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Abstract

High temperature stress is one of the abiotic stresses that hinders plant growth, metabolism and productivity. In plants, numerous
physiological and biochemical reactions are temperature dependent. Photosynthesis is the key physiological process, which is directly
associated with crop yield and this process is highly sensitive to high temperature stress. High temperature stress induces oxidative
damage in cellular organelles through the generation of reactive oxygen species (ROS) that causes lipid peroxidation, protein
denaturation and disruption of cell structure. Chloroplast is the primary site of ROS production during the light reaction of photosynthesis,
that disrupts thylakoid membrane and reduces the efficiency of photosystem Il (PS II), electron transport and ATP synthesis. Enzymes are
mostly temperature sensitive and RuBisCO, the key enzyme involved in CO; fixation process is inactivated due to the destruction of
ultrastructure of chloroplast. High temperature stress also reduces the transpiration by inducing partial closure of stomata and thus
reduces the uptake of water and nutrients by plants. Respiration rate increases in response to increase in temperature and enhances the
utilization of stored carbohydrates leading to an imbalance in energy production and demand. In addition, high temperature stress leads
to reduced pollen tube growth and viability, stigma receptivity and fertilization which results in poor seed set. Hence, understanding the
physiological and biochemical changes occurs in plants under high temperatures stress conditions is essential for developing heat-
tolerant crop varieties and ensuring agricultural sustainability under warm climates. This review is mainly focused on the effects of high
temperature stress on photosynthesis, respiration, ROS, plant water relations, nutrient uptake and yield of crops.
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Introduction High temperature stress significantly affects the
productivity of agricultural crops. Field crops like cereals,
millets, pulses and oil seeds behave accordingly to short and
long-term exposure to high temperature stress at different
phases of its growth and development, particularly during
reproductive stages (5). A rise in the average global
temperature by 2 °C could lead to a decrease in the grain yield
of cereal crops by 20-40 %, particularly affecting regions in Asia
and Africa (6). In staple crops like rice, wheat and maize high
temperature stress causes a yield loss of 18-43 % (7). In India, a
major wheat-producing Indo-Gangetic Plains are vulnerable to
high temperature stress, which could result in a yield reduction
of 8-27 % over the next few decades (8). Correspondingly, it has
been indicated that the yields of rice (3.2 %), maize (7.4 %),
wheat (6.0 %) and soybean (3.1 %) may decline with each 1 °C
rise in average temperature. Furthermore, when temperature
exceedingly above 25 °C can lead to a yield reduction of 20-70
% in Rabi season pulse crops like chickpea, lentils, faba and
field peas cultivated in India (9,10).

Climate change causes a drastic effect on agricultural
production leads to significant threat to food security. Weather
extremities like altered and erratic rainfall pattern, increased
temperature and CO, concentration in the atmosphere results
in climate change. The impact of climate change on plant
functionality will be influenced by both its frequency and
intensity. In past few decades, National Oceanic and
Atmospheric Administration noticed that since 1850 the global
air temperature has increased by 0.06 °C (0.11 °F) per decade
and 2024 was recorded as the warmest year (1). Rise in the
global temperature has also led to frequent drought, pest and
disease attack that hinders the plant growth. The Sixth
Assessment Report of Intergovernmental Panel on Climate
Change reported that global warming increased the world
temperature up to 1.1°C in 2020 which affects nearly 3.3 - 3.6
billion people across the world (2). The extreme temperature
above the long-term average causes heat stress in plants and
alters its physiological functions like photosynthesis,
respiration, nutrient uptake, pollination, flowering, fruits
formation, grain filling and ultimately the yield (3, 4).
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High day and night time temperature stress significantly
influences the plant growth and development in distinct ways.
The degree of high temperature stress varies depending on the
various climate zone and the pattern of temperature
fluctuations experienced during both day and night time (11).
High night time temperature (HNT) can reduce crop yield by
limiting the distribution of biomass to reproductive sink, which
affect fruit and seed development (12). Whereas high daytime
temperature primarily affect photosynthesis by inducing
oxidative damage through the generation of reactive oxygen
species (ROS).

Plants under high-temperature stress undergo a variety
of physiological changes that have significant impacts on their
growth, development and vyield. The processes like
photosynthesis, respiration and nutrient uptake are mainly
affected during high temperature stress by damaging
chloroplasts and lowering the amount of chlorophyll in the
plant, which reduces the amount of energy produced during
photosynthesis (13). High temperature reduces the efficiency of
the nitrogen fixing enzymes and deactivate RuBisCO enzyme
(14, 15). Furthermore, high temperatures episodes increase the
respiration rates, which causes energy expenditure and
decreases biomass accumulation. Plant growth is further
inhibited by the reduced nutrient uptake due to poor root
system (4). High temperature stress also affects the uptake,
movement and utilization of nutrients, that lowers the quality
and nutritional value of the crops (16), which slows down the
plant growth, metabolism and productivity at different stages
of development (17).

High temperature stress poses significant threats during
the reproductive stages of field crops, by causing membrane
damage and protein dysfunction, which disturb biosynthetic
pathways by inactivating key enzymes (18). Grain legumes are
sensitive to high temperature stress at the flowering stage, as
exposure to temperatures of 30-35 °C can lead to considerable
yield loss due to heavy flower drop or pod abortion (19).
Similarly, coincide of high daytime temperature stress during
reproductive stage can cause damage to reproductive process
and observed in cereals (30-38 °C), millets (40 °C), oilseeds (35-
36 °C) and pulses (32-40 °C) (5). In addition, an increase in
temperature leads to premature senescence and consequently
produces fewer grains and reduces the yield (14).

Recovery from high temperature stress depends on the
stress severity and its effects on various physiological
processes. Alterations in leaf water potential and abscisic acid
levels in plants tend to recover quickly, however, the
disturbances in the leaf gas exchange process will take longer
time particularly under more severe drought or temperatures
over 40 °C (20). The adaptive mechanism of plants in response
to high temperature, often insufficient to address rapid water
depletion under extreme heat, leading to wilting, leaf
desiccation and yield losses (21). For developing mitigation
strategies against the detrimental impacts of high temperature
stress on agricultural yields and food security, it is essential to
understand these physiological changes in crops under stress
conditions. Still, the effects of high night temperatures as well
as combined effect of high day and night temperatures in
plants are not clearly elucidated (22). Such efforts will help in
breeding for heat-tolerant crop varieties under the changing
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climate scenario. This review article primarily addresses the
physiological and bio-chemical changes that occur in plants in
response to high temperature stress (Fig. 1).
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Fig. 1. Key effects of heat stress on plant growth and development.
Effect on plant cellular structures

Plant cellular structure particularly plasma membrane which is
made up of phospholipid bilayer was severely affected as high
temperature stress alters both the membrane permeability
and fluidity. High temperature stress reduced tolerant capacity
of the plant by interfering with microdomain remodelling,
protein folding, signalling pathway and intracellular responses
(23). Pectin, natural polysaccharide has a primary role in cell
adhesion and hydration process was reduced under high
temperature stress thereby it affects the plant morphogenesis
and water content. The enzyme, pectin methylesterases (PMEs)
get activated during high temperature stress and this alters the
cell wall flexibility by interfering with pectin, thereby plants lose
more water under high temperature stress (24). High
temperature stress damages the membrane system by
changing the composition of cell wall that led to denaturation
of proteins and enzyme inactivation, which disrupt cellular
functions and significantly affect plant growth, development
and yield (25).

The production of ROS in chloroplast was triggered
during high temperature stress that affects chloroplast proteins
and retrograde signals communication to the nucleus (26).
Impact on chlorophyll structure ultimately reduced the
photosynthetic process with induced pre-mature leaf
senescence and that affects biomass accumulation, grain
number, weight and quality in crops (27). High temperature
stress also led to mitochondrial swelling, increased lipid
peroxidation and the release of cytochrome ¢ which triggers
the programmed cell death (28). The endoplasmic reticulum
(ER) is essential for protein folding. When plant experiences
high temperature stress (50 °C) induces structural changes in
endoplasmic reticulum (ER) that transforms the tubular
structures into flattened sacs (cisternae) present inside ER. As
the duration of stress increases tubular structure nearly
disappeared and showed only perforated cisternae, indicated
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severe disruption in ER organization and function (28).
Structural changes in ER happened due to the accumulation of
misfolded proteins.

To counteract this, cell triggers the unfolded protein
response (UPR) by upregulating molecular chaperones,
enhancing ER-associated degradation (ERAD), activating stress-
responsive transcription factors, reducing protein synthesis
and boosting antioxidant defences to restore protein
homeostasis and maintain cellular function. Consequently,
exposure to high temperature stress leads to considerable
alterations in the cellular structures of plants due to the
production of ROS which induced cell membrane damages
thereby affecting signalling pathway, energy production, plant
growth, development and productivity (28).

Effect on pigments

Plant pigments such as chlorophylls, carotenoids and
anthocyanins are essential for absorbing light energy to drive
photosynthesis. Pigments play a crucial role in regulating plant
growth, development, defence mechanisms and helps the
plant to adapt various environmental conditions. Chlorophyll,
the primary pigment for photo-synthesis, absorbs blue and red
light, while carotenoids function as accessory pigments,
transferring energy to chlorophyll and protecting plants from
excess light damage. High temperature stress disrupts pigment
composition by damaging chloroplast membranes, which is
essential for pigment stability and function. High temperature
stress accelerated the chlorophyll degra-dation, particularly
affected chlorophyll a, leading to reduced light absorption and
photosynthetic rates (30). As the temperature rises beyond the
optimal levels, chloro-phyll content significantly declined by
denaturing the pigments and limits light harvesting and ATP
generation, ultimately it reduced carbon assimilation and plant
growth of maize. However, chlorophyll b tends to be more heat
stable than chlorophyll a, allowing for a partial retention of
photosynthetic function.

In contrast, carotenoid content often increases under
moderate high temperature stress which helps in stabilization
of photosynthetic apparatus by scavenging harmful ROS
generated under stress conditions (30). Antioxidant role of
carotenoids protects the chlorophyll from photodamage,
ensuring enhanced photosynthetic efficiency under stress.
Extended exposure to extreme temperatures can lead to the
degradation of carotenoids, thereby diminishing their
protective function. This may lead to excessive accumulation of
ROS, which can damage membranes and proteins involved in
photosynthesis. Similarly, anthocyanins function as stress-
responsive pigments in plants, increased under moderate heat
stress and they neutralize the excess ROS and thus protects the
cellular structures. However, severe or prolonged heat stress
downregulated the genes involved in anthocyanin
biosynthesis, leading to reduced accumulation and decreased
effectiveness in protecting plant cells against high temperature
stress (31).

Effect on photosynthesis

Photosynthesis is highly sensitive to high temperature stress,
since HT denatures the chloroplastic proteins, RuBisCO
enzyme, photosynthetic electron transport system (ETS)
components such as plastoquinone, plastocyanin, ATP
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synthesis and pigments associated in photosynthetic process
by disturbing the chloroplast membrane (32). Chlorophyllis the
major photosynthetic pigment that harvest light energy and
drive ETS of photosynthesis. The increased activity of
chlorophyllase and chlorophyll degrading peroxide enzymes
during high temperature stress affected the chlorophyll
biosynthesis which ultimately resulted in reduced chlorophyll
content and photosynthetic rate (33). Thylakoid membrane
and Photosystem Il (PSIl) were highly sensitive to high
temperature stress (34). High temperature stress reduced the
carbon fixation in crops by affecting the thylakoid membrane
and PS Il activity due to enhanced production of ROS (Fig. 2)
(35).

The direct impact of high temperature stress on
thylakoid membrane reduced the efficiency of PS II, PS I, D1
protein, cytochrome b6f complex, PS | and RuBisCO enzyme
(36). High temperature stress shifts the photo phosphorylation
pathway from its non-cyclic mode to cyclic mode, thereby it
decreases CO, assimilation rate and photosynthetic process.
High temperature stress also alters lipid composition and
metabolism, particularly in thylakoid membranes, contributing
to decreased photosynthetic rates (34). Uptake and
assimilation of plant nutrients and photo-assimilates is also
related with photosynthesis (37). Therefore, nutrient
homeostasis was either directly or indirectly affected by
photosynthetic process under high temperature stress.

RuBisCO is an important carboxylation enzyme in
carbon fixation reaction of photosynthesis. High temperature
stress damages the ultrastructure of chloroplast and
inactivates RuBisCO that led to reduced photo-synthetic rate
(38). The activity of RuBisCO enzyme was inhibited under
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Fig. 2. Impact of high temperature stress on photosynthesis in plants.
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moderate and high temperature stress condition that resulted
in declined photosynthesis, because the affinity of RuBisCO for
CO, got decreased under high temperature stress and tend to
catalyze its oxygenase reaction which resulted in increased
photorespiration process, ultimately the yield was reduced (39,
33). Especially, high daytime temperature upregulated RuBP
(Ribulose-1,5-bisphosphate) oxygenase enzyme activity that
directly influence the carbon fixation cycle through enhanced
production of hydrogen peroxide through side reaction (40).
Increased photorespiration process led to 30 % carbon loss
under high daytime temperature stress resulted in chlorophyll
degradation, reduced photosynthetic efficiency and premature
leaf senescence (41). Plant undergoes partial closure of
stomata to minimize transpiration loss under high daytime
temperature stress. Stomatal closure causes reduced internal
CO, concentration in mesophyll cells and limited the
photosynthetic process (Table 1) (42).

HNT stress damages chlorophyll structure and lowers
the net CO, assimilation rate in both C; and C, plants (43).
Chlorophyll degradation by high night temperature causes
quick senescence of leaves, that directly influences
photosynthesis (44). The decrease in leaf photosynthesis were
found to be higher at high night-time temperature (45) because
of reduced chlorophyll content and increased thylakoid
membrane damage (46). High night temperature reduced the
photosynthetic efficiency by increased thylakoid membrane
permeability causes excessive ion leakage (47) and this

decreased chlorophyll content, quantum yield of PSIl and
overall photosynthetic process (43). In rice and wheat,
decreased photosynthetic rates, low Rubisco activity and
increased membrane lipid peroxidation under HNT stress
altered photo-assimilation process (48).

Effect on respiration

Plant respiration is a crucial process in plant growth and
development and can consume nearly 30-70 % of carbon
gained through photosynthetic process. Increase in
temperature can increase respiration rate that supports and
maintain protein turnover and ion flux (27). Respiration rate is
more sensitive to environmental changes and linearly related
to tissue nitrogen content. Increased respiration rate can lead
to enhanced ROS production led to reduced non-structural
carbohydrates by consuming more photo-assimilates that
ultimately affect the crop yield (49).

Studies on rice, maize and cotton showed that HNT
stress increased night respiration rates, potentially consumed
up to 40 % more carbon. High respiration rate indirectly
reduced the photosynthetic process by depleting reserved
carbohydrate, resulted in reduced crop growth rate (50).
However, HNT showed several effects on photosynthesis in
different crops, positive effect was observed in Populus spp.,
whereas negative effects were noticed in wheat and rice. High
night temperature decreased the membrane stability through
enhanced ROS production (51). At the cellular level, HNT

Table 1. Impact of high day and nighttime temperature stress in different crops.

Temperature (Day/

S.No Crop Night °C) Stage Major effects References
; ° . e, Reduced spikelet number, seed setting percentage,
1 Rice 38/30°C Booting and grain filling grain weight and protein content. (110)
Resulted in failure of fertilization process, floret
: o o Meiosis, flowering and sterility.
2 Rice 35°Cand41°C grain filling Reduced grain number per panicle, seed setting rate (111)
and 1000 grain weight.
: o : Decreased metabolomic enzyme activity, starch
3 Maize 40/30°C Seed setting accumulation and kernel weight. (112)
Increased water loss led to decreased fertilization
4 Maize 32.5°Cand 33.8°C Flowering process, pollen viability, spikelet opening and seed set (113)
percentage.
At pollen mother cell stage - damages tapetum and
5 Sorghum 42°C/32°C Pollenal\ﬂ]%tggggﬁll (PMC) pollen led to pollen sterility and yield loss. (114)
g At booting stage - reduced seed production.
Disrupted sugar transport from source organs to grains
6 Foxtail millet 39-41°C/28-30°C Grain filling and reduced grain number, weight and irreversible (115)
yield loss.
7 Finger millet 3741°C Early seedling Decreased germlnatlogrgfvrt(;]entage, root and shoot (116)
Accelerated phenological development led to early
o . - flowering and maturity.
8 Black gram >35°C Flowering and maturity Shortened grain filling period causes early maturation (117)
and yield reduction.
At flowering stage - reduced photosynthesis and pollen
. o o Flowering and pod setting viability, resulted in lower seed set and yield.
9 Chickpea 35°Cand40°C (Maturity) At maturity stage - decreased nutrient uptake, poor (118)
seed development and seed quality.
10 Groundnut 45°C Reproductive Increased ROS production causes membrane damage (119)
and yield
Decreased photosynthetic rate and nutrient transport
11 Tomato 37+1°C/27+1°C After flowering causes enhanced floral abortion, low fruit set (120)
percentage, yield and quality.
12 Lentil 32/14°C Flowering Increased the level of phytic acid and reduced the (121)

concentration of protein, iron (Fe) and zinc (Zn).
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causes mitochondrial dysfunction, alters dark respiration and
triggers programmed cell death (27). Studies in rice and wheat
showed that increased accumulation of TCA cycle
intermediates in leaves under high night temperature stress
enhanced the respiration rate (52). Night respiration was
positively correlated with leaf carbohydrate content and
increase in temperature, increases respiration process and the
response is less pronounced after acclimation (53).

Effect on plant water relations

High temperature stress has a major impact on plant water
relations, leading to a rapid decline in both the water potential
and osmotic potential of the leaf (54). Under high temperature
stress conditions, plants losses more water through the
transpiration process that led to rapid soil moisture depletion
(55). To limit the water loss and to conserve moisture, plants
may close their stomata thereby limits carbon dioxide uptake
and affects photosynthetic process (56). Transpiration occurs
during night may benefit the plant growth by allowing
respiratory CO. to escape and supports leaf expansion (57).
High temperature stress affects the integrity of root membrane
and hydraulic conductivity resulted in reduced water uptake
(58). At cellular level, low water content affects various
physiological process such as gas exchange, nutrient
assimilation, respiration and sucrose transport (23). The
movement of water across the cell membranes is severely
affected under high temperature stress due to inactivation of
aquaporin in plants (58). Regulation of stomata is the key
physiological trait that controls water loss through transpiration
and the entry of CO,, which is essential for photosynthesis during
high temperature stress (56).

Effect on plant nutrients

Nutrients are essential and critical in maintaining the normal
functions in plants. In plants, different forms of nutrients
elements are found to be in association with enzymes for the
proper functioning of metabolic processes. Nutrients such as
nitrogen (N), potassium (K) and magnesium (Mg) play vital role
in various physiological processes like photosynthesis,
carbohydrate partitioning and plant stress tolerance (59).
Micronutrients such as boron (B), copper (Cu), iron (Fe) and zinc
(Zn) are also involved in various metabolic processes and
photosynthetic activities which are required in small
proportions (60).

High temperature stress significantly effects on plant
nutrient relations by interfering with uptake, transport and
assimilation processes. The concentration of nutrients in both
root and shoot was decreased, especially roots were more
sensitive than shoots under high temperature stress (61). The
rate of nutrient uptake generally dependent on temperature.
High temperature stress alters root cellular machinery which
includes complex interactions between genes, phytohormones
and ROS (62). When temperature increases above 40 °C there is
a substantial reduction in the total protein concentration and
levels of nutrient-uptake and its assimilation in roots that
potentially decrease yield and nutritional quality of the grain
(61). However, the response of nutrients to high temperature
stress varies, for instance, boron uptake may be increased at
moderately elevated temperatures. In cereal crops, the growth
of root was severely affected by high temperature stress,

resulting in diminishing nutrient and water uptake (16). Root
thermotolerance was highly associated with efficient carbon
and protein metabolism and activation of stress defence
proteins (63).

Plasma membrane H+-ATPases play a crucial role in
nutrient uptake and stress responses by creating proton
gradients for secondary active transport (64). The interrelation
between nutrient transporters and aqua-porins is important for
understanding plant responses to abiotic stresses, including
high temperature stress. In tolerant plants, there was an
upregulation in the expression of both nutrient transporters
and aquaporins in plasma membrane were upregulated during
the period of nutrient deficiency caused by high temperature
stress conditions (65). Further research is needed to elucidate
the complex mechanisms of nutrient uptake under high
temperature stress and develop strategies to improve plant
nutrition and resilience.

Effect on proteins and lipid metabolism

Proteins are essential for various cellular functions, including
photosynthesis, metabolism and signal trans-duction.
However, high temperatures can severely affect protein
stability and function. High temperature stress causes direct
damage to plants by inducing protein denaturation,
aggregation and increased membrane fluidity. Indirect effects
include enzyme inactivation in both chloroplasts and
mitochondria, inhibition of protein synthesis and protein
degradation (66). Extreme temperature can affect the nitrogen
availability to plants and decreased the protein content of the
seed by suppressing the key storage protein genes, such as
GmMGyl, GmGy2, GmGy4, GmGy5 and Gmp-conglycinin. In
contrast, high temperature stress promotes lipid accumulation
by upregulating lipid biosynthesis-related genes like GmBCCP2
and GmKASL. Additionally, the increased expression of
GmWRI1-likel, a key regulator of lipid metabolism, contributes
increased lipid content in seeds of soybean under high
temperature stress (67).

Lipids play a crucial role in energy storage and serve as
structural components of the plasma membrane that
maintains cellular integrity and facilitates signalling pathways.
High temperature stress triggers excessive production of ROS,
leading to lipid peroxidation, membrane damage, electrolyte
leakage and eventually causes cell death (68). To mitigate these
detrimental effects, plants undergo lipid remodelling, modifies
membrane lipid composition and fatty acid saturation levels to
ensure the membrane stability under high temperature (69).
Certain lipids, such as phosphoinositides, phosphatidic acid,
sphingolipids, lysophospholipids, oxylipins and free fatty acids,
serve as precursors for signalling molecules that regulates
stress responses (70).

Effect on ROS production

In plants, high temperature stress leads to increased
production of ROS such as singlet oxygen, superoxide, hydroxyl
radical and hydrogen peroxide (71). Under HT conditions, ROS
were generated in various cellular components including
chloroplasts, mitochondria and peroxisomes (Fig. 3) (72).
Under normal situations the production of ROS is minimum
and its level is balanced by antioxidant enzymes. However,
their production was increased exponentially under stress
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conditions, potentially causes oxidative damage to
biomolecules and this disrupts the cellular redox homeostasis
(73). In photosynthetic process, ROS were produced during
energy transfer, electron transport and incomplete water
oxidation under high temperature stress situations (74). In
addition to oxidative damage, ROS also plays a crucial role as
signalling molecules in plant stress responses (71).

Studies on wheat, sorghum and rice have shown that
elevated temperatures increase ROS production, leading to
membrane damage, reduced chlorophyll content and
decreased photosynthetic efficiency (45). These effects were
observed in various plant organs, including leaves and pollen
grains, resulting in reduced seed set and grain yield (75). The
rise in ROS production in plant cells leads to alterations in lipid
metabolism, thereby creating the imbalance between ROS and
antioxidant defence systems (34). In photosynthetic process,
carbon fixation and oxygen evolution rates were reduced by
ROS, which damages PS Il repair mechanism rather than
directly harming the reaction centre (76). ROS production also
affects both vegetative and reproductive stages of plants
resulted in reduced fruit size and yield (66). Studies found that
accumulation of ROS in anther and pollen grain induces
oxidative stress and affects pollen viability by altering
phospholipid composition (34).

Effect on metabolic enzymes

High temperature stress affects plant metabolic processes by
altering metabolic pathways through enzyme inactivation and
misfolding of proteins thereby reduced the growth,
development and vyield of the crops (77). RuBisCO enzyme
activity was consistently decreased under high temperature
stress which lowers carbon fixation efficiency in plants. In
tomato, the declined Rubisco activity during high temperature
stress reduced the photosynthetic efficiency and further fruit
development (78). Another critical effect of high temperature
stress was mitochondrial dysfunction, where the key enzymes
of the TCA cycle, such as citrate synthase and malate
dehydrogenase were inhibited, led to energy deficiency and
decreased ATP production that affects carbon metabolism and
limits the plant growth.

High temperature stress also leads to excessive
generation of ROS, which causes oxidative damage to
metabolic enzymes. The activity of key enzymes involved in
carbohydrate metabolism such as sucrose synthase (SS),
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soluble starch synthase (SSS) and ADP-glucose pyro
phosphorylase (AGPase) were reduced under high temperature
stress and resulted in reduced accumulation of starch and
energy availability for plant growth (79). Besides the
metabolism of starch, sugar metabolism was also
compromised due to the disruption of enzymes such as
invertase and hexokinase. These enzymes are essential for
regulating sugar transport and sink strength in developing
grains, which further caused vyield losses under high
temperature (80). The activity of the enzymes such as nitrate
reductase (NR) and glutamine synthetase (GS) was also
reduced which led to declined amino acid biosynthesis and
nitrogen assimilation (81). Additionally, heat stress enhances
the protease enzyme activity which accelerates the protein
degradation and nitrogen imbalance in plants. In wheat,
reduced activity of starch-metabolizing enzymes such as
sucrose synthase (SS) and soluble starch synthase (SSS)
negatively impacted the grain filling and yield (82). In
sugarcane, high temperature stress significantly reduced the
activity of sucrose phosphate synthase (SPS) and sucrose
synthase (SS) led to decreased sugar metabolism (81). High
temperature stress causes severe metabolic disruptions by
inactivating key enzymes thereby enhancing the oxidative
stress. These effects ultimately reduced the plant growth and
yield.

Effect on plant hormones

Plant hormones, plays a key role in regulating plant growth,
development in responses to environmental stresses. Plant
hormones such as auxin (IAA), gibberellin (GA), cytokinin (CK),
ethylene (ET), abscisic acid (ABA), brassinosteroids (BR),
salicylic acid (SA) and jasmonic acid (JA) also regulates the
plant defence mechanisms against several abiotic stresses like
drought, high temperature, salinity, etc. High temperature
stress disrupts hormonal balance and thus affects plant
metabolism, growth and productivity (Fig. 4) (83).

Auxin, a key signalling molecule in plants, regulates vital
processes in plants such as root development, tissue
differentiation and organogenesis (84). Increased temperature
suppressed the expression of I1AA synthesis genes, leading to
reduced auxin production. In tobacco, high temperature stress
significantly reduced the level of IAA levels in roots that resulted
in altered root architecture with shorter primary roots and
fewer lateral roots, ultimately it affects the plant growth and
nutrient uptake. Expression of IAA-related genes, such as
YUCCAs and PINs were downregulated, while auxin response
factors (ARF1 and ARF2) were upregulated in roots disrupted
auxin biosynthesis, signalling and transport (85). Reduced
auxin production showed negative impact on shoot
elongation, lateral bud formation and flower development,
reproductive success and overall biomass accumulation.
Similarly in rice, I1AA content was significantly reduced in grains
under high temperature stress by upregulating the expression
of Aux/IAA gene OslAA29. Reduction of IAA was associated with
adverse effects on grain filling, led to a higher percentage of
shrunken and chalky seeds, as well as reduced 1000 grain
weight (86).

Gibberellins regulate plant growth processes like seed
germination, stem elongation and flowering. High-temperature
stress decreased the level of GA which resulted in reduced stem
elongation, delayed flowering and seed set percentage.
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Fig. 4. Effect of high temperature stress on plant hormonal balance

and growth.

Downregulation of gibberellin biosynthesis genes, such as
GA200x (gibberellin 20-oxidase), reduced active GA levels and
causes stunted growth with shortened internodes.
Additionally, reduced GA levels negatively affect the viability
and fertility of pollen grains which contributes to lower grain
yield (87). Cytokinin regulate cell division, growth and stress
response activities in plants. High temperature stress alters the
cytokinin levels in different plant tissues. The degradation of
chlorophyll accelerates because of cytokinin depletion, which
results in yellowing and premature aging of leaves and reduced
biomass accumulation. Cytokinin also plays a crucial role in
maintaining thermotolerance by promoting stomatal opening
and transpiration thereby it regulates leaf temperature.
However, prolonged heat stress disrupts cytokinin homeostasis,
leading to flower abortion, reduced grain filling and yield loss
(88).

Abscisic acid (ABA) plays a critical role in regulating
plant responses to high temperature stress by reduced
stomatal opening, transpiration and maintains plant water
status. Under high temperature stress, ABA gets accumulated
rapidly and enhanced absorption of water by roots (89).
However, reduced carbon fixation due to ABA accumulation in
stomatal guard cells impairs biomass production and lowers
grain yield by reduced photosynthetic efficiency. ABA-induced
thermotolerance improves the survival of crops like wheat and
maize by mitigating heat-induced kernel abortion and
maintaining kernel weight (90). ABA activates antioxidant
defence mechanisms and protects the plant cells from
oxidative stress and membrane damage caused by high
temperature stress.

Ethylene regulates fruit ripening, leaf senescence and

stress responses. High temperatures altered ethylene
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biosynthesis and signalling that reduced fruit yield and
postharvest quality in apple (91). High temperature stress
disrupted ethylene-dependent responses in plants by
downregulating ethylene biosynthesis genes which affected
fruit colour, firmness and sugar accumulation. In crops such as
tomatoes, high temperature stress delays ripening process,
resulted in uneven fruit development and reduced shelf life.
Increased ethylene production under high temperature stress
triggers premature senescence causes early leaf yellowing,
shedding and reduced vegetative growth (92). In rice, high
temperature stress disrupted the phytohormonal balance,
level of active cytokinin (CTKs), gibberellin A1 (GA;) and indole-
3-acetic acid (IAA) were decreased while the level of abscisic
acid (ABA) and bound cytokinin in young panicles were
increased. These changes negatively affect the spikelet fertility,
grain number and its weight, ultimately lowers the grain yield.
The decline in growth promoting hormones reduced panicle
development and grain filling in rice, while ABA accumulation
accelerated stress responses (93).

Effect on reproductive biology

Reproductive development is very crucial in determining both
quantitative and qualitative growth and develop-ment of
plants. Plant reproduction is severely affected by diverse
environmental conditions. Abiotic stresses like high
temperature causes numerous effects on reproductive organs
such as reduced pollen viability, pollen tube growth, stigma
function and receptivity, fertilization and embryogenesis
process which results in poor seed set development (94).
Reduced pollen function, ovule viability and total number of
ovules resulted in reproductive failure by denaturing of
proteins under high temperature stress (95). High mean
temperature (> 24 °C) occurred during heading and grain filling
stages decreased floret fertility and individual grain weight,
leading to substantial yield losses (96).

Recent studies on high temperature stress showed that in
plants male reproductive organs were found to be more
sensitive than female reproductive organs (97). In maize, female
tissues exhibited resistance to both cold and high temperature
stress, whereas mature pollen was highly susceptible. The effect
of heat stress on male reproductive organs in several ways,
including meiotic defects, spore abortion and alterations in
cytoskeleton, tapetum and sugar metabolism in the pollen
grains (98). Some Studies also suggested that female
reproductive organs may be more vulnerable to heat stress in
certain species. For instance, in Brassica napus, female
reproductive organs showed greater sensitivity to transient heat
stress during early flowering stage (99).

Cereal crops like wheat showed reduced photosynthetic
capacity, dry matter accumulation and grain yield under high
temperature stress (96). In legumes, it was prominent that high
temperature causes flower abortion, pollen and ovule infertility,
impaired fertilization and reduced seed filling rate and duration
(100). HNT increases ROS accumulation in pollen grains (73). The
decreased photosynthetic rate under high temperature stress
was attributed to lipid desaturation, oxidation of the cellular
organelles (34). These changes resulted in reduced pollen
function, lower seed set and decreased crop yield (43). High
night temperature during flowering or grain filling stages
shortens the grain filling period which in turn alters the
flowering schedule (51).
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High temperature stress during the anthesis or grain
filling stage increases thylakoid membrane damage in plants.
The photosynthetic rate and grain yield per plant exhibited a
significant positive relation (101). Reduced photosynthesis and
inactivation of RuBisCO enzyme affect the photo assimilation
production and distribution, which in turn affect flowering,
seed filling and finally the crop yield. HNT during flowering and
grain-filling stages exhibited negative impact on physiological
process and yield of several crops. Reduction of total dry
matter production and yield might be related to increased
night respiration which utilize carbohydrates stored during day
in maize kernel (50). Similarly in wheat, grain number and
weight were reduced by affecting the carbon balance (52).

Role of heat shock proteins

Heat shock proteins (HSPs) are the molecular chaperones that
help organisms to cope up with various stresses, particularly
under high temperature. HSP prevents protein aggregation
and aids in proper protein folding, maintenance of cellular
homeostasis under stress conditions (102). HSPs were rapidly
induced in response to high temperature stress and enhance
the plant tolerance. In plants, HSPs play vital role such as
maintenance of cell membrane integrity, scavenging of ROS
through enhanced production of antioxidant enzymes (103).
Accumulation of HSP depends on plasma membrane signalling
and activates the families of heat shock transcription factor
(HSF). HSP were categorized into different families based on
molecular weight, including HSP100, HSP90, HSP70, HSP60
and small HSPs (104).

HSPs were involved in various cellular functions,
including signalling, translation, host-defence mechanisms and
metabolism (105). HSPs expressions are regulated by
interconnected  signalling cascades and heat stress
transcription factors that enhances the tolerance of plants to
various environmental stresses (106). Therefore, HSPs are
essential for plant to grow, survive and adapt to numerous
abiotic stresses, particularly high temperature stress (105).
When plants are exposed to high temperature stress, it receives
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high temperature stimulus and transmit the signal through
physio-biochemical aspects and regulatory genes. HT stress
cause oxidative stress in plants through ROS production which
affects the macromolecules and nucleic acid synthesis. To
overcome this stress, plants depend upon HSPs to protect cell
membrane, detoxify ROS production and increase antioxidant
enzyme activity (106).

Heat shock proteins (HSPs) serve as molecular
chaperones in plants, aiding in protein stabilization, refolding
and cellular homeostasis under heat stress. In wheat, 753 HSP
genes have been identified, with increased expression
observed during heat stress and seed development (107).
Similarly, in maize, proteomic analysis has highlighted the
upregulation of key HSPs, including HSP26 and HSP16.9, which
support protein stability and chloroplast function under high
temperatures (108). In cotton, specific HSPs such as HSP101,
GHSP26 and HSC701 enhance heat tolerance by maintaining
membrane integrity and protecting photosynthetic machinery.
Genotypes with higher HSP gene expression, like Cyto-177 and
VH-305, exhibit improved photosynthesis, stomatal
conductance and heat resilience (109).

Conclusion

High temperature stress poses a critical challenge to plant
physiology and biochemistry, impacting water relations,
photosynthesis, respiration and ultimately yield and quality of
crops (Fig. 5). High temperature induces oxidative damage
through generation of ROS which affects physiological process
like photosynthesis, respiration and water status of the plant.
Additionally, increased night respiration under high
temperature stress leads to carbon loss, which has been
associated with yield reduction. However, respiration alone
does not fully account for yield and quality losses, suggesting
that other interconnected factor like carbon balance, starch
and protein metabolism and specific enzymatic activities play
substantial roles in plants.

EFFECTS

| Chlorophyll content
Damage to photosystem II
Stomatal closure — | CO:
assimilation

T Respiration rate

Energy imbalance — reduced
growth

T Transpiration rate

| Water use efficiency

T Membrane permeability

Lipid peroxidation

T Reactive oxygen species (ROS)
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Fig. 5. Schematic representation of high temperature stress effects in plants.
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However, future research should focus on elucidating the
precise impact of high night temperatures on carbon balance,
particularly the interplay between carbon loss (through
respiration) and carbon gain (through photosynthesis).
Furthermore, understanding starch and protein metabolism
under high temperature stress could offer insights into
developing crop varieties with improved resilience. Field-based
studies, involving large, genetically diverse mapping populations
combined with high-throughput phenotyping are essential to
accurately assess the genetic and physiological responses to
high day and night temperature stress.
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