E:&E PLANT SCIENCE TODAY eISSN 2348-1900

Vol x(x): xx-xx

: ‘ ! https://doi.org/10.14719/pst.8643
Deep learning for cotton price prediction: Unveiling the impact
of weather variables

Hari Priyaa A R A!, Kalpana Muthuswamy?*, Venkatesa Palanichamy Narasimma Bharathi3, M Vijayabhama' &
R Parimalarangan®

!Department of Physical Sciences and Information Technology, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural
University, Coimbatore 641 003, Tamil Nadu, India

20ffice of the Dean (Agriculture), Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
3Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
“Department of Agricultural Economics, CARDS, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India

*Correspondence email - kalpanam@tnau.ac.in

Received: 02 April 2025; Accepted: 01 June 2025; Available online: Version 1.0: 25 June 2025

Cite this article: Hari Priyaa ARA, Kalpana M, Venkatesa PNB, Vijayabhama M, Parimalarangan R. Deep learning for cotton price prediction: Unveiling
the impact of weather variables. Plant Science Today (Early Access). https:/doi.org/10.14719/pst.8643

Abstract

Accurate forecasting of cotton prices is crucial for farmers and stakeholders in the agricultural sector to optimize crop selection, improve
profitability and mitigate market risks. This study had developed a novel weather-based deep learning model to predict cotton prices in
two major cotton-growing districts of Tamil Nadu, Perambalur and Salem. Despite the non-linear relationship between weather variables
and price, advanced deep learning techniques were employed to uncover hidden patterns and enhance predictive accuracy. Since the
price series was non-stationary, Seasonal-Trend-Residual decomposition using Loess decomposition was done to separate trend,
seasonality and residual components and distinct models were fitted to each component. Four weather parameters-maximum
temperature, minimum temperature, relative humidity and rainfall-were considered as exogenous variables. Feature selection was
performed based on the mutual information score. Various deep learning architectures like STL-ANN, STL-TDNN, STL-GRU and STL-LSTM
were explored to assess their effectiveness in forecasting prices for each decomposed component and finally ensembled together. The
results demonstrated the potential of incorporating weather data into predictive models for cotton price forecasting, with the LSTM
model outperforming other three models with MAPE of 3.68 % and 4.07 % in Salem and Perambalur districts respectively. The study
highlights the potential of LSTM-based models in supporting informed decision-making and improved crop planning for cotton farmers in
these regions.

Keywords: artificial neural networks (ANN); cotton price forecast; ensemble; gated recurrent units (GRU); long-short term memory
(LSTM); STL decomposition; time delay neural networks (TDNN)

Introduction Agricultural commodity price fluctuations have an
impact on a nation’s Gross Domestic Product (GDP).
Farmers suffer significant financial losses when prices drop
after the crop is harvested. Price volatility in cotton can lead
to financial uncertainty, affecting farmers’ income and
market stability. Reliable price predictions help
stakeholders make informed decisions regarding sowing,
storage and sales, ultimately improving profitability and
reducing market risks. Weather is a key determinant of
agricultural productivity, directly influencing crop yield,
quality and price. Incorporating weather variables such as
temperature, rainfall and humidity into price prediction
models enhanced their accuracy by accounting for climate-
driven fluctuations in supply. Weather-based forecasting
could help in early identification of potential price surges or
declines, allowing farmers and market participants to plan
accordingly (3).

Cotton, often referred to as the “King of Fibres” or “white
gold,” is a vital cash crop with global economic significance
and serves as the primary raw material for the textile
industry (1). According to Ministry of Textiles, Government
of India, 2022, India stands first in the world in cotton
acreage, with 124.69 lakh hectares under cotton cultivation
which is approximately 39 % of the world area of 318.8 lakh
hectares. In India, among commercial crops, cotton has
crucial importance as it accounts for 23 % of global cotton
production. The major cotton producing states in India are
Gujarat, Maharashtra and Telangana accounting for 65 % of
India’s total production of cotton. Tamil Nadu, although not
the top producer, significantly contributes to the textile
industry by processing cotton into high-quality yarn and
fabrics (2).
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Unlike traditional models that rely solely on
historical prices, weather-integrated models offer a dynamic
and responsive approach aligned with real-time climatic
variations. Deep learning has revolutionized predictive
analytics by leveraging large datasets and extracting complex
patterns that traditional models fail to capture (4). Recent
research has applied deep learning techniques to agricultural
price forecasting, aiming to support decision-making through
enhanced pattern recognition and predictive performance.
Unlike statistical and conventional machine learning models,
deep learning automatically extracts relevant features,
reducing manual effort and improving prediction accuracy.
The growing availability of high-resolution weather and
market data further strengthens the potential of deep
learning in developing robust, data-driven forecasting models
for agricultural commodities like cotton.

This study aims to develop a novel deep learning-
based cotton price forecasting model by integrating weather
parameters as key predictors. The model will be tailored for
two major cotton-growing districts of Tamil Nadu,
Perambalur and Salem, to enhance the accuracy of price
predictions. By leveraging deep learning techniques like
Artificial Neural Networks (ANN), Time Delay Neural Networks
(TDNN), Gated Recurrent Units (GRU) and Long-Short Term
Memory (LSTM), this research seeks to provide farmers with
data-driven insights to optimize crop selection, improve
market decision-making and ultimately enhance profitability.

Background

Accurate price forecasting of agricultural commodities is
crucial for farmers and other industry stakeholders to make
rational choices, ensure food security and increase farming
profitability. Because of the growing amount of historical data
on agricultural commodity prices and the necessity to
accurately predict price movements, machine learning and
deep learning have essentially replaced statistical methods (5).

Selecting an appropriate subset from historical data
for forecasting remains a significant challenge. Implementing
machine learning techniques in practice, often faces issues
such as high dimensionality, nonlinearity and the difficulty of
choosing model with optimal parameters. In a comparative
study involving ARIMA, SVR, Prophet, XGBoost and LSTM on
large historical datasets, the LSTM model outperformed the
others in predicting prices of chicken, chilli and tomato (6).

Weather  significantly  impacts  agricultural
production, influencing crop yield, quality and market prices.
Traditional price prediction models primarily relied on
historical price trends, often neglecting crucial external
factors like temperature, rainfall and humidity. However,
integrating weather variables into forecasting models has
been shown to enhance their predictive accuracy by
accounting for climate-driven fluctuations in supply and
demand (7).

Deep learning has emerged as a powerful tool in
agricultural forecasting due to its ability to capture complex,
non-linear relationships in large datasets. Unlike traditional
statistical and machine learning models, deep learning
methods would automatically extract relevant features,
reducing manual preprocessing efforts and improving
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prediction accuracy. Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) had been widely used
in crop yield estimation, while advanced architectures like
Long Short-Term Memory (LSTM) and Transformer-based
models demonstrated superior performance in time series
forecasting (8).

Deep learning models-NBEATSX and TransformerX
were used for predicting agricultural commodity prices in
three vegetable crops Tomato, Onion and Potato by
incorporating weather data as exogenous factors. When
compared with statistical (ARIMAX, MLR) and machine
learning approaches (ANN, SVR, RFR, XGBoost), deep learning
models achieved lower error metrics. To forecast realized
price volatilty in time series data, Heterogeneous
Autoregression (HAR) model could be used with historical
volatility data to predict future volatility levels (9).

TDNN has emerged as an effective model for time
series forecasting due to their ability to capture temporal
dependencies in sequential data. The TDNN model with error
corrected term obtained by cointegration performed well for
forecasting the monthly wholesale price index of fruits (10).
Hidden Markov-based GRU model was found to be effective
for short and medium-term forecasts (eight and twelve week
ahead) of Potato prices with lower values of RMSE, MAE and
MAPE than other considered deep learning models (11).

Artificial Neural Network was used for day-ahead
electricity price forecasting using a 119-day training set of 119
days with no preprocessing to examine the realistic paradigm
of ANN based neural network models. Increasing the number
of epochs found to increase the quality of results but with the
demerit of higher training period. A reasonable selection of
model was achieved after 500 training epochs, but in many
cases not maximum number of epochs were reached to get
more accuracy (12).

For non-stationary and non-linear characteristics,
Chinese hog price was decomposed using the Seasonal and
Trend decomposition using the Loess (STL) model and
trained using LSTM and SARIMA models. After STL
decomposition, Factor analysis for multivariate influence
factors was done and GRU model was trained, which
produced more accurate forecast of hog prices (13).

Building on insights from prior studies, this paper
proposes a deep learning-based model for forecasting the
weekly price of cotton in the Perambalur and Salem districts
of Tamil Nadu. The model incorporates four key weather
parameters-minimum  temperature  (Tmin), maximum
temperature (Tmax), relative humidity (RH) and rainfall (RF)-
as exogenous variables to improve predictive accuracy.

Methodology
Data collection

The data used in this study included the weekly market price
data of cotton collected from reference markets and
AGMARKNET website and the weather data in the
corresponding region. It included Tmin, Tmax, RH, RF data
obtained from the web source NASA Power data. Area of data
collection comprises two districts - Salem in North Western
Zone and Perambalur in Western Zone of Tamil Nadu from
January 2010 to December 2024 (15 years). These districts
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were selected due to their significant contribution to cotton
production in Tamil Nadu during the year 2022 to 2023 with
production of 28509 bales in Perambalur and 20641 bales in
Salem. The weekly price of Cotton in Perambalur and Salem
districts is illustrated in Fig. 1.

Removal of outliers

In agriculture and commodity pricing, sudden price spikes
may indicate supply chain issues, seasonal effects, or external
shocks which are termed as outliers. Outliers in price data can
distort analysis and affect forecasting models and may skew
the mean and affect statistical measures (for e.g., standard
deviation). Therefore, outlier detection is crucial for price
forecasting, economic modelling and decision-making. As the
data is skewed strongly, Inter-Quartile Range (IQR) method is
used to clean the price data. The distribution of data after
cleaning of outliers is given in Fig. 2.

Empirical tests on data, data preprocessing and data splitting

Stationarity tests and non-linearity tests : A stationary series
maintains a constant mean and variance over time, and the
covariance depends on the lag distance. To accurately fit the
models, it is important to check the stationarity and linearity
of both series. The Augmented Dickey-Fuller (ADF) test and
the Kwiatkowski-Phillips-Schmidt-Shin  (KPSS) test are
commonly used for this purpose, but they differ in their
hypotheses: the ADF test has a null hypothesis of non-
stationarity (presence of a unit root), while the KPSS test
assumes stationarity as the null hypothesis. Using both tests
in conjunction provides a more comprehensive view of the
data's stationarity characteristics (14, 15). In addition to
stationarity, checking for non-linearity is essential, as many
real-world time series contain complex, non-linear
relationships, structural breaks, or chaotic patterns that
linear models may fail to capture. The Brock-Dechert-
Scheinkman (BDS) test is a popular method for detecting non
-linearity. It tests whether a time series is independently and
identically distributed (i.i.d.) and helps determine if a linear
model is sufficient or if a non-linear model might be more
appropriate (16).

Data preprocessing: STL decomposition is particularly useful
for agricultural commodity price analysis, breaking down a
time series into three key components - trend, seasonality

and residual. It identifies the underlying patterns influenced
by harvest seasons, market cycles and policy changes (17).
Trend Component shows long-term movement or direction
of the price series. Seasonality Component captures the
repeating patterns or cycles at fixed intervals and the
Residual Component represents noise, random fluctuations,
or irregular variations. It uses Locally Estimated Scatterplot
Smoothing (LOESS) function to adaptively capture complex
patterns in the data. STL decomposition for price data with
changing seasonal patterns, makes it ideal for price
fluctuations influenced by market conditions, weather, or
policy shifts (18). The STL decomposition of the price series
was performed using the STL function from the stats models
library in Python, with the period parameter set to 26 (Fig. 3
and 4). By decomposing the data, the trend and seasonality
component can be separately fed for model training and
hyperparameter tuning for better forecast.

Both Perambalur and Salem price series were
identified as trend-stationary, indicating that the fluctuations
occur around a deterministic trend and do not contain a unit
root.

Data splitting: The dataset was divided into three subsets:
training data, validation data and test data, to ensure
effective  model training, hyperparameter tuning and
performance evaluation. The general practice is to allocate
more data for model building and selection. The length of
entire data set is 783 data points for which training, validation
and testing dataset are split in the ratio 80-10-10 as shown in
Table 1. The training set is used to enable the model to learn
underlying patterns, trends and dependencies (19). The
validation set helps assess the model’s generalization ability
and prevents overfitting by optimizing key parameters and
used for hyperparameter tuning and model selection. Test
dataset serves as an independent dataset to measure the
model’s predictive accuracy on unseen data, ensuring its
reliability in real-world forecasting

Table 1. Data split in- and out-of-sample for model fit

Training data Validation data Test data
2010-01-01 to 2022- 2022-01-09 to 2023- 2023-07-09 to 2024-
01-02 07-02 12-27

627 datapoints 78 datapoints 78 datapoints
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Fig. 1. Weekly market price of cotton in Perambalur and Salem districts.
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Fig. 2. Weekly price of cotton after removal of outliers.
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Fig. 3. STL decomposed cotton price data of Perambalur.
Feature selection

Mutual information is a fundamental concept from
information theory that measures the mutual dependence
between two variables. Unlike correlation, which captures
only linear relationships, MI detects both linear and nonlinear
dependencies between variables (20).

Mathematically, Ml is defined in Equation 1:

(X;Y) = ZZP(K J)log( ?Sp}(j))

XEX yEY

(Eqn. 1)

where p(x,y ) is the joint probability distribution of XandY;
p(x) p(y) are the marginal probability distributions of Xand Y.
Using an appropriate bin size improves the accuracy of MI
estimation, making it a valuable tool for feature selection and
dependency analysis in machine learning and statistics. The
Freedman-Diaconis Rule which helps determine the optimal
number of bins for Ml computation to balance bias and
variance (21) is given in the Equation 2:
h=2xIQR(X)xn 3
where, his the optimal bin width;

(Egn.2)

IQR(X) is the interquartile range of variable X;

nis the number of observations.
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Fig. 4. STL decomposed cotton price data of Salem.
Then the number of bins is then calculated as given in
Equation 3:

max(x) - min(x)

h

Number of bins = (Egn. 3)

This rule adapts to the distribution of the data,
ensuring that the bin width is neither too large thus, losing
detail nor too small leading to more noise.

Deep learning and model architecture description
Deep learning

Deep learning had gained significant attention consisting of
CNNs, RNNs autoencoder neural networks and deep belief
networks. Besides commonly used ANN and TDNN, RNNs
such as LSTM and GRU are used. As RNNs are neural networks
with recurrent loops, they are considered to be most
appropriate for time series data. RNNs have memory that
holds the knowledge pertaining to the observed data, which
is why they are termed as recurrent networks. Each layer’s
output is dependent on the computations of its preceding
levels (22).

The input features for the neural network include
four weather parameters-maximum temperature (Tmax),
minimum temperature (Tmin), rainfall (RF) and relative
humidity (RH)-along with the target variable, cotton price.
The training process for a deep learning model typically
involves four key stages:

1) Data preparation: The effectiveness of model training
improves with larger datasets. This stage focuses on
refining the data by removing incomplete records and
unwanted variations while also incorporating data
augmentation or simulation to enhance its quality.

2) Choosing an optimal network architecture: The appropriate
number of neurons, layers and network type is
determined through experimentation or trial-and-error to
achieve the best performance.

3) Training the network: During this stage, the model is
trained over several epochs using optimization algorithms
such as stochastic gradient descent or Adam. Training
continues until convergence criteria are met or until the
model achieves acceptable performance on the validation
dataset.

4) Enhancing training efficiency: To improve training stability
and prevent overfitting, advanced techniques such as
batch normalization, dropout regularization and transfer
learning are utilized. These methods enhance
convergence speed, improve generalization to unseen
data and increase model robustness (22).

The hidden layer in an RNN changes according to the
Equation 4:

I
t _ xt+
ap = Wip A
=1

where, Wi is the weight between the ith input and hth neuron
from the hidden layer;

H
E t—-1
Cf_}hfh bhr

h=1 (Egn. 4)

Xtis the ith input of network in moment t;
Wrhis the weight between neurons of the hidden layer.

The Back Propagation (BP) training changes according to the

Equation 5:
H
D S e )

K
5t = 6’ (ag)(z 8t whye +
k=1 h'=1

(Egn.5)
Activation function: The activation function introduces non-
linearity into neural networks, allowing them to model
complex patterns. ReLU and Leaky ReLU are commonly used
in regression models due to their ability to handle non-linear
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relationships. The Sigmoid function and tanh are often used
in binary classification. Rectified Linear Unit (ReLU) is widely
used due to its simplicity and effectiveness in deep networks,
but it suffers from the dying ReLU problem (23). Leaky ReLU
addresses this issue by allowing small negative gradients (24).
The choice of activation function impacts training efficiency
and model performance.

Weight initialization: Proper weight initialization is
crucial for stable and efficient training. The commonly used
initialization techniques are Random Initialization, Xavier/
Glorot Initialization and He Initialization. Xavier initialization
is suitable for activation functions like Sigmoid and Tanh, as it
ensures that activations remain in a reasonable range. He
initialization is ideal for ReLU-based networks as it scales
weights according to the number of incoming neurons,
preventing vanishing or exploding gradients. Poor weight
initialization can lead to slow convergence or divergence
during training (25).

Regularization: Regularization is a technique used to
reduce overfitting by incorporating a penalty term into the
loss function. The two most common types are L1 (Lasso) and
L2 (Ridge) regularization. By setting some weights to zero, L1
regularization promotes sparsity and improves the model’s
interpretability. By punishing big weights’ squared values, L2
regularization (also known as weight decay) discourages
them and produces a more generic model (26). Combining L1
and L2 regularization results in ElasticNet. By preventing the
model from becoming over complicated and memorizing the
training data, these strategies improve generalization to new
data (27).

Dropout is another regularization technique used to
reduce overfitting in neural networks. It works by randomly
deactivating a fraction of neurons during each training
iteration, forcing the network to learn redundant
representations. The dropout rate controls how many
neurons are dropped per layer. A higher dropout rate may
lead to underfitting, while a very low dropout rate might not
sufficiently prevent overfitting. Dropout is often applied in
fully connected layers and sometimes in recurrent layers in
models like LSTMs and GRUs (28).

ANN

McCulloch and Pitts in 1943 introduced the idea of ANN,
which were then widely adopted by researchers for
experimental modelling of nonlinear phenomena.
McClelland, Rumelhart and Hinton in 1986 successfully
developed a multilayer feedforward neural network (MLP) by
introducing the Back Propagation algorithm. Neural networks
have several uses in the financial and investing domains,
including financial planning, decision-making and
bankruptcy prediction (22).

Units, or artificial neurons, are the building blocks of
ANN. These include an input layer that receives external data,
one or more hidden layers that transform inputs through
weighted connections and activation functions and an output
layer that produces the final predictions (29). The
connections between neurons are represented by weighted
links, where each weight reflects the strength of influence
from one unit to the next. To enhance model performance,
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these weights are changed throughout training. The weights
assigned to each of these relationships specify how one unit
affects another. The neural network learns more about the
data as it moves from one unit to another and the output
layer eventually receives the results (30).

A fundamental process in an ANN is determining the
weighted sum of inputs (z) and then applying an activation
function (aj). The commonly used activation functions are the
sigmoid function, hyperbolic tangent (tanh) and rectified
linear unit (ReLU), as well as Leaky ReLU. These functions add
non-linearities to the input, helping ANNs to grasp deep
relationships and improve their ability to learn complex
patterns (31). The optimization approach uses the gradient
descent technique to quantify prediction errors. These neural
networks have the capacity to simulate intricate nonlinear
relationships without making presumptions about their
nature that makes them a valuable tool in regression analysis.

Hyperparameters such as activation functions,
regularization methods, dropout rates and initialization
techniques were optimized using search algorithms. The
activation function was chosen from RelLU or, Leaky ReLU. The
weight initialization was selected from HeNormal or Random,
ensuring stable gradient propagation. Regularization
methods were explored in the range of L1 (0.0001-0.01).
Dropout rates between 0.1 and 0.5 were tested to find the best
balance between underfitting and overfitting. These
selections ensured a well-regularized, stable and efficient
ANN model, for both price series and used accordingly.

The output layer with single a node was used for regression to
represent the predicted continuous value. The output ¥; of
the ith node in the network was computed as in Equation 6:

Vi-ai(z) (Eqn. 6)
ai(.) is the activation function applied at the ith node;
ziis the weighted input to the node;

¥; output of the ith node in the network.
TDNN

Conventional ANNs do not inherently capture time
dependencies, making them less effective for sequential or
time series data unless specifically adapted. Neural networks
can be used in two ways to model time series. A recurrent
neural network is used in the first and a short-term memory is
established at the input layer of the network in the second.
One example of the latter is a TDNN, which uses the time
delays to capture the temporal dimension of the series and
build a short-term memory (also called hetero-associative
memory) in its network (32). The past data are mapped to the
future value via a nonlinear functional mapping as in
Equation 7:

Xe= f(thl, thz, .. (Eqn 7)
where fis a function defined by the network structure

and connection weights and w is a vector containing all
parameters (33).

TDNN is similar to FFNN, except that the input weight
includes a delay element.

.y Xt—p, W) + e

If x = [x(t)-x(t— 1),..., x(t - g)] is the input signal, the net
input signal can be expressed as in Equation 8:
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p
net; () = ) w6 =D +b) (s

i=0
netj(t)= Net input signal to neuron; at time ¢

w;i= Weight associated with the connection from input y(t-i)
to neuronj;

y(t-i)=Inputsignal at time t - i (delayed input);
p =the Number of past time steps considered (time delay);
bj=Bias term for neuron j.

The final output value y:+; in TDNN model is shown in the
following Equation 9:

q P
yen =000, & FQ, Byl sy

where, f and g are the activation functions at the
hidden and output layers;

p is number of input nodes;
g is number of hidden nodes;

Bijis weight attached to the connection between ith input
node and jth node of hidden layer;

ajis weight attached to the connection from the jth hidden
node to the output node;

Y:.i istheith lag input of the model (34).

TDNN require careful selection of hyperparameters to
optimize temporal feature extraction. The tuning of these
hyperparameters was done in a problem-specific way and
decided by grid search technique on the available data. The
context window size was searched in the range of {3, 5, 7, 9},
determining how many time steps contribute to each
prediction. Activation functions like ReLU and Leaky RelLU
were tested. Weight initialization was selected from Glorot,
HeNormal and Random, ensuring stable training.
Regularization techniques such as L2 regularization (A =

0.0001-0.1) and dropout rates (0.2-0.5) were used to help
prevent overfitting. Besides these, number of epochs (50-100)
and batch size (16-128) were also taken for grid search.
Optimizing these parameters would ensure that TDNN
captured long-range dependencies effectively while
maintaining generalization. Only one output node was used
since recursive forecasting method was adopted (17).

LSTM

LSTM is a type of RNN model designed for sequential data,
introduced and improved by Gers, Schmidhuber and
Cummins in 2000. Long-term memory refers to learned
weights and short-term memory refers to internal states of
cells (22). Neural Networks often notice difficulties in learning
long-term dependencies, when information from distant time
steps is critical for making correct predictions about current
state. This issue is referred to as the vanishing or exploding
gradient problem. When training a model over time, the
gradients can diminish as they progress through several

steps. This makes it difficult for the model to understand long
-term patterns because previous data becomes almost
useless. Sometimes, gradients can become too big and cause
instability. This makes it difficult for the model to learn
correctly because the updates are irregular and unexpected.
Both of these limitations make it difficult for ordinary RNNs to
accurately capture long-term dependencies in sequential
data (35).

LSTM is capable of capturing long-term dependencies. Its
architecture consists of recurrent subnetworks known as
memory blocks. Each block contains one or more
autoregressive memory cells along with three key
components: input, output and forget gates, which regulate
information flow. The input gate is responsible for
incorporating inputs such as Tmax, Tmin, RH, RF and Price
into the cell. The output gate o; specifies the output of the cell
and the forget gate f; is responsible for indicating any prior
values that might be needed in the future and retains them
(36). The calculation of f, i, o: and h: are carried out as in
Equations (10-13).

fr= o(Ws[hew, X + be) (Egn. 10)
ie =0a(Wilhey, Xe] + bi) (Egn. 11)
0:=0(Wolhe1, X + bo) (Egn. 12)
h: =0¢tanh(Cy) (Egn. 13)

where, Wi, Wy, W,, are the weight matrices;
bi, brand b, are the bias vectors;

heis value of the memory cell at time t;
f:is the value of the forget gate layer;
Ctisthe current cell state;

i¢is the value of the input gate; and

o:is the output gate layer.

For LSTM model, hyperparameters were optimized to
enhance sequential learning. The number of LSTM units was
searched in {32, 64, 128, 256 }, balancing model complexity
and computational efficiency. Recurrent dropout rates
between 0.1 and 0.5 were tested to regularize recurrent
connections. Weight initialization was optimized using
HeNormal, ensuring stability. L2 regularization values in the
range 0.0001-0.1 would help prevent overfitting. Gradient
clipping in the range 0.1-1.0 was also tuned to control
exploding gradients, ensuring stable training,.

GRU

GRU Neural network is one of the most successful variants of
LSTM network (37). However, LSTMs are extremely
complicated structures with huge computational costs. To
address this, GRU was invented, which exploits the LSTM
architecture by combining its gating techniques to provide a
more efficient solution for numerous sequential tasks without
giving up performance (38).

The fundamental principle behind GRUs is to use gating
mechanisms which selectively updates the hidden state at
each time step, which allows them to retain long-term and
crucial information while discarding irrelevant details,
enabling more accurate predictions. GRUs seek to simplify
the LSTM design by combining some of its components and
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focusing on only two major gates-the update gate and the
reset gate-resulting in fewer parameters and reduced
computational complexity. They exhibit more efficient
nonlinear fitting ability and are better to handle smaller
datasets in comparison with LSTM models. At each
timestamp t, it receives an input X; which contains Tmax,
Tmin, RF, RH, Price all together and the hidden state H:_; is
from the previous timestamp t — 1. Later, it returns a new
hidden state H; which is then sent to the following
timestamp. The Reset Gate controls the network’s short-term
memory, i.e. the hidden state (H:) and the Update Gate
controls long-term memory (39).

The process can be described in the equations (14-17) as
follows:

Zi = oxw? + halF + bz) (Eqn.
14)

It = O(XtWr + hea U + br) (Eqn.
15)

he = tanh(re. heU + xJW + b) (Egn. 16)

ht = (l - Zt) . I'N'lt + 7. he1 (Eqn 17)

Where, W%, W and W are weight matrices of
corresponding connected input vectors.

U4 U and U are weight matrices of the previous time step;
b, brand b are the biases;
0 denotes sigmoid function;

I, Zrand h: denotes reset gate, update gate and the candidate
hidden layer.

For Gated Recurrent Units (GRU), hyperparameter
tuning was focused on optimizing memory efficiency and
learning speed. The number of GRU units was selected from
{32, 64, 128, 256}, balancing the model performance and
training time. Weight initialization was explored between
Glorot and HeNormal Initialization. Dropout and recurrent
dropout rates were optimized in the range 0.1-0.5. L2
regularization between 0.0001 and 0.1 was applied to
improve generalization. Bidirectionality was also considered,
selecting between Unidirectional and bidirectional GRU to
assess its impact on performance. The number of dense
layers, epochs and batch size were also considered for grid
search with mean absolute error as loss function for model
compilation with each component after STL decomposition
of both price series.

Model evaluation

To quantitatively assess the performance of each forecasting
model across different time horizons, three widely used
accuracy metrics were employed: Root Mean Square Error
(RMSE), Mean Absolute Prediction Error (MAPE) and Mean
Absolute Error (MAE). RMSE is the standard deviation of the
residuals of the model. MAE is the average difference of
residuals of the model and MAPE is the percentage of average
absolute error which
give a way to compare
the performance of the

RMSE = Z(Yt Y,)? different (Eqn. 18)
models
(36). The formulae for

RMSE, MAE AND MAPE are
given in

Yr|Equat|ons (Eqn.19) (18

MAE = — Z[n

n
1 Y, — ¥,
MAPE = |- Z «+ 100 (Eqgn.20)
n Y;
=1
d
DM = ——
IIM Where, Y;and Y: are the actual
and T predicted values of price.
Furthermore, to determine the best-performing

model, a post hoc analysis was conducted using the Diebold-
Mariano test, enabling an effective comparison of forecast
accuracies (11). The null hypothesis of Diebold-Mariano test is
that the models have equal predictive accuracy and the
alternative hypothesis is that one model is significantly better
than the other. The Diebold-Mariano test statistic is given in
Equation 21:

(Egn. 21)

d=213%1 4d
Where, 7 Zi=2% ¢ the mean difference of the

loss function between two models;

d: is the difference between the loss functions of the
two models at time t;

£,(0) is an estimate of the spectral density of d; at
frequency zero, often estimated using the Newey-West
estimator to account for autocorrelation;

T is the total number of observations.

Results and Discussion
Descriptive statistics

Table 2 presents the descriptive statistics of the weekly
cotton price series for Salem and Perambalur districts used in
this study.

Perambalur price series exhibits a higher mean value
than Salem, indicating that the central tendency of the
observed values is greater in Perambalur. The standard
deviation for Perambalur is slightly higher than that of Salem,
suggesting that Perambalur has a marginally greater spread
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Table 2. Descriptive statistic measures of the weekly market prices of cotton in Perambalur and Salem districts

District Minimum Maximum Mean Standard Deviation Skewness Kurtosis
Perambalur 3298 8824 5700.05 1308.83 0.7683 -0.0586
Salem 3799 7909.5 5267.66 1151.08 1.0020 0.0073

in its data distribution. The skewness values for Perambalur
and Salem indicate a right-skewed distribution, meaning that
both districts experience occasional price spikes. However,
Salem exhibits a higher degree of positive skewness,
suggesting that extreme price increases are more frequent in
Salem than in Perambalur, which can potentially influence
their crop planning and market strategies based on the
anticipation of occasional sharp price spikes. The kurtosis
values for Perambalur and Salem are close to zero, indicating
a mesokurtic distribution. This suggests that price
distributions in both districts are relatively stable and
resemble a normal distribution, with moderate occurrences
of extreme price variations. This insight can help farmers and
market analysts anticipate price trends and manage risk
accordingly.

Tests for stationarity

The stationarity of the time series data for Perambalur and
Salem was assessed using the Augmented Dickey-Fuller (ADF)
and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. For the
ADF test, the null hypothesis (H,) states that the series is non-

Table 3. Results of BDS test for linearity

stationary. The test statistic for Perambalur was -3.8000, with a
p-value of 0.0166, leading to the rejection of the null
hypothesis, indicating that the series is stationary. Similarly, for
Salem, the test statistic was -3.5265, with a p-value of 0.0366,
also supporting stationarity. The KPSS test, which has a null
hypothesis that the series is stationary, yielded test statistics of
1.8830 and 2.0227 for Perambalur and Salem, respectively,
both with p-values of 0.0100. While these values suggest non-
stationarity based on conventional interpretation, further
stationarity analysis of the period from 2010 to 2022 indicated
that the series exhibits stationarity within this timeframe.
Therefore, STL decomposition was performed to analyse the
trend, seasonality and residual components of the data in
greater detail.

The results of BDS test presented in Table 3 reveal
strong rejection of linearity for both price series.

The rejection of the null hypothesis suggests that the data
exhibits nonlinear dependence. This means the series is not
purely random; there is some underlying pattern or structure.
Thus, nonlinear models are suggested for cotton price

District BDS Test Statistic P value Conclusion
Perambalur 14.3047 <0.00 Non-linear dependence
Salem 39.0563 0.00 Non-linear dependence

Actual vs Pred

icted Price in ANN

2016 2017

-~ Actual -—— Predicted

2022

2023 2024 25
Years

Train

Fig. 5. Cotton price prediction of different models for Perambalur distri

ct.
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Actual vs Predicted Price in ANN

I
i

Actual vs Predicted Price in GRU

2012 2017

Predicted

2019 2022 2023 2024 2025

Train Validation

Fig. 6. Cotton price prediction of different models for Salem district.

predictions based on available facts.

Also, among the variables, there is non-linear relationship
which cannot be explained in terms of correlation. A measure
of non-linear dependency called Mutual Information is
computed between the four weather variables and the Price.
As stated earlier, Freedman-Diaconis Rule admitted that
optimum number of bins was 15 to compute Mutual
Information. Moderate MI values were observed: 0.236 for
Tmin, 0.374 for Tmax, 0.256 for RF and 0.214 for RH. These
findings suggest a moderate, non-linear association between
weather parameters and cotton prices.

Following STL decomposition, the trend, seasonal and
residual components of the price series were modelled
independently. The final price prediction was obtained by
summing the trend, seasonal and residual forecasts. The final
reconstructed model fit in all the four models for Perambalur
and Salem districts is depicted in Fig. 5 and 6.

To ensure a clear and comprehensive understanding of
model performance, evaluation metrics have been presented
separately for the training, validation and test datasets (Table

Table 4. Quantitative evaluation metrics for prediction accuracy

Among the models, STL-LSTM consistently outperformed
others, highlighting its superior predictive ability for cotton
prices based on both historical and weather data.

To compare the predictive accuracy of all the different
models, Diebold-Mariano test was also conducted for
different combinations of all four models in both Perambalur
and Salem price datasets. The p-values obtained for all model
comparisons were <0.0001. Since the DM test evaluates
whether the predictive errors of two models are significantly
different, this result highlights that the predictive
performance of the models differs substantially. Thus, it can
be concluded that STL-LSTM outperforms other models in
prediction of cotton prices in Salem and Perambalur districts
based on weather variables and past fifteen years price data.
Subsequently, the future prices of cotton in Perambalur and
Salem districts are forecasted via STL-LSTM model for the
next 26 weeks from January to June 2025 which is presented
in Fig. 7 given below.

Conclusion

The prediction of crop prices is of significant importance for

. Salem Perambalur

Data Split Models MAE MAPE RMSE MAE MAPE RMSE
STL-ANN 289.35 4.86 309.5861 303.49 5.64 359.4365

Training Data STL-TDNN 267.25 3.91 324.5837 272.46 5.10 318.8218
STL-GRU 204.12 3.06 237.2467 221.78 413 261.2952
STL-LSTM 157.36 2.56 198.7826 184.51 3.45 216.3104
STL-ANN 387.24 5.07 436.8918 468.65 6.31 539.6506

Validation Data STL-TDNN 348.76 432 394.2873 438.43 5.88 496.3264
STL-GRU 285.21 3.81 368.1927 338.78 4.61 392.4005
STL-LSTM 248.26 3.17 296.5453 345.31 4.64 399.1131
STL-ANN 371.39 4.58 406.2548 422.06 5.82 498.1345

Testing Data STL-TDNN 340.35 4.02 390.5762 409.23 5.61 484.5776
STL-GRU 285.79 3.95 319.5438 312.43 4.32 354.7807
STL-LSTM 230.56 3.68 269.2368 295.22 4.07 337.7959
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Fig. 7. Forecasted price of cotton in Perambalur and Salem.

farmers to make informed decisions and to plan crop pattern.
This study presents a novel approach to cotton price
forecasting in the major cotton-growing districts of
Perambalur and Salem in Tamil Nadu, integrating weather
variables using deep learning techniques. While the
correlation between individual weather parameters Tmax,
Tmin, RF and RH and cotton prices was weak, the application
of Mutual Information measure effectively unveiled critical
non-linear dependencies. Incorporating these exogenous
variables improved the accuracy of price predictions. STL
decomposition was used to uncover hidden cyclic patterns in
the data, with separate models applied to the trend, seasonal
and residual components. These were then ensembled to
reconstruct the original price series. The forecasting model’s
efficacy highlights the capability of deep learning strategies to

model intricate relationships within agricultural data, leading
to enhanced price prediction accuracy. Furthermore, the
statistical significance among the four models STL-ANN, STL-
TDNN, STL-LSTM and STL-GRU was confirmed through the
Diebold-Mariano test. The results of this research indicate
that STL-LSTM model outperforms in predicting cotton price
with MAPE 4.07 % and 3.68 % respectively, in Perambalur and
Salem districts with the incorporation of weather features.
Finally, the STL-LSTM model was used to forecast cotton
prices for the next 26 weeks, from January 2025 to June 2025.
This framework offers valuable decision-making support for
farmers, helping them manage price volatility and
contributing to greater economic stability in the agricultural
sector. However, certain limitations exist in the model as the
model was trained and validated using data from only two
districts, which may limit its generalizability to other regions
with different climatic or market conditions. Additionally, the
dependence on historical weather and price data assumes
stability in the underlying data-generating processes, which
may not hold under climate change or abrupt policy shifts.
Future research may explore on expanding these models by
exploiting it for other regions and including additional
variables such as soil conditions and broader market
dynamics, which may lead to even more refined and robust
predictive capabilities.
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