 250 ml of sterilized distilled water for further fractionation. The extracts were separated with methanol, hexane and ethyl acetate and these fractions were dried using vacuum evaporator and used for further studies.

Estimation of total phenols

The whole content of phenol was estimated by Folin Ciocalteu (FC) as per the standard method (25). In brief, 100 µl of fractions was made up to 2 ml with sterile distilled water and 500 µl of FC reagent was added and incubated for 3 min. After incubation, 2 ml of Na₂CO₃ was added and the sample was incubated in warm water for 1 min. The content was allowed to cool and the absorbance was recorded at 765 nm using a spectrophotometer (Elico-Japan). The total phenol content was stated as mg gallic acid equivalents (GAE) g⁻¹.

Determination of total flavonoids

The total flavonoids content was assessed as per the standard procedure (26). The reaction mixture comprises 100 µl of different fractions and the solution was made up to 2 ml with the distilled water and incubated at room temperature for 3 min. Further, 300 µl of AlCl₃ and 300 µl of NaNO₂ was added to the above mixture and the mixture was allowed to stand for 6 min. Then, 1 M of NaOH solution (2 ml) was added and the final final volume of the reaction mixture was prepared to 10 ml with sterile water. The mixture was allowed to stand for 15 min and the absorbance was measured at 510 nm. and flavonoid concentration expressed as mg quercetin equivalent g⁻¹ extract. The total flavonoid content was calculated from a calibration curve and the result was expressed as mg rutin equivalent per g dry weight.

Estimation of antioxidant activity by in vitro methods

2. 2-Diphenyl-1-Picrylhydrazyl- (DPPH) assay

The DPPH scavenging activity from *A. nilgiricum* leaves was determined (27) with minor modifications. Different fractions of extracts (0.78–100µg/ml) were allowed to react with 1 mM DPPH solution. After
incubation, absorbance was recorded at 517 nm against blank in UV-visible spectrophotometer (Elico-Japan). Ascorbic acid was used as a positive control. The % radical scavenging activity was evaluated by the following formula:

% Radical scavenging activity = \frac{\text{Absorbance of the control} - \text{Absorbance of the sample}}{\text{Absorbance of the control}} \times 100

Hydrogen peroxide scavenging capacity

The hydrogen peroxide (H$_2$O$_2$) scavenging activity of the fractions were performed as per the standard procedure (28). Hydrogen peroxide (40 mM) in phosphate buffer was prepared and fractions at different concentrations (0.78–100 µg/ml) were added with 0.6 ml of distilled water prepared to 3 ml (pH 7.4). After 30 min, absorbance was recorded at 230 nm against a blank solution. Gallic acid was used as as a positive control. The % H$_2$O$_2$ scavenging activity was evaluated by the following formula:

% Radical scavenging activity = \frac{\text{Absorbance of the control} - \text{Absorbance of the sample}}{\text{Absorbance of the control}} \times 100

α-amylase inhibition assay

The reaction mixture containing 100 µl of different fractions (3.125–100 µg/ml) and 0.02 M Sodium phosphate buffer (pH 6.9) containing α-amylase (2 units/ml), incubated for 10 min at 37 °C. Subsequent to pre-incubation, 500 µl of 1% starch solution in 0.02 M Sodium phosphate buffer was added to all tubes, incubated for 10 min at 37 °C followed by adding of 1 ml of 3, 5-dinitrosalicylic acid (DNS) and was boiled for 5 min in a water bath at 85–90 °C to stop the reaction and allowed to cool. The mixture was made up to 10 ml with distilled water and absorbance was measured at 540 nm. Percentage of α-amylase inhibition was calculated by the following formula:

% inhibition = \left(\frac{\Delta Abs_{\text{control}} - \Delta Abs_{\text{sample}}}{\Delta Abs_{\text{control}}} \right) \times 100

The α-amylase inhibition data was expressed as IC$_{50}$ value (the concentration of IC required to inhibit 50% of α-amylase activity).

The α-glucosidase inhibition assay

The α-glucosidase inhibition activity of different fractions was assessed using the method (29). The solution of α-glucosidase (200µl; 0.2 units/ml) was mixed with different concentrations of fractions (6.25–200 µg/ml) and incubated at 37 °C for 20 min. Thereafter, 100 µl of nitrophenyl-D-glucopyranoside (p-NPG) solution (3 mM) in 0.2 M phosphate buffer (pH 6.8) was added and the mixture was further incubated at 37 °C for 10 min. The absorbance of the produced p-nitrophenol was recorded at 410 nm. Acarbose was act as standard for α-glucosidase inhibition assay. The corresponding IC$_{50}$ value, defined as the concentration of inhibitor essential to inhibit 50% α-glucosidase activity was calculated.

Percentage of α-glucosidase inhibition was calculated by the following formula:

% inhibition = \frac{\Delta Abs_{\text{control}} - \Delta Abs_{\text{sample}}}{\Delta Abs_{\text{control}}} \times 100

Glucose diffusion measurement:

The Glucose diffusion method was performed according to the standard method (30). The experiment was performed in a dialysis bag (7.6 cm x 15 mm, dialysis tubing cellulose membrane, Sigma Aldrich), 6 ml of fractions was added into dialysis bag, along with 2 ml 0.15 M Sodium chloride containing 0.22 mM glucose. The closed dialysis tubing positioned in a centrifuge tube comprising 100 ml of 0.15 M NaCl in an orbital shaker and incubated for 3 hr at 37 °C. Amount of glucose inside the dialysis tube was recorded and control contains 2 ml of 0.15 M NaCl having 0.22 mM glucose with 1 ml distilled water. The glucose movement into the outer solution was examined each half an hour using glucose oxidase peroxidase diagnostic kit (Sigma-Aldrich). The glucose concentration was verified every 30 min for 3 hr. The glucose diffusion retardation index (GDMI) was calculated using the following formula: GDMI = (100 – glucose content (µg/ml) in external solution in the presence of sample / glucose content (µg/ml) in external solution in the absence of sample) ×100.

Glucose uptake in yeast cells

Glucose uptake in yeast cell was evaluated as per the standard procedure (31). The baker's yeast (Saccharomyces cerevisiae) was subjected to repetitive centrifugation (Thermo Fischer) (3000 rpm, for 5 min) in distilled water until the supernatant fluids were was clear and a 10% (v/v) suspension was prepared in distilled water. Leaf extract fractions of 50–250 µg/ml + 1 ml of 5, 15 and 25 mM glucose solution added and incubated at 37 °C for 10 min. The reaction was initiated by addition of 100 µl yeast suspension to the combination of glucose and fractions was mixed and incubated at 37 °C for 1 hr. It is centrifuged at (2500 rpm for 5 min), and the quantity of glucose in the sample is assessed by using a spectrophotometer at 520 nm. The % of glucose uptake was determined by:

Glucose uptake (%) = \frac{\text{Abs control} - \text{Abs fractions}}{\text{Abs control} \times 100}

Insulin secretion assay

The amount of insulin released by RIN-m5F cells was estimated (32). Cells RIN-5F cell line was obtained from National Centre for Cell Science, Pune, India. The RIN-m5F cells (105 cells/ml) was isolated in fresh RPMI-1640 growth medium (supplementary with 1 mM sodium pyruvate, 10% FBS, 10 mM HEPES) 90%; fetal bovine serum 10%, antibiotics (100 µg/ml streptomycin, 100 IU/ml penicillin G, and 2.5 µg/ml amphotericin B) added 0.2 ml into 96-well plates. Plate kept in a 5% CO$_2$ incubator at 37 °C for 48 hr; after incubation, the medium was removed and cells incubated in glucose-free Krebs-Ringer (KRB) buffer (3.6 mM KCl, 1.5 mM CaCl$_2$, 135 mM NaCl, 5 mM NaHCO$_3$, 0.5 mM MgCl$_2$, 0.5 mM NaHPO$_4$) added with 1 mg/ml BSA and 10 mM HEPES incubated for 2 hr. The growth medium removed and substituted by 100µl of glucose-free KRB comprising different
concentrations (50–250 μg/ml) fractions. Glibenclamide (1, 10, 100 μM) acts as a positive control. After one hr of incubation, aliquots of 25 µl of media was collected from every well and assessed for the amount of insulin. The insulin content was estimated by DRG diagnostic insulin ELISA kit by: % of insulin secreted = [(Abs treated cells/Abs control cells) × 100] - 100. The quantity of insulin secreted was expressed as μU/ml.

The gas chromatography-mass spectrometry (GC-MS) analysis
The GC-MS analysis ethyl acetate fraction was carried out by using GC-MS instrument (model: Perkin Elmer-Clarus 680 system) at Vellore Institute of Technology (VIT) Vellore, Tamil Nadu. The bioactive components were identified using a mass spectrophotometer. GC-MS analyses of leaf and rhizome extracts were carried out by the Perkin-Elmer Clarus 680 system (Perkin-Elmer, Inc. U.S.A) equipped with a fused silica column, packed with Elite-5MS capillary column (30 m in length × 250 μm in diameter × 0.25 μm in thickness). Pure helium gas (99.99%) was used as the carrier gas at a constant flow rate of 1 ml/min. For GC-MS spectral detection, an electron ionization energy method was adopted with high ionization energy of 70 eV (electron Volts) with 0.2 sec of scan time and fragments ranging from 40 to 600 m/z. The injection quantity of 1 μl was used (split ratio 10:1), and the injector temperature was maintained at 250 °C (constant). The column oven temperature was set at 50 °C for 3 min, raised at 10 °C per min up to 280 °C, and final temperature was increased to 300 °C for 10 min. The contents of phytochemicals present in the test samples were identified based on comparison of their retention time (min), peak area, peak height and mass spectral patterns with those spectral database of authentic compounds stored in the National Institute of Standards and Technology (NIST) library (33).

Result
Total phenolic and flavonoid contents
The total phenolic and flavonoid contents from ethyl acetate, hexane, methanol, and aqueous fractions of *A. nilgiricum* leaves were shown in Fig. 1. The ethyl acetate fraction showed maximum phenolic content (79.92±1.58 mg/g) while methanol, hexane and aqueous fractions showed 47.67±0.66 mg/g, 37.46±1.12 mg/g and 65.51±1.83 mg/g respectively. The ethyl acetate fraction showed maximum flavonoid content (21.74±0.89 mg/g) while methanol, hexane and aqueous fractions showed 19.76 mg/g, 18.64 mg/g and 9.51 mg/g respectively.

DPPH radical scavenging activities
In the current study, the different concentrations of fractions was subjected to DPPH free radical scavenging method. The % of DPPH radical scavenging activities of fractions varied from 20.76–82.31%. The ethyl acetate fraction was shown maximum inhibition of 82.31±2.33%, while gallic acid, hexane, methanol and aqueous fraction showed about 87.86±0.33%, 80.53±1.6% 80.87±1.79% and 71.23±1.36% respectively (Fig. 2a). The antioxidant capacities of the fractions were compared with gallic acid as the standard. The ethyl acetate fraction exhibited the highest DPPH radical scavenging activity with an IC$_{50}$ of 52.3 µg/ml, followed by methanol, hexane and aqueous fraction with an IC$_{50}$ value of 58.9 µg/ml, 63 µg/ml and 79.50 µg/ml respectively, whereas the gallic acid exhibited 48 µg/ml.

H$_2$O$_2$ scavenging activity
The scavenging capacity of fractions on hydrogen peroxide was shown in Fig. 2b. The *A. nilgiricum* leaves fractions were capable of scavenging H$_2$O$_2$ in a dose dependent manner. The ethyl acetate fraction
showed maximum H$_2$O$_2$ scavenging activity of 97.62±2.89% followed by methanol (90.133 %), hexane (86.43±1.56%) and water fraction was revealed lowest H$_2$O$_2$ scavenging activity of 85±1.89%. The IC$_{50}$ values as follows: ethyl acetate – 78.57 µg/ml, methanol – 83.62 µg/ml, hexane – 92.38 µg/ml and aqueous fraction – 115.57 µg/ml. The standard, gallic acid, showed 62.33 µg/ml.

α - amylose inhibition Assay

The α-amylase inhibitory activity was detected from the tested fractions. Acarbose was used as a standard. The fractions exhibited a dose-dependent inhibitory effect on α-amylase activity (Fig. 3). Among the fractions, ethyl acetate fraction was revealed maximum α - amylose inhibition of 77.23±3.21% (IC$_{50}$ 76.53 µg/ml), followed by methanol of 68.22±1.37% (IC$_{50}$ 89.43 µg/ml), hexane of 62.66±1.58% (IC$_{50}$ 92.38 µg/ml) and aqueous of 55.12±1.13% (IC$_{50}$ 99.38 µg/ml). The standard acarbose showed α-amylase inhibition of 87.17% (IC$_{50}$ 0.32 µg/ml).

α-glucosidase inhibition assay

The different fractions showed an significant inhibitory effect on α-glucosidase enzyme. The inhibition was found to be dose-dependent and acarbose was used as standard (Fig. 4). The ethyl acetate fraction exhibited highest inhibition of 85.36±2.58%) (IC$_{50}$ 79.54 µg/ml) followed by the methanol fraction of 78.34±1.89% (IC$_{50}$ 82.32 µg/ml), hexane 71.66±1.46% (IC$_{50}$ 92.46 µg/ml) and aqueous fraction 69.12±1.32% (IC$_{50}$ 99.41 µg/ml). Acarbose showed α-glucosidase inhibition of 89.54±0.66% (IC$_{50}$ 0.46 µg).

In vitro glucose diffusion

The effects of different fractions tested upon glucose diffusion in-vitro are shown in Fig. 5a. Glucose diffusion assay was conducted to examine the influence of different fractions of leaf extracts with respect to its glucose retardation activity across the dialysis tube. The glucose diffusion at the different times assayed was significantly different between the fractions. The amount of glucose diffusion was recorded to increase from 30 to 180 min. Ethyl acetate fraction showed inhibitory effects on transmission of glucose into the outside solution across the dialysis membrane and aqueous fraction was showed minimum inhibition to the diffusion of glucose as related to the control. For all fractions, the rate of glucose transfer into external solution was lesser than control. The fractions were exhibited GDRI between 19% and 26%. GDRI (%) reduced with decreasing concentration of the fractions (Fig. 5). The aqueous fraction was revealed to show better GDRI at 250 µg/ml concentration.

Glucose uptake in yeast cells

The effect of fractions on glucose uptake across yeast cell membrane was determined in-vitro system containing yeast cells suspended in a 5, 15, 25 mM glucose solution at different concentrations (Fig. 6). The result of metronidazole on glucose uptake by the yeast cells at 25 mM glucose was a little higher as
compared to the fractions. All the fractions increased yeast cells glucose uptake. Among the fractions, methanolic fraction was showed maximum glucose uptake of 67.08±1.68% which was nearly close to the standard metronidazole, i.e. 68.06±0.49%, 71.06±2.62%, 71.06±2.62% concentrations at 5 mM, 15 mM, 25 mM respectively (Table 1).

Insulin secretion assay

The effect of fractions on insulin secretion was evaluated on RIN-m5F cell lines. The fractions significantly stimulated the insulin secretion in RIN-m5F pancreatic cells in comparison to Glibenclamide (Fig. 7). The ethyl acetate fraction was revealed maximum insulin secretory effect on RIN-m5F cells when compared to other fractions. A dose-dependent increase in insulin secretion was significantly improved from different concentrations of 62.5 μg/ml to 500 μg/ml as compared to Glibenclamide (1, 10, 100 μM).

Gas Chromatography-Mass Spectrometric (GC-MS) analysis

The GC-MS analysis was performed to reveal the possible active molecules responsible for exhibited pharmacological activities of the ethyl acetate fraction. The GC-MS chromatogram of the ethyl acetate fraction recorded total six peaks corresponding to bioactive compounds that were identified by relating their peak retention time, peak area (%), height (%) and mass spectral fragmentation patterns with known compounds described at National Institute of Standards and Technology (NIST) library (Table 2). The major phytocomponents present in the ethyl acetate fraction were 1-Octadeayne, 3, 4-Heptadien-2-One, 3-Cyclopentyl-6-Methyl, Serverogenin acetate, Trimethyl [4-(1, 1, 3, 3-tetramethylbutyl) phenoxyl] silane, 1, 2-Bis (trimethylsilyl) benzene and 2, 4, 6-Cycloheptatrien-1-one, 3, 5-Bis-trimethylsilyl (Fig. 8a & b).

Discussion

Diabetes mellitus is one of the growing metabolic disorder worldwide. The defectiveness in the energy regulation and metabolism of the body because of insulin resistance otherwise scarcity to elevated blood sugar points leading to numerous problems in

<p>| Table 1. Percentage of glucose uptake in yeast cells treated with A. nilgiricum leaf extracts fractions with 5, 15 and 25 mM glucose concentration. |
|---------------------|---------------------|---------------------|---------------------|</p>
<table>
<thead>
<tr>
<th>Extracts</th>
<th>Concentration (µg/ml)</th>
<th>Inhibition (%) at 5 mM glucose</th>
<th>Inhibition (%) at 15 mM glucose</th>
<th>Inhibition (%) at 25 mM glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>50</td>
<td>44.87±0.98</td>
<td>38.92±0.66</td>
<td>25.78±0.57</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>49.78±1.28</td>
<td>44.97±0.57</td>
<td>28.46±0.68</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>150</td>
<td>54.95±1.16</td>
<td>50.65±0.89</td>
<td>32.66±0.89</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>65.98±1.33</td>
<td>62.891.34</td>
<td>35.12±0.76</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>77.66±1.125</td>
<td>71.54±1.66</td>
<td>36.34±0.98</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>50</td>
<td>35.74±0.98</td>
<td>31.32±0.57</td>
<td>18.67±0.57</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>37.89±1.37</td>
<td>32.87±0.66</td>
<td>21.43±0.56</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>38.65±1.36</td>
<td>39.66±0.78</td>
<td>25.54±0.43</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>51.42±1.89</td>
<td>48.32±1.12</td>
<td>29.76±0.89</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>69.06±2.13</td>
<td>61.54±1.56</td>
<td>34.67±0.66</td>
</tr>
<tr>
<td>Methanol</td>
<td>50</td>
<td>36.76±1.46</td>
<td>33.23±0.66</td>
<td>21.66±0.6</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>39.99±1.63</td>
<td>35.76±0.57</td>
<td>25.87±0.89</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>47.75±1.83</td>
<td>42.18±1.32</td>
<td>28.45±0.57</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>59.42±2.26</td>
<td>52.65±1.45</td>
<td>33.23±0.98</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>71.06±2.62</td>
<td>65.87±2.12</td>
<td>36.56±0.57</td>
</tr>
<tr>
<td>Hexane</td>
<td>50</td>
<td>28.64±0.66</td>
<td>21.78±0.89</td>
<td>19.34±0.66</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>32.97±1.32</td>
<td>28.54±0.66</td>
<td>21.34±0.56</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>36.85±1.11</td>
<td>32.76±0.89</td>
<td>24.91±0.89</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>45.44±1.34</td>
<td>38.33±0.87</td>
<td>29.45±0.54</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>61.43±1.89</td>
<td>59.43±1.46</td>
<td>31.66±0.48</td>
</tr>
<tr>
<td>Aqueous</td>
<td>50</td>
<td>29.51±0.98</td>
<td>21.43±0.78</td>
<td>17.67±0.33</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>35.23±1.21</td>
<td>27.45±0.66</td>
<td>19.32±0.78</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>37.62±1.16</td>
<td>31.89±0.57</td>
<td>21.43±0.66</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>49.77±1.57</td>
<td>40.65±1.33</td>
<td>26.87±0.98</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>63.55±1.98</td>
<td>48.76±1.63</td>
<td>29.78±0.73</td>
</tr>
</tbody>
</table>

Results are expressed as mean ± SE (n=3) of three independent experiments.

Fig. 6. Percentage of glucose uptake in yeast cells treated with different fractions of *A. nilgiricum* leaves.

Fig. 7. Effect of different fractions of *A. nilgiricum* leaves on insulin secretion in RIN-m5F pancreatic cells. Glibenclamide was used as a positive control in glucose free medium.

![Graph showing percentage of glucose uptake with different extracts.](47x473 to 287x642)

![Graph showing concentration vs percentage of insulin secretion with different extracts.](62x812 to 74x823)
diabetes (34). Medicinal plants have been used in traditional/ayurvedic usage to treat diabetes mellitus, especially in developing countries (35). The phytocomponents of the plant extracts which show hypoglycemic effect may work separately or synergistically (36, 37). Further, the secondary plant metabolites associated with antioxidants prevent the damage of pancreatic beta cell due to oxidative stress.

The α-amylase and α-glucosidase enzymes hydrolyze α-1,4-glucosidic linkages to liberate α-glucose. Inhibition of these enzymes expressively reduces the postprandial acceleration in blood glucose (11). Earlier studies suggested that plant-derived phenolics have significantly inhibited α-amylase and α-glucosidase activities (38–40). The side effect of diabetes drugs is mainly due to extreme inhibition of pancreatic α-amylase resultant in the irregular bacterial fermentation of unused sugars in the colon (41). A. nilgiricum leaves fractions showed lesser inhibition of α-amylase and higher inhibition of α-glucosidase activity, thus showing lower side effects as that of acarbose. The α-amylase and α-glucosidase inhibitory activity of A. nilgiricum leaves might be due to its high content of bioactive phenolic molecules.

Table 2. Phytochemical constituents identified in the ethyl acetate leaf fraction of A. nilgiricum using gas chromatography-mass spectrometry. CAS, chemical abstract service; Sl. No., serial number.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CAS No.</th>
<th>Name of the compound</th>
<th>Molecular formula</th>
<th>Molar weight</th>
<th>Peak area (%)</th>
<th>Retention time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>629-89-0</td>
<td>1-Octadecyne</td>
<td>C_{18}H_{34}</td>
<td>250.5</td>
<td>2.852</td>
<td>19.950</td>
</tr>
<tr>
<td>2</td>
<td>63922-50-9</td>
<td>3,4-Heptadien-2-one, 3-cyclopentyl-6-methyl-</td>
<td>C_{12}H_{20}O</td>
<td>192.3</td>
<td>3.027</td>
<td>21.086</td>
</tr>
<tr>
<td>3</td>
<td>90023-62-2</td>
<td>Serverogenin acetate</td>
<td>C_{29}H_{36}O_{10}</td>
<td>544.6</td>
<td>82.105</td>
<td>21.891</td>
</tr>
<tr>
<td>4</td>
<td>78721-87-6</td>
<td>4-(1,1,3,3-Tetramethylbutyl)trimethylsilyl ether</td>
<td>C_{17}H_{30}OSi</td>
<td>278.51</td>
<td>3.757</td>
<td>27.098</td>
</tr>
<tr>
<td>5</td>
<td>17151-09-6</td>
<td>1,2-Bis(trimethylsilyl)benzene</td>
<td>C_{12}H_{22}Si_{2}</td>
<td>222.47</td>
<td>4.706</td>
<td>27.718</td>
</tr>
<tr>
<td>6</td>
<td>900161-21-8</td>
<td>2,4,6-Cycloheptatrien-1-one, 3,5-bis-trimethylsilyl-</td>
<td>C_{13}H_{22}OSi_{2}</td>
<td>250.48</td>
<td>3.553</td>
<td>27.783</td>
</tr>
</tbody>
</table>

Fig. 8a. GC-MS spectra and structures of major identified compounds from ethyl acetate leaf extract of A. nilgiricum. 1. 1-Octadecyne (19.930 retention time and 2.852% peak area) 2. 3,4-Heptadien-2-one, 3-Cyclopentyl-6-Methyl (21.086 retention time and 3.027% peak area) and 3. Serverogenin acetate (21.891 retention time and 82.105% peak area).
The plant fractions dose-dependently increased the glucose uptake in yeast cells. The transport of glucose across the yeast cell membrane is an effective model to evaluate the hypoglycemic effect (42). Glucose uptake is mediated by stereospecific membrane carriers (43). The methanol fraction of *A. nilgiricum* leaves exhibited the maximum glucose transport across yeast cells followed by ethyl acetate, hexane and aqueous fractions.

A. nilgiricum leaves fractions inhibited the amount of glucose diffusion across the membrane; hence, they can act as a promising inhibitor in dropping the blood glucose level by inhibiting the movement of glucose molecule across the plasma membrane into the blood vessel. Ethyl acetate fraction exhibited potent inhibitory effects compared to control. This indicates that *A. nilgiricum* leaves extract can significantly inhibit glucose diffusion (44). The glucose GDRI is beneficial *in-vitro* index to calculate the efficiency of fractions on the delay in glucose absorption in the intestinal tract (45, 46). The aqueous fraction was recorded to have the maximum GDRI value at 250 µg/ml concentration. Similar studies have been reported in soluble fibres, for example, oats, wheat bran and psyllium husk were showed to prevent between 10 and 23% glucose transmission (47).

Fig. 8b. GC-MS spectra and structures of major identified compounds from ethyl acetate leaf extract of *A. nilgiricum*. 4). Trimethyl [4-(1, 1, 3, 3-tetramethylbutyl) phenoxy] silane (27.098 retention time and 3.757% peak area), 5). 1, 2-Bis (trimethylsilyl) benzene (27.718 retention time and 4.706% peak area) and 6). 2, 4, 6-Cycloheptatrien-1-one, 3, 5-Bis-trimethylsilyl (27.783 retention time and 3.553% peak area).
Insulin secretory activity could be due to natural substances present in the plant extract, which stimulates insulin secretion or protects the intact functional β-cells from further deterioration, so that they remain active and continue producing insulin. Terpenoids and polyphenols from medicinal plants are known to stimulate the pancreatic beta-cell resulting in secretion of insulin (48, 49).

The GC-MS study of *A. nilgircicum* leaves showed the existence of 10 bioactive compounds which may account to the medical properties from plant. The documented compounds from *A. nilgircicum* leaves might have involved in the pharmacological properties exhibited. Hence the further studies like bioprospecting are essential to support its biological properties. There are no earlier reports on phytochemical compounds from leaves of *A. nilgircicum*. 1, 2-Bis (trimethylsilyl) benzene is an aromatic hydrocarbon and known to possess anticancer, antioxidant, antimicrobial, and antitumor activities (50). The cyclic compounds are unsaturated and hence show a central role in scavenging of free radicals. 2, 4, 6-cycloheptatrien-1-one, 3, 5-bis-trimethylsilyl is a ketone compound with antioxidant activity (51) and has been reported earlier from the methanolic extracts of *Phallusia nigra* (52) and is also found in leaf extracts of *Syzygium alternilotilum* (Wt.) Walp (52, 53). This compound was also established in *Garcinia kola*, *Aporosa lindeyana* (54), *Arthrocneemon glaucum* (55) and *Jatropha tanjorensis* (56) with no apparent biological activity reported so far (57). 1-Octadecyene, an alkene compound was reported from chloroform extract of *Spermadictyon suaveolens* flowers (58) and petroleum ether leaves extract and ethyl acetate leaves extracts of *Leucaena leucocephala* from Malaysia (59). 3, 4-heptadien-2-one, 3-cyclopentyl-6-methyl is a mono terpenoids compound and is reported from *Acmella uliginosa* flower (60) and * Succisa pratensis* leaves and flower (61). This compound is described to have antibacterial and antifungal activity (62). Serverogenin acetate is a well-known compound for their application in pharmacology (63). Serverogenin acetate was reported from methanol leaf extracts of *Trichilia connaroides* (Wight & Arn.) Bentv (Meliaceae) and from leaf extracts of *Trichilia connaroides* (mahogany) (64). This compound found to possess insecticide activity, anticancer, antioxidant, antiulcerogen and antimicrobial activities (65). Trimethyl [4- (1, 1, 3, 3-tetramethylbutyl) phenoxyl] silane is a derivative compound reported in the n-hexane seed extracts of *Garcinia kola* (57). The Trimethyl [4- (1, 1, 3, 3-tetramethylbutyl) phenoxyl] silane was also reported in leaf extracts of *Acacia karroo* and *Ziziphus mauritiana* (66). It is considered to exert defensive properties such as anticancer, diuretic, rickets, anti-inflammatory and as analgesia (67). The trimethyl [4-(1, 1, 3, 3-tetramethylbutyl) phenoxyl] silane was also reported in leaf extracts of *Acalypha indica* which showed mannosyltransferase inhibitor, glyceryl-ether monoxygenase inhibitor, undecaprenyl-phosphate, Alkenyl glycerophosphocholine hydrolase inhibitor activities.

Conclusion

The result of the current research indicates *A. nilgircicum* leaf extracts exhibited antioxidant property, inhibited α-glucosidase, α-amylase, enzyme activities, exhibited *in-vitro* glucose diffusion, glucose uptake by yeast cells and stimulated insulin-secreting effect on RIN m5F pancreatic cell lines. Further, isolation and evaluation of bioactive molecules could be helpful for the discovery of new medicines to control diabetes mellitus.

Acknowledgements

This work was supported by University Grant Commission (UGC), New Delhi, Post-Doctoral Fellowship (No. F./PDFSS-2014-15-ST-KAR-7487). The authors also thankful to Department of Forests and Wildlife, Govt. of Kerala for providing necessary forest permission for sample collection.

Authors’ contributions

NK, UAC, SK did the experiments, NK, UAC, KCG, VG, NS, SC, NSR wrote the manuscript, NK, UAC, KCG, VG, NS, SC, NSR and SK read the manuscript and made suitable changes.

Conflict of interests

The authors declare that they have no conflict of interest.

References

46. Ogundevel A, Ogunleke ME, Akinbode E, Ibrahim RB. Antidiabetic efficacy and phytochemical screening of...

