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Abstract  

High temperature stress is one of the abiotic stresses that hinders plant growth, metabolism and productivity. In plants, numerous 
physiological and biochemical reactions are temperature dependent. Photosynthesis is the key physiological process, which is directly 

associated with crop yield and this process is highly sensitive to high temperature stress. High temperature stress induces oxidative 

damage in cellular organelles through the generation of reactive oxygen species (ROS) that causes lipid peroxidation, protein 
denaturation and disruption of cell structure. Chloroplast is the primary site of ROS production during the light reaction of photosynthesis, 

that disrupts thylakoid membrane and reduces the efficiency of photosystem II (PS II), electron transport and ATP synthesis. Enzymes are 

mostly temperature sensitive and RuBisCO, the key enzyme involved in CO2 fixation process is inactivated due to the destruction of 

ultrastructure of chloroplast. High temperature stress also reduces the transpiration by inducing partial closure of stomata and thus 
reduces the uptake of water and nutrients by plants. Respiration rate increases in response to increase in temperature and enhances the 

utilization of stored carbohydrates leading to an imbalance in energy production and demand. In addition, high temperature stress leads 

to reduced pollen tube growth and viability, stigma receptivity and fertilization which results in poor seed set. Hence, understanding the 

physiological and biochemical changes occurs in plants under high temperatures stress conditions is essential for developing heat-
tolerant crop varieties and ensuring agricultural sustainability under warm climates. This review is mainly focused on the effects of high 

temperature stress on photosynthesis, respiration, ROS, plant water relations, nutrient uptake and yield of crops.   

Keywords: abiotic stress; high temperature; photosynthesis; physiology; reactive oxygen  

Introduction 

Climate change causes a drastic effect on agricultural 

production leads to significant threat to food security. Weather 

extremities like altered and erratic rainfall pattern, increased 

temperature and CO2 concentration in the atmosphere results 

in climate change. The impact of climate change on plant 

functionality will be influenced by both its frequency and 

intensity. In past few decades, National Oceanic and 

Atmospheric Administration noticed that since 1850 the global 

air temperature has increased by 0.06 °C (0.11 °F) per decade 

and 2024 was recorded as the warmest year (1). Rise in the 

global temperature has also led to frequent drought, pest and 

disease attack that hinders the plant growth. The Sixth 

Assessment Report of Intergovernmental Panel on Climate 

Change reported that global warming increased the world 

temperature up to 1.1°C in 2020 which affects nearly 3.3 - 3.6 

billion people across the world (2). The extreme temperature 

above the long-term average causes heat stress in plants and 

alters its physiological functions like photosynthesis, 

respiration, nutrient uptake, pollination, flowering, fruits 

formation, grain filling and ultimately the yield (3, 4).  

 High temperature stress significantly affects the 

productivity of agricultural crops. Field crops like cereals, 

millets, pulses and oil seeds behave accordingly to short and 

long-term exposure to high temperature stress at different 

phases of its growth and development, particularly during 

reproductive stages (5). A rise in the average global 

temperature by 2 °C could lead to a decrease in the grain yield 

of cereal crops by 20-40 %, particularly affecting regions in Asia 

and Africa (6). In staple crops like rice, wheat and maize high 

temperature stress causes a yield loss of 18-43 % (7). In India, a 

major wheat-producing Indo-Gangetic Plains are vulnerable to 

high temperature stress, which could result in a yield reduction 

of 8-27 % over the next few decades (8). Correspondingly, it has 

been indicated that the yields of rice (3.2 %), maize (7.4 %), 

wheat (6.0 %) and soybean (3.1 %) may decline with each 1 °C 

rise in average temperature. Furthermore, when temperature 

exceedingly above 25 °C can lead to a yield reduction of 20-70 

% in Rabi season pulse crops like chickpea, lentils, faba and 

field peas cultivated in India (9,10).  
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 High day and night time temperature stress significantly 

influences the plant growth and development in distinct ways. 

The degree of high temperature stress varies depending on the 

various climate zone and the pattern of temperature 

fluctuations experienced during both day and night time (11). 

High night time temperature (HNT) can reduce crop yield by 

limiting the distribution of biomass to reproductive sink, which 

affect fruit and seed development (12). Whereas high daytime 

temperature primarily affect photosynthesis by inducing 

oxidative damage through the generation of reactive oxygen 

species (ROS).  

 Plants under high-temperature stress undergo a variety 

of physiological changes that have significant impacts on their 

growth, development and yield. The processes like 

photosynthesis, respiration and nutrient uptake are mainly 

affected during high temperature stress by damaging 

chloroplasts and lowering the amount of chlorophyll in the 

plant, which reduces the amount of energy produced during 

photosynthesis (13). High temperature reduces the efficiency of 

the nitrogen fixing enzymes and deactivate RuBisCO enzyme 

(14, 15). Furthermore, high temperatures episodes increase the 

respiration rates, which causes energy expenditure and 

decreases biomass accumulation. Plant growth is further 

inhibited by the reduced nutrient uptake due to poor root 

system (4). High temperature stress also affects the uptake, 

movement and utilization of nutrients, that lowers the quality 

and nutritional value of the crops (16), which slows down the 

plant growth, metabolism and productivity at different stages 

of development (17).  

 High temperature stress poses significant threats during 

the reproductive stages of field crops, by causing membrane 

damage and protein dysfunction, which disturb biosynthetic 

pathways by inactivating key enzymes (18). Grain legumes are 

sensitive to high temperature stress at the flowering stage, as 

exposure to temperatures of 30-35 °C can lead to considerable 

yield loss due to heavy flower drop or pod abortion (19). 

Similarly, coincide of high daytime temperature stress during 

reproductive stage can cause damage to reproductive process 

and observed in cereals (30-38 °C), millets (40 °C), oilseeds (35-

36 °C) and pulses (32-40 °C) (5). In addition, an increase in 

temperature leads to premature senescence and consequently 

produces fewer grains and reduces the yield (14).  

 Recovery from high temperature stress depends on the 

stress severity and its effects on various physiological 

processes. Alterations in leaf water potential and abscisic acid 

levels in plants tend to recover quickly, however, the 

disturbances in the leaf gas exchange process will take longer 

time particularly under more severe drought or temperatures 

over 40 °C (20). The adaptive mechanism of plants in response 

to high temperature, often insufficient to address rapid water 

depletion under extreme heat, leading to wilting, leaf 

desiccation and yield losses (21). For developing mitigation 

strategies against the detrimental impacts of high temperature 

stress on agricultural yields and food security, it is essential to 

understand these physiological changes in crops under stress 

conditions. Still, the effects of high night temperatures as well 

as combined effect of high day and night temperatures in 

plants are not clearly elucidated (22). Such efforts will help in 

breeding for heat-tolerant crop varieties under the changing 

climate scenario. This review article primarily addresses the 

physiological and bio-chemical changes that occur in plants in 

response to high temperature stress (Fig. 1).  

Effect on plant cellular structures        

Plant cellular structure particularly plasma membrane which is 

made up of phospholipid bilayer was severely affected as high 

temperature stress alters both the membrane permeability 

and fluidity. High temperature stress reduced tolerant capacity 

of the plant by interfering with microdomain remodelling, 

protein folding, signalling pathway and intracellular responses 

(23). Pectin, natural polysaccharide has a primary role in cell 

adhesion and hydration process was reduced under high 

temperature stress thereby it affects the plant morphogenesis 

and water content. The enzyme, pectin methylesterases (PMEs) 

get activated during high temperature stress and this alters the 

cell wall flexibility by interfering with pectin, thereby plants lose 

more water under high temperature stress (24). High 

temperature stress damages the membrane system by 

changing the composition of cell wall that led to denaturation 

of proteins and enzyme inactivation, which disrupt cellular 

functions and significantly affect plant growth, development 

and yield (25).  

 The production of ROS in chloroplast was triggered 

during high temperature stress that affects chloroplast proteins 

and retrograde signals communication to the nucleus (26). 

Impact on chlorophyll structure ultimately reduced the 

photosynthetic process with induced pre-mature leaf 

senescence and that affects biomass accumulation, grain 

number, weight and quality in crops (27). High temperature 

stress also led to mitochondrial swelling, increased lipid 

peroxidation and the release of cytochrome c which triggers 

the programmed cell death (28). The endoplasmic reticulum 

(ER) is essential for protein folding. When plant experiences 

high temperature stress (50 °C) induces structural changes in 

endoplasmic reticulum (ER) that transforms the tubular 

structures into flattened sacs (cisternae) present inside ER. As 

the duration of stress increases tubular structure nearly 

disappeared and showed only perforated cisternae, indicated 

Fig. 1. Key effects of heat stress on plant growth and development.  
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severe disruption in ER organization and function (28). 

Structural changes in ER happened due to the accumulation of 

misfolded proteins.  

 To counteract this, cell triggers the unfolded protein 

response (UPR) by upregulating molecular chaperones, 

enhancing ER-associated degradation (ERAD), activating stress-

responsive transcription factors, reducing protein synthesis 

and boosting antioxidant defences to restore protein 

homeostasis and maintain cellular function. Consequently, 

exposure to high temperature stress leads to considerable 

alterations in the cellular structures of plants due to the 

production of ROS which induced cell membrane damages 

thereby affecting signalling pathway, energy production, plant 

growth, development and productivity (28).  

Effect on pigments         

Plant pigments such as chlorophylls, carotenoids and 

anthocyanins are essential for absorbing light energy to drive 

photosynthesis. Pigments play a crucial role in regulating plant 

growth, development, defence mechanisms and helps the 

plant to adapt various environmental conditions. Chlorophyll, 

the primary pigment for photo-synthesis, absorbs blue and red 

light, while carotenoids function as accessory pigments, 

transferring energy to chlorophyll and protecting plants from 

excess light damage. High temperature stress disrupts pigment 

composition by damaging chloroplast membranes, which is 

essential for pigment stability and function. High temperature 

stress accelerated the chlorophyll degra-dation, particularly 

affected chlorophyll a, leading to reduced light absorption and 

photosynthetic rates (30). As the temperature rises beyond the 

optimal levels, chloro-phyll content significantly declined by 

denaturing the pigments and limits light harvesting and ATP 

generation, ultimately it reduced carbon assimilation and plant 

growth of maize. However, chlorophyll b tends to be more heat 

stable than chlorophyll a, allowing for a partial retention of 

photosynthetic function.  

 In contrast, carotenoid content often increases under 

moderate high temperature stress which helps in stabilization 

of photosynthetic apparatus by scavenging harmful ROS 

generated under stress conditions (30). Antioxidant role of 

carotenoids protects the chlorophyll from photodamage, 

ensuring enhanced photosynthetic efficiency under stress. 

Extended exposure to extreme temperatures can lead to the 

degradation of carotenoids, thereby diminishing their 

protective function. This may lead to excessive accumulation of 

ROS, which can damage membranes and proteins involved in 

photosynthesis. Similarly, anthocyanins function as stress-

responsive pigments in plants, increased under moderate heat 

stress and they neutralize the excess ROS and thus protects the 

cellular structures. However, severe or prolonged heat stress 

downregulated the genes involved in anthocyanin 

biosynthesis, leading to reduced accumulation and decreased 

effectiveness in protecting plant cells against high temperature 

stress (31).  

Effect on photosynthesis          

Photosynthesis is highly sensitive to high temperature stress, 

since HT denatures the chloroplastic proteins, RuBisCO 

enzyme, photosynthetic electron transport system (ETS) 

components such as plastoquinone, plastocyanin, ATP 

synthesis and pigments associated in photosynthetic process 

by disturbing the chloroplast membrane (32). Chlorophyll is the 

major photosynthetic pigment that harvest light energy and 

drive ETS of photosynthesis. The increased activity of 

chlorophyllase and chlorophyll degrading peroxide enzymes 

during high temperature stress affected the chlorophyll 

biosynthesis which ultimately resulted in reduced chlorophyll 

content and photosynthetic rate (33). Thylakoid membrane 

and Photosystem II (PSII) were highly sensitive to high 

temperature stress (34). High temperature stress reduced the 

carbon fixation in crops by affecting the thylakoid membrane 

and PS II activity due to enhanced production  of ROS (Fig. 2) 

(35).   

 The direct impact of high temperature stress on 

thylakoid membrane reduced the efficiency of PS II, PS I, D1 

protein, cytochrome b6f complex, PS I and RuBisCO enzyme 

(36). High temperature stress shifts the photo phosphorylation 

pathway from its non-cyclic mode to cyclic mode, thereby it 

decreases CO2 assimilation rate and photosynthetic process. 

High temperature stress also alters lipid composition and 

metabolism, particularly in thylakoid membranes, contributing 

to decreased photosynthetic rates (34). Uptake and 

assimilation of plant nutrients and photo-assimilates is also 

related with photosynthesis (37). Therefore, nutrient 

homeostasis was either directly or indirectly affected by 

photosynthetic process under high temperature stress.  

 RuBisCO is an important carboxylation enzyme in 

carbon fixation reaction of photosynthesis. High temperature 

stress damages the ultrastructure of chloroplast and 

inactivates RuBisCO that led to reduced photo-synthetic rate 

(38). The activity of RuBisCO enzyme was inhibited under 

Fig. 2. Impact of high temperature stress on photosynthesis in plants.  
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moderate and high temperature stress condition that resulted 

in declined photosynthesis, because the affinity of RuBisCO for 

CO2 got decreased under high temperature stress and tend to 

catalyze its oxygenase reaction which resulted in increased 

photorespiration process, ultimately the yield was reduced (39, 

33). Especially, high daytime temperature upregulated RuBP 

(Ribulose-1,5-bisphosphate) oxygenase enzyme activity that 

directly influence the carbon fixation cycle through enhanced 

production of hydrogen peroxide through side reaction (40). 

Increased photorespiration process led to 30 % carbon loss 

under high daytime temperature stress resulted in chlorophyll 

degradation, reduced photosynthetic efficiency and premature 

leaf senescence (41). Plant undergoes partial closure of 

stomata to minimize transpiration loss under high daytime 

temperature stress. Stomatal closure causes reduced internal 

CO2 concentration in mesophyll cells and limited the 

photosynthetic process (Table 1) (42).  

 HNT stress damages chlorophyll structure and lowers 

the net CO2 assimilation rate in both C3 and C4 plants (43). 

Chlorophyll degradation by high night temperature causes 

quick senescence of leaves, that directly influences 

photosynthesis (44). The decrease in leaf photosynthesis were 

found to be higher at high night-time temperature (45) because 

of reduced chlorophyll content and increased thylakoid 

membrane damage (46). High night temperature reduced the 

photosynthetic efficiency by increased thylakoid membrane 

permeability causes excessive ion leakage (47) and this 

decreased chlorophyll content, quantum yield of PSII and 

overall photosynthetic process (43). In rice and wheat, 

decreased photosynthetic rates, low Rubisco activity and 

increased membrane lipid peroxidation under HNT stress 

altered photo-assimilation process (48).  

Effect on respiration          

Plant respiration is a crucial process in plant growth and 

development and can consume nearly 30-70 % of carbon 

gained through photosynthetic process. Increase in 

temperature can increase respiration rate that supports and 

maintain protein turnover and ion flux (27). Respiration rate is 

more sensitive to environmental changes and linearly related 

to tissue nitrogen content. Increased respiration rate can lead 

to enhanced ROS production led to reduced non-structural 

carbohydrates by consuming more photo-assimilates that 

ultimately affect the crop yield (49).   

 Studies on rice, maize and cotton showed that HNT 

stress increased night respiration rates, potentially consumed 

up to 40 % more carbon. High respiration rate indirectly 

reduced the photosynthetic process by depleting reserved 

carbohydrate, resulted in reduced crop growth rate (50). 

However, HNT showed several effects on photosynthesis in 

different crops, positive effect was observed in Populus spp., 

whereas negative effects were noticed in wheat and rice. High 

night temperature decreased the membrane stability through 

enhanced ROS production (51). At the cellular level, HNT 

S.No Crop Temperature (Day/
Night °C) 

Stage Major effects References 

1 Rice 38/30 °C Booting and grain filling Reduced spikelet number, seed setting percentage, 
grain weight and protein content. 

(110) 

2 Rice 35 °C and 41 °C 
Meiosis, flowering and 

grain filling 

Resulted in failure of fertilization process, floret 
sterility.  

Reduced grain number per panicle, seed setting rate 
and 1000 grain weight. 

(111) 

3 Maize 40/30 °C Seed setting Decreased metabolomic enzyme activity, starch 
accumulation and kernel weight. 

(112) 

4 Maize 32.5 °C and 33.8 °C Flowering 
Increased water loss led to decreased fertilization 

process, pollen viability, spikelet opening and seed set 
percentage. 

(113) 

5 Sorghum 42 °C/32 °C Pollen Mother Cell (PMC) 
and booting 

At pollen mother cell stage - damages tapetum and 
pollen led to pollen sterility and yield loss.  

At booting stage - reduced seed production. 
(114) 

6 Foxtail millet 39-41 °C/28-30 °C Grain filling 
Disrupted sugar transport from source organs to grains 

and reduced grain number, weight and irreversible 
yield loss. 

(115) 

7 Finger millet 37 ± 1 °C Early seedling Decreased germination percentage, root and shoot 
growth, 

(116) 

8 Black gram > 35 °C Flowering and maturity 

Accelerated phenological development led to early 
flowering and maturity. 

Shortened grain filling period causes early maturation 
and yield reduction. 

(117) 

9 Chickpea 35 °C and 40 °C 
Flowering and pod setting 

(Maturity) 

At flowering stage - reduced photosynthesis and pollen 
viability, resulted in lower seed set and yield. 

At maturity stage - decreased nutrient uptake, poor 
seed development and seed quality. 

(118) 

10 Groundnut 45 °C Reproductive Increased ROS production causes membrane damage 
and yield 

(119) 

11 Tomato 37 ±1 °C / 27 ±1 °C After flowering 
Decreased photosynthetic rate and nutrient transport 

causes enhanced floral abortion, low fruit set 
percentage, yield and quality. 

(120) 

12 Lentil 32/14 °C Flowering Increased the level of phytic acid and reduced the 
concentration of protein, iron (Fe) and zinc (Zn). 

(121) 

Table 1. Impact of high day and nighttime temperature stress in different crops.  
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causes mitochondrial dysfunction, alters dark respiration and 

triggers programmed cell death (27). Studies in rice and wheat 

showed that increased accumulation of TCA cycle 

intermediates in leaves under high night temperature stress 

enhanced the respiration rate (52). Night respiration was 

positively correlated with leaf carbohydrate content and 

increase in temperature, increases respiration process and the 

response is less pronounced after acclimation (53).  

Effect on plant water relations          

High temperature stress has a major impact on plant water 

relations, leading to a rapid decline in both the water potential 

and osmotic potential of the leaf (54). Under high temperature 

stress conditions, plants losses more water through the 

transpiration process that led to rapid soil moisture depletion 

(55). To limit the water loss and to conserve moisture, plants 

may close their stomata thereby limits carbon dioxide uptake 

and affects photosynthetic process (56). Transpiration occurs 

during night may benefit the plant growth by allowing 

respiratory CO2 to escape and supports leaf expansion (57). 

High temperature stress affects the integrity of root membrane 

and hydraulic conductivity resulted in reduced water uptake 

(58). At cellular level, low water content affects various 

physiological process such as gas exchange, nutrient 

assimilation, respiration and sucrose transport (23). The 

movement of water across the cell membranes is severely 

affected under high temperature stress due to inactivation of 

aquaporin in plants (58). Regulation of stomata is the key 

physiological trait that controls water loss through transpiration 

and the entry of CO₂, which is essential for photosynthesis during 

high temperature stress (56).  

Effect on plant nutrients        

Nutrients are essential and critical in maintaining the normal 

functions in plants. In plants, different forms of nutrients 

elements are found to be in association with enzymes for the 

proper functioning of metabolic processes. Nutrients such as 

nitrogen (N), potassium (K) and magnesium (Mg) play vital role 

in various physiological processes like photosynthesis, 

carbohydrate partitioning and plant stress tolerance (59). 

Micronutrients such as boron (B), copper (Cu), iron (Fe) and zinc 

(Zn) are also involved in various metabolic processes and 

photosynthetic activities which are required in small 

proportions (60).  

 High temperature stress significantly effects on plant 

nutrient relations by interfering with uptake, transport and 

assimilation processes. The concentration of nutrients in both 

root and shoot was decreased, especially roots were more 

sensitive than shoots under high temperature stress (61). The 

rate of nutrient uptake generally dependent on temperature. 

High temperature stress alters root cellular machinery which 

includes complex interactions between genes, phytohormones 

and ROS (62). When temperature increases above 40 °C there is 

a substantial reduction in the total protein concentration and 

levels of nutrient-uptake and its assimilation in roots that 

potentially decrease yield and nutritional quality of the grain 

(61). However, the response of nutrients to high temperature 

stress varies, for instance, boron uptake may be increased at 

moderately elevated temperatures. In cereal crops, the growth 

of root was severely affected by high temperature stress, 

resulting in diminishing nutrient and water uptake (16). Root 

thermotolerance was highly associated with efficient carbon 

and protein metabolism and activation of stress defence 

proteins (63).   

 Plasma membrane H+-ATPases play a crucial role in 

nutrient uptake and stress responses by creating proton 

gradients for secondary active transport (64). The interrelation 

between nutrient transporters and aqua-porins is important for 

understanding plant responses to abiotic stresses, including 

high temperature stress. In tolerant plants, there was an 

upregulation in the expression of both nutrient transporters 

and aquaporins in plasma membrane were upregulated during 

the period of nutrient deficiency caused by high temperature 

stress conditions (65). Further research is needed to elucidate 

the complex mechanisms of nutrient uptake under high 

temperature stress and develop strategies to improve plant 

nutrition and resilience.  

Effect on proteins and lipid metabolism        

Proteins are essential for various cellular functions, including 

photosynthesis, metabolism and signal trans-duction. 

However, high temperatures can severely affect protein 

stability and function. High temperature stress causes direct 

damage to plants by inducing protein denaturation, 

aggregation and increased membrane fluidity. Indirect effects 

include enzyme inactivation in both chloroplasts and 

mitochondria, inhibition of protein synthesis and protein 

degradation (66). Extreme temperature can affect the nitrogen 

availability to plants and decreased the protein content of the 

seed by suppressing the key storage protein genes, such as 

GmGy1, GmGy2, GmGy4, GmGy5 and Gmβ-conglycinin. In 

contrast, high temperature stress promotes lipid accumulation 

by upregulating lipid biosynthesis-related genes like GmBCCP2 

and GmKAS1. Additionally, the increased expression of 

GmWRI1-like1, a key regulator of lipid metabolism, contributes 

increased lipid content in seeds of soybean under high 

temperature stress (67).   

 Lipids play a crucial role in energy storage and serve as 

structural components of the plasma membrane that 

maintains cellular integrity and facilitates signalling pathways. 

High temperature stress triggers excessive production of ROS, 

leading to lipid peroxidation, membrane damage, electrolyte 

leakage and eventually causes cell death (68). To mitigate these 

detrimental effects, plants undergo lipid remodelling, modifies 

membrane lipid composition and fatty acid saturation levels to 

ensure the membrane stability under high temperature (69). 

Certain lipids, such as phosphoinositides, phosphatidic acid, 

sphingolipids, lysophospholipids, oxylipins and free fatty acids, 

serve as precursors for signalling molecules that regulates 

stress responses (70).    

Effect on ROS production          

In plants, high temperature stress leads to increased 

production of ROS such as singlet oxygen, superoxide, hydroxyl 

radical and hydrogen peroxide (71). Under HT conditions, ROS 

were generated in various cellular components including 

chloroplasts, mitochondria and peroxisomes (Fig. 3) (72). 

Under normal situations the production of ROS is minimum 

and its level is balanced by antioxidant enzymes. However, 

their production was increased exponentially under stress 
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conditions, potentially causes oxidative damage to 

biomolecules and this disrupts the cellular redox homeostasis 

(73). In photosynthetic process, ROS were produced during 

energy transfer, electron transport and incomplete water 

oxidation under high temperature stress situations (74). In 

addition to oxidative damage, ROS also plays a crucial role as 

signalling molecules in plant stress responses (71).  

 Studies on wheat, sorghum and rice have shown that 

elevated temperatures increase ROS production, leading to 

membrane damage, reduced chlorophyll content and 

decreased photosynthetic efficiency (45). These effects were 

observed in various plant organs, including leaves and pollen 

grains, resulting in reduced seed set and grain yield (75). The 

rise in ROS production in plant cells leads to alterations in lipid 

metabolism, thereby creating the imbalance between ROS and 

antioxidant defence systems (34). In photosynthetic process, 

carbon fixation and oxygen evolution rates were reduced by 

ROS, which damages PS II repair mechanism rather than 

directly harming the reaction centre (76). ROS production also 

affects both vegetative and reproductive stages of plants 

resulted in reduced fruit size and yield (66). Studies found that 

accumulation of ROS in anther and pollen grain induces 

oxidative stress and affects pollen viability by altering 

phospholipid composition (34).   

Effect on metabolic enzymes         

High temperature stress affects plant metabolic processes by 

altering metabolic pathways through enzyme inactivation and 

misfolding of proteins thereby reduced the growth, 

development and yield of the crops (77). RuBisCO enzyme 

activity was consistently decreased under high temperature 

stress which lowers carbon fixation efficiency in plants. In 

tomato, the declined Rubisco activity during high temperature 

stress reduced the photosynthetic efficiency and further fruit 

development (78). Another critical effect of high temperature 

stress was mitochondrial dysfunction, where the key enzymes 

of the TCA cycle, such as citrate synthase and malate 

dehydrogenase were inhibited, led to energy deficiency and 

decreased ATP production that affects carbon metabolism and 

limits the plant growth.   

 High temperature stress also leads to excessive 
generation of ROS, which causes oxidative damage to 
metabolic enzymes. The activity of key enzymes involved in 
carbohydrate metabolism such as sucrose synthase (SS), 

soluble starch synthase (SSS) and ADP-glucose pyro 
phosphorylase (AGPase) were reduced under high temperature 
stress and resulted in reduced accumulation of starch and 
energy availability for plant growth (79). Besides the 
metabolism of starch, sugar metabolism was also 
compromised due to the disruption of enzymes such as 
invertase and hexokinase. These enzymes are essential for 
regulating sugar transport and sink strength in developing 
grains, which further caused yield losses under high 
temperature (80). The activity of the enzymes such as nitrate 
reductase (NR) and glutamine synthetase (GS) was also 
reduced which led to declined amino acid biosynthesis and 
nitrogen assimilation (81). Additionally, heat stress enhances 
the protease enzyme activity which accelerates the protein 
degradation and nitrogen imbalance in plants. In wheat, 
reduced activity of starch-metabolizing enzymes such as 
sucrose synthase (SS) and soluble starch synthase (SSS) 
negatively impacted the grain filling and yield (82). In 
sugarcane, high temperature stress significantly reduced the 
activity of sucrose phosphate synthase (SPS) and sucrose 
synthase (SS) led to decreased sugar metabolism (81). High 
temperature stress causes severe metabolic disruptions by 
inactivating key enzymes thereby enhancing the oxidative 
stress. These effects ultimately reduced the plant growth and 
yield.  

Effect on plant hormones          

Plant hormones, plays a key role in regulating plant growth, 
development in responses to environmental stresses. Plant 
hormones such as auxin (IAA), gibberellin (GA), cytokinin (CK), 
ethylene (ET), abscisic acid (ABA), brassinosteroids (BR), 
salicylic acid (SA) and jasmonic acid (JA) also regulates the 
plant defence mechanisms against several abiotic stresses like 
drought, high temperature, salinity, etc. High temperature 
stress disrupts hormonal balance and thus affects plant 
metabolism, growth and productivity (Fig. 4) (83).  

 Auxin, a key signalling molecule in plants, regulates vital 
processes in plants such as root development, tissue 
differentiation and organogenesis (84). Increased temperature 
suppressed the expression of IAA synthesis genes, leading to 
reduced auxin production. In tobacco, high temperature stress 
significantly reduced the level of IAA levels in roots that resulted 
in altered root architecture with shorter primary roots and 
fewer lateral roots, ultimately it affects the plant growth and 
nutrient uptake. Expression of IAA-related genes, such as 
YUCCAs and PINs were downregulated, while auxin response 
factors (ARF1 and ARF2) were upregulated in roots disrupted 
auxin biosynthesis, signalling and transport (85). Reduced 
auxin production showed negative impact on shoot 
elongation, lateral bud formation and flower development, 
reproductive success and overall biomass accumulation. 
Similarly in rice, IAA content was significantly reduced in grains 
under high temperature stress by upregulating the expression 
of Aux/IAA gene OsIAA29. Reduction of IAA was associated with 
adverse effects on grain filling, led to a higher percentage of 
shrunken and chalky seeds, as well as reduced 1000 grain 
weight (86).  

 Gibberellins regulate plant growth processes like seed 
germination, stem elongation and flowering. High-temperature 
stress decreased the level of GA which resulted in reduced stem 
elongation, delayed flowering and seed set percentage. 

Fig. 3.  ROS production sites and process.  
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Downregulation of gibberellin biosynthesis genes, such as 
GA20ox (gibberellin 20-oxidase), reduced active GA levels and 
causes stunted growth with shortened internodes. 
Additionally, reduced GA levels negatively affect the viability 
and fertility of pollen grains which contributes to lower grain 
yield (87). Cytokinin regulate cell division, growth and stress 
response activities in plants. High temperature stress alters the 
cytokinin levels in different plant tissues. The degradation of 
chlorophyll accelerates because of cytokinin depletion, which 
results in yellowing and premature aging of leaves and reduced 
biomass accumulation. Cytokinin also plays a crucial role in 
maintaining thermotolerance by promoting stomatal opening 
and transpiration thereby it regulates leaf temperature. 
However, prolonged heat stress disrupts cytokinin homeostasis, 
leading to flower abortion, reduced grain filling and yield loss 
(88).  

 Abscisic acid (ABA) plays a critical role in regulating 
plant responses to high temperature stress by reduced 
stomatal opening, transpiration and maintains plant water 
status. Under high temperature stress, ABA gets accumulated 
rapidly and enhanced absorption of water by roots (89). 
However, reduced carbon fixation due to ABA accumulation in 
stomatal guard cells impairs biomass production and lowers 
grain yield by reduced photosynthetic efficiency. ABA-induced 
thermotolerance improves the survival of crops like wheat and 
maize by mitigating heat-induced kernel abortion and 
maintaining kernel weight (90). ABA activates antioxidant 
defence mechanisms and protects the plant cells from 
oxidative stress and membrane damage caused by high 
temperature stress.  

 Ethylene regulates fruit ripening, leaf senescence and 
stress responses. High temperatures altered ethylene 

biosynthesis and signalling that reduced fruit yield and 
postharvest quality in apple (91). High temperature stress 
disrupted ethylene-dependent responses in plants by 
downregulating ethylene biosynthesis genes which affected 
fruit colour, firmness and sugar accumulation. In crops such as 
tomatoes, high temperature stress delays ripening process, 
resulted in uneven fruit development and reduced shelf life. 
Increased ethylene production under high temperature stress 
triggers premature senescence causes early leaf yellowing, 
shedding and reduced vegetative growth (92). In rice, high 
temperature stress disrupted the phytohormonal balance, 
level of active cytokinin (CTKs), gibberellin A1 (GA1) and indole-
3-acetic acid (IAA) were decreased while the level of abscisic 
acid (ABA) and bound cytokinin in young panicles were 
increased. These changes negatively affect the spikelet fertility, 
grain number and its weight, ultimately lowers the grain yield. 
The decline in growth promoting hormones reduced panicle 
development and grain filling in rice, while ABA accumulation 
accelerated stress responses (93).  

Effect on reproductive biology          

Reproductive development is very crucial in determining both 
quantitative and qualitative growth and develop-ment of 
plants. Plant reproduction is severely affected by diverse 
environmental conditions. Abiotic stresses like high 
temperature causes numerous effects on reproductive organs 
such as reduced pollen viability, pollen tube growth, stigma 
function and receptivity, fertilization and embryogenesis 
process which results in poor seed set development (94). 
Reduced pollen function, ovule viability and total number of 
ovules resulted in reproductive failure by denaturing of 
proteins under high temperature stress (95). High mean 
temperature (> 24 °C) occurred during heading and grain filling 
stages decreased floret fertility and individual grain weight, 
leading to substantial yield losses (96).   

 Recent studies on high temperature stress showed that in 
plants male reproductive organs were found to be more 
sensitive than female reproductive organs (97). In maize, female 
tissues exhibited resistance to both cold and high temperature 
stress, whereas mature pollen was highly susceptible. The effect 
of heat stress on male reproductive organs in several ways, 
including meiotic defects, spore abortion and alterations in 
cytoskeleton, tapetum and sugar metabolism in the pollen 
grains (98). Some Studies also suggested that female 
reproductive organs may be more vulnerable to heat stress in 
certain species. For instance, in Brassica napus, female 
reproductive organs showed greater sensitivity to transient heat 
stress during early flowering stage (99). 

 Cereal crops like wheat showed reduced photosynthetic 
capacity, dry matter accumulation and grain yield under high 
temperature stress (96). In legumes, it was prominent that high 
temperature causes flower abortion, pollen and ovule infertility, 
impaired fertilization and reduced seed filling rate and duration 
(100). HNT increases ROS accumulation in pollen grains (73). The 
decreased photosynthetic rate under high temperature stress 
was attributed to lipid desaturation, oxidation of the cellular 
organelles (34). These changes resulted in reduced pollen 
function, lower seed set and decreased crop yield (43). High 
night temperature during flowering or grain filling stages 
shortens the grain filling period which in turn alters the 
flowering schedule (51). 

Fig. 4. Effect of high temperature stress on plant hormonal balance 
and growth.  



SWETHA ET AL  8     

https://plantsciencetoday.online 

 High temperature stress during the anthesis or grain 
filling stage increases thylakoid membrane damage in plants. 
The photosynthetic rate and grain yield per plant exhibited a 
significant positive relation (101). Reduced photosynthesis and 
inactivation of RuBisCO enzyme affect the photo assimilation 
production and distribution, which in turn affect flowering, 
seed filling and finally the crop yield. HNT during flowering and 
grain-filling stages exhibited negative impact on physiological 
process and yield of several crops. Reduction of total dry 
matter production and yield might be related to increased 
night respiration which utilize carbohydrates stored during day 
in maize kernel (50). Similarly in wheat, grain number and 
weight were reduced by affecting the carbon balance (52).  

Role of heat shock proteins           

Heat shock proteins (HSPs) are the molecular chaperones that 
help organisms to cope up with various stresses, particularly 
under high temperature. HSP prevents protein aggregation 
and aids in proper protein folding, maintenance of cellular 
homeostasis under stress conditions (102). HSPs were rapidly 
induced in response to high temperature stress and enhance 
the plant tolerance. In plants, HSPs play vital role such as 
maintenance of cell membrane integrity, scavenging of ROS 
through enhanced production of antioxidant enzymes (103). 
Accumulation of HSP depends on plasma membrane signalling 
and activates the families of heat shock transcription factor 
(HSF). HSP were categorized into different families based on 
molecular weight, including HSP100, HSP90, HSP70, HSP60 
and small HSPs (104).  

 HSPs were involved in various cellular functions, 
including signalling, translation, host-defence mechanisms and 
metabolism (105). HSPs expressions are regulated by 
interconnected signalling cascades and heat stress 
transcription factors that enhances the tolerance of plants to 
various environmental stresses (106). Therefore, HSPs are 
essential for plant to grow, survive and adapt to numerous 
abiotic stresses, particularly high temperature stress (105). 
When plants are exposed to high temperature stress, it receives 

high temperature stimulus and transmit the signal through 
physio-biochemical aspects and regulatory genes. HT stress 
cause oxidative stress in plants through ROS production which 
affects the macromolecules and nucleic acid synthesis. To 
overcome this stress, plants depend upon HSPs to protect cell 
membrane, detoxify ROS production and increase antioxidant 
enzyme activity (106).  

 Heat shock proteins (HSPs) serve as molecular 
chaperones in plants, aiding in protein stabilization, refolding 
and cellular homeostasis under heat stress. In wheat, 753 HSP 
genes have been identified, with increased expression 
observed during heat stress and seed development (107). 
Similarly, in maize, proteomic analysis has highlighted the 
upregulation of key HSPs, including HSP26 and HSP16.9, which 
support protein stability and chloroplast function under high 
temperatures (108). In cotton, specific HSPs such as HSP101, 
GHSP26 and HSC701 enhance heat tolerance by maintaining 
membrane integrity and protecting photosynthetic machinery. 
Genotypes with higher HSP gene expression, like Cyto-177 and 
VH-305, exhibit improved photosynthesis, stomatal 
conductance and heat resilience (109).  

 

Conclusion              

High temperature stress poses a critical challenge to plant 
physiology and biochemistry, impacting water relations, 
photosynthesis, respiration and ultimately yield and quality of 
crops (Fig. 5). High temperature induces oxidative damage 
through generation of ROS which affects physiological process 
like photosynthesis, respiration and water status of the plant. 
Additionally, increased night respiration under high 
temperature stress leads to carbon loss, which has been 
associated with yield reduction. However, respiration alone 
does not fully account for yield and quality losses, suggesting 
that other interconnected factor like carbon balance, starch 
and protein metabolism and specific enzymatic activities play 
substantial roles in plants. 

Fig. 5. Schematic representation of high temperature stress effects in plants.  
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 However, future research should focus on elucidating the 
precise impact of high night temperatures on carbon balance, 
particularly the interplay between carbon loss (through 
respiration) and carbon gain (through photosynthesis). 
Furthermore, understanding starch and protein metabolism 
under high temperature stress could offer insights into 
developing crop varieties with improved resilience. Field-based 
studies, involving large, genetically diverse mapping populations 
combined with high-throughput phenotyping are essential to 
accurately assess the genetic and physiological responses to 
high day and night temperature stress.  
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