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Introduction 

Cotton, often referred to as the “King of Fibres” or “white 

gold,” is a vital cash crop with global economic significance 

and serves as the primary raw material for the textile 

industry (1). According to Ministry of Textiles, Government 

of India, 2022, India stands first in the world in cotton 

acreage, with 124.69 lakh hectares under cotton cultivation 

which is approximately 39 % of the world area of 318.8 lakh 

hectares. In India, among commercial crops, cotton has 

crucial importance as it accounts for 23 % of global cotton 

production. The major cotton producing states in India are 

Gujarat, Maharashtra and Telangana accounting for 65 % of 

India’s total production of cotton. Tamil Nadu, although not 

the top producer, significantly contributes to the textile 

industry by processing cotton into high-quality yarn and 

fabrics (2). 

 

Agricultural commodity price fluctuations have an 

impact on a nation’s Gross Domestic Product (GDP). 

Farmers suffer significant financial losses when prices drop 

after the crop is harvested. Price volatility in cotton can lead 

to financial uncertainty, affecting farmers’ income and 

market stability. Reliable price predictions help 

stakeholders make informed decisions regarding sowing, 

storage and sales, ultimately improving profitability and 

reducing market risks. Weather is a key determinant of 

agricultural productivity, directly influencing crop yield, 

quality and price. Incorporating weather variables such as 

temperature, rainfall and humidity into price prediction 

models enhanced their accuracy by accounting for climate-

driven fluctuations in supply. Weather-based forecasting 

could help in early identification of potential price surges or 

declines, allowing farmers and market participants to plan 

accordingly (3). 
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Abstract  

Accurate forecasting of cotton prices is crucial for farmers and stakeholders in the agricultural sector to optimize crop selection, improve 

profitability and mitigate market risks. This study had developed a novel weather-based deep learning model to predict cotton prices in 
two major cotton-growing districts of Tamil Nadu, Perambalur and Salem. Despite the non-linear relationship between weather variables 

and price, advanced deep learning techniques were employed to uncover hidden patterns and enhance predictive accuracy. Since the 

price series was non-stationary, Seasonal-Trend-Residual decomposition using Loess decomposition was done to separate trend, 

seasonality and residual components and distinct models were fitted to each component. Four weather parameters-maximum 
temperature, minimum temperature, relative humidity and rainfall-were considered as exogenous variables. Feature selection was 

performed based on the mutual information score. Various deep learning architectures like STL-ANN, STL-TDNN, STL-GRU and STL-LSTM 

were explored to assess their effectiveness in forecasting prices for each decomposed component and finally ensembled together. The 

results demonstrated the potential of incorporating weather data into predictive models for cotton price forecasting, with the LSTM 
model outperforming other three models with MAPE of 3.68 % and 4.07 % in Salem and Perambalur districts respectively. The study 

highlights the potential of LSTM-based models in supporting informed decision-making and improved crop planning for cotton farmers in 

these regions. 

Keywords: artificial neural networks (ANN); cotton price forecast; ensemble; gated recurrent units (GRU); long-short term memory 

(LSTM); STL decomposition; time delay neural networks (TDNN)  
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Unlike traditional models that rely solely on 

historical prices, weather-integrated models offer a dynamic 

and responsive approach aligned with real-time climatic 

variations. Deep learning has revolutionized predictive 

analytics by leveraging large datasets and extracting complex 

patterns that traditional models fail to capture (4). Recent 

research has applied deep learning techniques to agricultural 

price forecasting, aiming to support decision-making through 

enhanced pattern recognition and predictive performance. 

Unlike statistical and conventional machine learning models, 

deep learning automatically extracts relevant features, 

reducing manual effort and improving prediction accuracy. 

The growing availability of high-resolution weather and 

market data further strengthens the potential of deep 

learning in developing robust, data-driven forecasting models 

for agricultural commodities like cotton. 

This study aims to develop a novel deep learning-

based cotton price forecasting model by integrating weather 

parameters as key predictors. The model will be tailored for 

two major cotton-growing districts of Tamil Nadu, 

Perambalur and Salem, to enhance the accuracy of price 

predictions. By leveraging deep learning techniques like 

Artificial Neural Networks (ANN), Time Delay Neural Networks 

(TDNN), Gated Recurrent Units (GRU) and Long-Short Term 

Memory (LSTM), this research seeks to provide farmers with 

data-driven insights to optimize crop selection, improve 

market decision-making and ultimately enhance profitability. 

Background  

Accurate price forecasting of agricultural commodities is 
crucial for farmers and other industry stakeholders to make 
rational choices, ensure food security and increase farming 
profitability. Because of the growing amount of historical data 
on agricultural commodity prices and the necessity to 
accurately predict price movements, machine learning and 
deep learning have essentially replaced statistical methods (5). 

Selecting an appropriate subset from historical data 

for forecasting remains a significant challenge. Implementing 

machine learning techniques in practice, often faces issues 

such as high dimensionality, nonlinearity and the difficulty of 

choosing model with optimal parameters. In a comparative 

study involving ARIMA, SVR, Prophet, XGBoost and LSTM on 

large historical datasets, the LSTM model outperformed the 

others in predicting prices of chicken, chilli and tomato (6).  

Weather significantly impacts agricultural 
production, influencing crop yield, quality and market prices. 

Traditional price prediction models primarily relied on 

historical price trends, often neglecting crucial external 

factors like temperature, rainfall and humidity. However, 

integrating weather variables into forecasting models has 

been shown to enhance their predictive accuracy by 

accounting for climate-driven fluctuations in supply and 

demand (7). 

Deep learning has emerged as a powerful tool in 

agricultural forecasting due to its ability to capture complex, 

non-linear relationships in large datasets. Unlike traditional 

statistical and machine learning models, deep learning 

methods would automatically extract relevant features, 

reducing manual preprocessing efforts and improving 

prediction accuracy. Convolutional Neural Networks (CNNs) 

and Recurrent Neural Networks (RNNs) had been widely used 

in crop yield estimation, while advanced architectures like 

Long Short-Term Memory (LSTM) and Transformer-based 

models demonstrated superior performance in time series 

forecasting (8). 

Deep learning models-NBEATSX and TransformerX 
were used for predicting agricultural commodity prices in 

three vegetable crops Tomato, Onion and Potato by 

incorporating weather data as exogenous factors. When 

compared with statistical (ARIMAX, MLR) and machine 

learning approaches (ANN, SVR, RFR, XGBoost), deep learning 

models achieved lower error metrics. To forecast realized 

price volatility in time series data, Heterogeneous 

Autoregression (HAR) model could be used with historical 

volatility data to predict future volatility levels (9). 

TDNN has emerged as an effective model for time 
series forecasting due to their ability to capture temporal 

dependencies in sequential data. The TDNN model with error 

corrected term obtained by cointegration performed well for 

forecasting the monthly wholesale price index of fruits (10). 

Hidden Markov-based GRU model was found to be effective 

for short and medium-term forecasts (eight and twelve week 

ahead) of Potato prices with lower values of RMSE, MAE and 

MAPE than other considered deep learning models (11). 

Artificial Neural Network was used for day-ahead 

electricity price forecasting using a 119-day training set of 119 

days with no preprocessing to examine the realistic paradigm 

of ANN based neural network models. Increasing the number 

of epochs found to increase the quality of results but with the 

demerit of higher training period. A reasonable selection of 

model was achieved after 500 training epochs, but in many 

cases not maximum number of epochs were reached to get 

more accuracy (12). 

For non-stationary and non-linear characteristics, 

Chinese hog price was decomposed using the Seasonal and 

Trend decomposition using the Loess (STL) model and 

trained using LSTM and SARIMA models. After STL 

decomposition, Factor analysis for multivariate influence 

factors was done and GRU model was trained, which 

produced more accurate forecast of hog prices (13). 

Building on insights from prior studies, this paper 

proposes a deep learning-based model for forecasting the 

weekly price of cotton in the Perambalur and Salem districts 

of Tamil Nadu. The model incorporates four key weather 

parameters-minimum temperature (Tmin), maximum 

temperature (Tmax), relative humidity (RH) and rainfall (RF)-

as exogenous variables to improve predictive accuracy. 

Methodology 

Data collection 

The data used in this study included the weekly market price 

data of cotton collected from reference markets and 

AGMARKNET website and the weather data in the 

corresponding region. It included Tmin, Tmax, RH, RF data 

obtained from the web source NASA Power data. Area of data 

collection comprises two districts - Salem in North Western 

Zone and Perambalur in Western Zone of Tamil Nadu from 

January 2010 to December 2024 (15 years). These districts 
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were selected due to their significant contribution to cotton 
production in Tamil Nadu during the year 2022 to 2023 with 
production of 28509 bales in Perambalur and 20641 bales in 
Salem. The weekly price of Cotton in Perambalur and Salem 
districts is illustrated in Fig. 1. 

Removal of outliers 

In agriculture and commodity pricing, sudden price spikes 

may indicate supply chain issues, seasonal effects, or external 

shocks which are termed as outliers. Outliers in price data can 

distort analysis and affect forecasting models and may skew 

the mean and affect statistical measures (for e.g., standard 

deviation). Therefore, outlier detection is crucial for price 

forecasting, economic modelling and decision-making. As the 

data is skewed strongly, Inter-Quartile Range (IQR) method is 

used to clean the price data. The distribution of data after 

cleaning of outliers is given in Fig. 2. 

Empirical tests on data, data preprocessing and data splitting 

Stationarity tests and non-linearity tests : A stationary series 

maintains a constant mean and variance over time, and the 

covariance depends on the lag distance. To accurately fit the 

models, it is important to check the stationarity and linearity 

of both series. The Augmented Dickey-Fuller (ADF) test and 

the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test are 

commonly used for this purpose, but they differ in their 

hypotheses: the ADF test has a null hypothesis of non-

stationarity (presence of a unit root), while the KPSS test 

assumes stationarity as the null hypothesis. Using both tests 

in conjunction provides a more comprehensive view of the 

data's stationarity characteristics (14, 15). In addition to 

stationarity, checking for non-linearity is essential, as many 

real-world time series contain complex, non-linear 

relationships, structural breaks, or chaotic patterns that 

linear models may fail to capture. The Brock-Dechert-

Scheinkman (BDS) test is a popular method for detecting non

-linearity. It tests whether a time series is independently and 

identically distributed (i.i.d.) and helps determine if a linear 

model is sufficient or if a non-linear model might be more 

appropriate (16). 

Data preprocessing: STL decomposition is particularly useful 

for agricultural commodity price analysis, breaking down a 

time series into three key components - trend, seasonality 

and residual. It identifies the underlying patterns influenced 

by harvest seasons, market cycles and policy changes (17). 

Trend Component shows long-term movement or direction 

of the price series. Seasonality Component captures the 

repeating patterns or cycles at fixed intervals and the 

Residual Component represents noise, random fluctuations, 

or irregular variations. It uses Locally Estimated Scatterplot 

Smoothing (LOESS) function to adaptively capture complex 

patterns in the data. STL decomposition for price data with 

changing seasonal patterns, makes it ideal for price 

fluctuations influenced by market conditions, weather, or 

policy shifts (18). The STL decomposition of the price series 

was performed using the STL function from the stats models 

library in Python, with the period parameter set to 26 (Fig. 3 

and 4). By decomposing the data, the trend and seasonality 

component can be separately fed for model training and 

hyperparameter tuning for better forecast. 

Both Perambalur and Salem price series were 

identified as trend-stationary, indicating that the fluctuations 

occur around a deterministic trend and do not contain a unit 

root. 

Data splitting: The dataset was divided into three subsets: 

training data, validation data and test data, to ensure 

effective model training, hyperparameter tuning and 

performance evaluation. The general practice is to allocate 

more data for model building and selection. The length of 

entire data set is 783 data points for which training, validation 

and testing dataset are split in the ratio 80-10-10 as shown in 

Table 1. The training set is used to enable the model to learn 

underlying patterns, trends and dependencies (19). The 

validation set helps assess the model’s generalization ability 

and prevents overfitting by optimizing key parameters and 

used for hyperparameter tuning and model selection. Test 

dataset serves as an independent dataset to measure the 

model’s predictive accuracy on unseen data, ensuring its 

reliability in real-world forecasting                                           

Fig. 1. Weekly market price of cotton in Perambalur and Salem districts. 

 

Training data Validation data Test data 

2010-01-01 to 2022-            
01-02 

627 datapoints 

2022-01-09 to 2023-              
07-02 

78 datapoints 

2023-07-09 to 2024-                
12-27 

78 datapoints 

Table 1. Data split in- and out-of-sample for model fit 
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Feature selection  

Mutual information is a fundamental concept from 

information theory that measures the mutual dependence 

between two variables. Unlike correlation, which captures 

only linear relationships, MI detects both linear and nonlinear 

dependencies between variables (20). 

Mathematically, MI is defined in Equation 1: 

 

 

 

                                                                                                

                                                                                                   (Eqn. 1) 

 

  

where p( x,y ) is the joint probability distribution of  X and Y; 

 p(x) p(y) are the marginal probability distributions of X and Y. 

Using an appropriate bin size improves the accuracy of MI 

estimation, making it a valuable tool for feature selection and 

dependency analysis in machine learning and statistics. The 

Freedman-Diaconis Rule which helps determine the optimal 

number of bins for MI computation to balance bias and 

variance (21) is given in the Equation 2:  

h = 2 x IQR(X) X n  –1/3                                                     (Eqn. 2) 

where, h is the optimal bin width; 

IQR(X) is the interquartile range of variable X; 

n is the number of observations. 

Fig. 2. Weekly price of cotton after removal of outliers. 

 

Fig. 3. STL decomposed cotton price data of Perambalur. 
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Then the number of bins is then calculated as given in 

Equation 3: 

 

                                                                               

This rule adapts to the distribution of the data, 

ensuring that the bin width is neither too large thus, losing 

detail nor too small leading to more noise. 

Deep learning and model architecture description 

Deep learning 

Deep learning had gained significant attention consisting of 

CNNs, RNNs autoencoder neural networks and deep belief 

networks. Besides commonly used ANN and TDNN, RNNs 

such as LSTM and GRU are used. As RNNs are neural networks 

with recurrent loops, they are considered to be most 

appropriate for time series data. RNNs have memory that 

holds the knowledge pertaining to the observed data, which 

is why they are termed as recurrent networks. Each layer’s 

output is dependent on the computations of its preceding 

levels (22). 

The input features for the neural network include 

four weather parameters-maximum temperature (Tmax), 

minimum temperature (Tmin), rainfall (RF) and relative 

humidity (RH)-along with the target variable, cotton price. 

The training process for a deep learning model typically 

involves four key stages: 

1) Data preparation: The effectiveness of model training 
improves with larger datasets. This stage focuses on 

refining the data by removing incomplete records and 

unwanted variations while also incorporating data 

augmentation or simulation to enhance its quality. 

2) Choosing an optimal network architecture: The appropriate 

number of neurons, layers and network type is 

determined through experimentation or trial-and-error to 

achieve the best performance.  

3) Training the network: During this stage, the model is 

trained over several epochs using optimization algorithms 

such as stochastic gradient descent or Adam. Training 

continues until convergence criteria are met or until the 

model achieves acceptable performance on the validation 

dataset. 

4) Enhancing training efficiency: To improve training stability 

and prevent overfitting, advanced techniques such as 

batch normalization, dropout regularization and transfer 

learning are utilized. These methods enhance 

convergence speed, improve generalization to unseen 

data and increase model robustness (22). 

The hidden layer in an RNN changes according to the 

Equation 4: 

 

 

 

 

where, ωih is the weight between the ith input and hth neuron 

from the hidden layer; 

Xi
t is the ith input of network in moment t; 

ωh’his the weight between neurons of the hidden layer. 

The Back Propagation (BP) training changes according to the 

Equation 5: 

                                                                                                                             

 

 

Activation function: The activation function introduces non-
linearity into neural networks, allowing them to model 

complex patterns. ReLU and Leaky ReLU are commonly used 

in regression models due to their ability to handle non-linear 

(Eqn. 4) 

Fig. 4. STL decomposed cotton price data of Salem. 

 

max(x) - min(x) 

h 
(Eqn. 3) Number of bins = 

(Eqn. 5) 
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relationships. The Sigmoid function and tanh are often used 

in binary classification. Rectified Linear Unit (ReLU) is widely 

used due to its simplicity and effectiveness in deep networks, 

but it suffers from the dying ReLU problem (23). Leaky ReLU 

addresses this issue by allowing small negative gradients (24). 

The choice of activation function impacts training efficiency 

and model performance. 

Weight initialization: Proper weight initialization is 

crucial for stable and efficient training. The commonly used 

initialization techniques are Random Initialization, Xavier/

Glorot Initialization and He Initialization. Xavier initialization 

is suitable for activation functions like Sigmoid and Tanh, as it 

ensures that activations remain in a reasonable range. He 

initialization is ideal for ReLU-based networks as it scales 

weights according to the number of incoming neurons, 

preventing vanishing or exploding gradients. Poor weight 

initialization can lead to slow convergence or divergence 

during training (25). 

Regularization: Regularization is a technique used to 

reduce overfitting by incorporating a penalty term into the 

loss function. The two most common types are L1 (Lasso) and 

L2 (Ridge) regularization. By setting some weights to zero, L1 

regularization promotes sparsity and improves the model’s 

interpretability. By punishing big weights’ squared values, L2 

regularization (also known as weight decay) discourages 

them and produces a more generic model (26). Combining L1 

and L2 regularization results in ElasticNet. By preventing the 

model from becoming over complicated and memorizing the 

training data, these strategies improve generalization to new 

data (27). 

Dropout is another regularization technique used to 

reduce overfitting in neural networks. It works by randomly 

deactivating a fraction of neurons during each training 

iteration, forcing the network to learn redundant 

representations. The dropout rate controls how many 

neurons are dropped per layer. A higher dropout rate may 

lead to underfitting, while a very low dropout rate might not 

sufficiently prevent overfitting. Dropout is often applied in 

fully connected layers and sometimes in recurrent layers in 

models like LSTMs and GRUs (28). 

ANN 

McCulloch and Pitts in 1943 introduced the idea of ANN, 

which were then widely adopted by researchers for 

experimental modelling of nonlinear phenomena. 

McClelland, Rumelhart and Hinton in 1986 successfully 

developed a multilayer feedforward neural network (MLP) by 

introducing the Back Propagation algorithm. Neural networks 

have several uses in the financial and investing domains, 

including financial planning, decision-making and 

bankruptcy prediction (22). 

Units, or artificial neurons, are the building blocks of 

ANN. These include an input layer that receives external data, 

one or more hidden layers that transform inputs through 

weighted connections and activation functions and an output 

layer that produces the final predictions (29). The 

connections between neurons are represented by weighted 

links, where each weight reflects the strength of influence 

from one unit to the next. To enhance model performance, 

these weights are changed throughout training. The weights 

assigned to each of these relationships specify how one unit 

affects another. The neural network learns more about the 

data as it moves from one unit to another and the output 

layer eventually receives the results (30). 

A fundamental process in an ANN is determining the 

weighted sum of inputs (zi) and then applying an activation 

function (ai). The commonly used activation functions are the 

sigmoid function, hyperbolic tangent (tanh) and rectified 

linear unit (ReLU), as well as Leaky ReLU. These functions add 

non-linearities to the input, helping ANNs to grasp deep 

relationships and improve their ability to learn complex 

patterns (31). The optimization approach uses the gradient 

descent technique to quantify prediction errors. These neural 

networks have the capacity to simulate intricate nonlinear 

relationships without making presumptions about their 

nature that makes them a valuable tool in regression analysis.  

Hyperparameters such as activation functions, 

regularization methods, dropout rates and initialization 

techniques were optimized using search algorithms. The 

activation function was chosen from ReLU or, Leaky ReLU. The 

weight initialization was selected from HeNormal or Random, 

ensuring stable gradient propagation. Regularization 

methods were explored in the range of L1 (0.0001–0.01). 

Dropout rates between 0.1 and 0.5 were tested to find the best 

balance between underfitting and overfitting. These 

selections ensured a well-regularized, stable and efficient 

ANN model, for both price series and used accordingly. 

The output layer with single a node was used for regression to 

represent the predicted continuous value. The output  ŷi  of 

the ith node in the network was computed as in Equation 6:  

  Ŷi = ai(zi)                (Eqn. 6) 

ai (.) is the activation function applied at the ith node; 

zi is the weighted input to the node; 

ŷi output of the ith node in the network. 

TDNN 

Conventional ANNs do not inherently capture time 

dependencies, making them less effective for sequential or 

time series data unless specifically adapted. Neural networks 

can be used in two ways to model time series. A recurrent 

neural network is used in the first and a short-term memory is 

established at the input layer of the network in the second. 

One example of the latter is a TDNN, which uses the time 

delays to capture the temporal dimension of the series and 

build a short-term memory (also called hetero-associative 

memory) in its network (32). The past data are mapped to the 

future value via a nonlinear functional mapping as in 

Equation 7: 

 Xt = f(Xt—1, Xt—2, …, Xt—p, w) + et                 (Eqn. 7) 

 where f is a function defined by the network structure 

and connection weights and w is a vector containing all 

parameters (33). 

TDNN is similar to FFNN, except that the input weight 

includes a delay element.  

If x = [x(t)·x(t − 1),…, x(t - q)] is the input signal, the net 

input signal can be expressed as in Equation 8: 
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netj(t)= Net input signal to neuron j at time t;  

 wji = Weight associated with the connection from input y(t-i ) 

to neuron j; 

 y(t - i)= Input signal at time t - i (delayed input); 

p = the Number of past time steps considered (time delay); 

 bj= Bias term for neuron j. 

The final output value yt + 1  in TDNN model is shown in the 

following Equation 9: 

 

                                                                                                              

 where, f and g are the activation functions at the 

hidden and output layers;  

p is number of input nodes;  

q is number of hidden nodes; 

 βij is weight attached to the connection between ith input 

node and jth node of hidden layer;  

 αj is weight attached to the connection from the jth hidden 

node to the output node;  

  Yt - i  is the ith lag input of the model (34). 

TDNN require careful selection of hyperparameters to 

optimize temporal feature extraction. The tuning of these 

hyperparameters was done in a problem-specific way and 

decided by grid search technique on the available data. The 

context window size was searched in the range of {3, 5, 7, 9}, 

determining how many time steps contribute to each 

prediction. Activation functions like ReLU and Leaky ReLU 

were tested. Weight initialization was selected from Glorot, 

HeNormal and Random, ensuring stable training. 

Regularization techniques such as L2 regularization (λ = 

0.0001-0.1) and dropout rates (0.2-0.5) were used to help 

prevent overfitting. Besides these, number of epochs (50-100) 

and batch size (16-128) were also taken for grid search. 

Optimizing these parameters would ensure that TDNN 

captured long-range dependencies effectively while 

maintaining generalization. Only one output node was used 

since recursive forecasting method was adopted (17).  

LSTM 

LSTM is a type of RNN model designed for sequential data, 

introduced and improved by Gers, Schmidhuber and 

Cummins in 2000. Long-term memory refers to learned 

weights and short-term memory refers to internal states of 

cells (22). Neural Networks often notice difficulties in learning 

long-term dependencies, when information from distant time 

steps is critical for making correct predictions about current 

state. This issue is referred to as the vanishing or exploding 

gradient problem. When training a model over time, the 

gradients can diminish as they progress through several 

steps. This makes it difficult for the model to understand long

-term patterns because previous data becomes almost 

useless. Sometimes, gradients can become too big and cause 

instability. This makes it difficult for the model to learn 

correctly because the updates are irregular and unexpected. 

Both of these limitations make it difficult for ordinary RNNs to 

accurately capture long-term dependencies in sequential 

data (35).  

LSTM is capable of capturing long-term dependencies. Its 

architecture consists of recurrent subnetworks known as 

memory blocks. Each block contains one or more 

autoregressive memory cells along with three key 

components: input, output and forget gates, which regulate 

information flow. The input gate is responsible for 

incorporating inputs such as Tmax, Tmin, RH, RF and Price 

into the cell. The output gate ot specifies the output of the cell 

and the forget gate ft is responsible for indicating any prior 

values that might be needed in the future and retains them 

(36). The calculation of ft, it, ot and ht are carried out as in 

Equations (10-13).  

 ft  =  σ(Wf [ht-1, Xt]  + bf)    (Eqn. 10) 

it   = σ(Wi [ht-1, Xt] + bi)    (Eqn. 11) 

Ot  = σ(Wo[ht-1, Xt] + bo)    (Eqn. 12) 

ht  = Ot tanh(Ct)                                                      (Eqn. 13) 

where, Wi, Wf, Wo, are the weight matrices; 

bi, bf and bo are the bias vectors;  

ht is value of the memory cell at time t;  

ft is the value of the forget gate layer;  

Ct is the current cell state;  

it is the value of the input gate; and 

ot is the output gate layer. 

 For LSTM model, hyperparameters were optimized to 

enhance sequential learning. The number of LSTM units was 

searched in {32, 64, 128, 256 }, balancing model complexity 

and computational efficiency. Recurrent dropout rates 

between 0.1 and 0.5 were tested to regularize recurrent 

connections. Weight initialization was optimized using 

HeNormal, ensuring stability. L2 regularization values in the 

range 0.0001-0.1 would help prevent overfitting. Gradient 

clipping in the range 0.1-1.0 was also tuned to control 

exploding gradients, ensuring stable training. 

GRU 

GRU Neural network is one of the most successful variants of 
LSTM network (37). However, LSTMs are extremely 

complicated structures with huge computational costs. To 

address this, GRU was invented, which exploits the LSTM 

architecture by combining its gating techniques to provide a 

more efficient solution for numerous sequential tasks without 

giving up performance (38). 

The fundamental principle behind GRUs is to use gating 

mechanisms which selectively updates the hidden state at 

each time step, which allows them to retain long-term and 

crucial information while discarding irrelevant details, 

enabling more accurate predictions. GRUs seek to simplify 

the LSTM design by combining some of its components and 

(Eqn. 9) 

(Eqn. 8) ( 
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focusing on only two major gates-the update gate and the 

reset gate-resulting in fewer parameters and reduced 

computational complexity. They exhibit more efficient 

nonlinear fitting ability and are better to handle smaller 

datasets in comparison with LSTM models. At each 

timestamp t, it receives an input Xt which contains Tmax, 

Tmin, RF, RH, Price all together and the hidden state Ht − 1 is 

from the previous timestamp t − 1. Later, it returns a new 

hidden state Ht, which is then sent to the following 

timestamp. The Reset Gate controls the network’s short-term 

memory, i.e. the hidden state (Ht) and the Update Gate 

controls long-term memory (39). 

The process can be described in the equations (14-17) as 
follows: 

Zt   =  σ(xtwz + ht-1UZ + bZ)                                     (Eqn. 
14) 

rt    =  σ(xtwr + ht-1Ur + br)                                        (Eqn. 
15) 

        h̃t  =  tanh(rt . ht-1U + xtW + b)                              (Eqn. 16) 

 ht  =  (1 -  Zt) . h̃t  + Zt . ht-1                                              (Eqn. 17) 

 Where, Wz, Wr and W are weight matrices of 
corresponding connected input vectors. 

Uz, Ur and U are weight matrices of the previous time step; 

bz, br and b are the biases; 

 σ denotes sigmoid function; 

rt, Zt and h̃t denotes reset gate, update gate and the candidate 

hidden layer. 

 For Gated Recurrent Units (GRU), hyperparameter 
tuning was focused on optimizing memory efficiency and 
learning speed. The number of GRU units was selected from 
{32, 64, 128, 256}, balancing the model performance and 
training time. Weight initialization was explored between 
Glorot and HeNormal Initialization. Dropout and recurrent 
dropout rates were optimized in the range 0.1–0.5. L2 
regularization between 0.0001 and 0.1 was applied to 
improve generalization. Bidirectionality was also considered, 
selecting between Unidirectional and bidirectional GRU to 
assess its impact on performance. The number of dense 
layers, epochs and batch size were also considered for grid 
search with mean absolute error as loss function for model 
compilation with each component after STL decomposition 
of both price series. 

Model evaluation 

To quantitatively assess the performance of each forecasting 

model across different time horizons, three widely used 

accuracy metrics were employed: Root Mean Square Error 

(RMSE), Mean Absolute Prediction Error (MAPE) and Mean 

Absolute Error (MAE). RMSE is the standard deviation of the 

residuals of the model. MAE is the average difference of 

residuals of the model and MAPE is the percentage of average 

absolute error which 

give a way to compare 

the performance of the 

different 

models 

(36). The formulae for 

RMSE, MAE AND MAPE are 

given in 

Equations (18

- 20) 

                                                                                            

 

             

 

                                                                                   

 

        

 

 

                                                                                        

 

Where,  Yt and Ŷt are the actual 

and predicted values of price. 

 Furthermore, to determine the best-performing 

model, a post hoc analysis was conducted using the Diebold-

Mariano test, enabling an effective comparison of forecast 

accuracies (11). The null hypothesis of Diebold-Mariano test is 

that the models have equal predictive accuracy and the 

alternative hypothesis is that one model is significantly better 

than the other. The Diebold-Mariano test statistic is given in 

Equation 21: 

 

 

                                             (Eqn. 21)                                              

                                                                                                       

 Where,  is the mean difference of the 

loss function between two models; 

 dt is the difference between the loss functions of the 

two models at time t; 

  f̂d(0) is an estimate of the spectral density of dt at 

frequency zero, often estimated using the Newey-West 

estimator to account for autocorrelation; 

 T is the total number of observations. 

 

Results and Discussion 

Descriptive statistics 

Table 2 presents the descriptive statistics of the weekly 

cotton price series for Salem and Perambalur districts used in 

this study. 

 Perambalur price series exhibits a higher mean value 
than Salem, indicating that the central tendency of the 

observed values is greater in Perambalur. The standard 

deviation for Perambalur is slightly higher than that of Salem, 

suggesting that Perambalur has a marginally greater spread 

(Eqn. 18) 

(Eqn. 19) 

(Eqn. 20) 
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in its data distribution. The skewness values for Perambalur 

and Salem indicate a right-skewed distribution, meaning that 

both districts experience occasional price spikes. However, 

Salem exhibits a higher degree of positive skewness, 

suggesting that extreme price increases are more frequent in 

Salem than in Perambalur, which can potentially influence 

their crop planning and market strategies based on the 

anticipation of occasional sharp price spikes. The kurtosis 

values for Perambalur and Salem are close to zero, indicating 

a mesokurtic distribution. This suggests that price 

distributions in both districts are relatively stable and 

resemble a normal distribution, with moderate occurrences 

of extreme price variations. This insight can help farmers and 

market analysts anticipate price trends and manage risk 

accordingly. 

Tests for stationarity 

The stationarity of the time series data for Perambalur and 

Salem was assessed using the Augmented Dickey-Fuller (ADF) 

and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. For the 

ADF test, the null hypothesis (H₀) states that the series is non-

stationary. The test statistic for Perambalur was -3.8000, with a 

p-value of 0.0166, leading to the rejection of the null 

hypothesis, indicating that the series is stationary. Similarly, for 

Salem, the test statistic was -3.5265, with a p-value of 0.0366, 

also supporting stationarity. The KPSS test, which has a null 

hypothesis that the series is stationary, yielded test statistics of 

1.8830 and 2.0227 for Perambalur and Salem, respectively, 

both with p-values of 0.0100. While these values suggest non-

stationarity based on conventional interpretation, further 

stationarity analysis of the period from 2010 to 2022 indicated 

that the series exhibits stationarity within this timeframe. 

Therefore, STL decomposition was performed to analyse the 

trend, seasonality and residual components of the data in 

greater detail. 

The results of BDS test presented in Table 3 reveal 

strong rejection of linearity for both price series.  

The rejection of the null hypothesis suggests that the data 
exhibits nonlinear dependence. This means the series is not 

purely random; there is some underlying pattern or structure. 

Thus, nonlinear models are suggested for cotton price 

District BDS Test Statistic P value Conclusion 

Perambalur 14.3047 <0.00 Non-linear dependence 

Salem 39.0563 0.00 Non-linear dependence 

Table 3. Results of BDS test for linearity 

District Minimum Maximum Mean Standard Deviation Skewness Kurtosis 

Perambalur 3298 8824 5700.05 1308.83 0.7683 -0.0586 

Salem 3799 7909.5 5267.66 1151.08 1.0020 0.0073 

Table 2. Descriptive statistic measures of the weekly market prices of cotton in Perambalur and Salem districts 

Fig. 5. Cotton price prediction of different models for Perambalur district. 
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predictions based on available facts. 

Also, among the variables, there is non-linear relationship 

which cannot be explained in terms of correlation. A measure 

of non-linear dependency called Mutual Information is 

computed between the four weather variables and the Price. 

As stated earlier, Freedman-Diaconis Rule admitted that 

optimum number of bins was 15 to compute Mutual 

Information. Moderate MI values were observed: 0.236 for 

Tmin, 0.374 for Tmax, 0.256 for RF and 0.214 for RH. These 

findings suggest a moderate, non-linear association between 

weather parameters and cotton prices.  

Following STL decomposition, the trend, seasonal and 

residual components of the price series were modelled 

independently. The final price prediction was obtained by 

summing the trend, seasonal and residual forecasts. The final 

reconstructed model fit in all the four models for Perambalur 

and Salem districts is depicted in Fig. 5 and 6. 

To ensure a clear and comprehensive understanding of 

model performance, evaluation metrics have been presented 

separately for the training, validation and test datasets (Table 

4). 

Among the models, STL-LSTM consistently outperformed 

others, highlighting its superior predictive ability for cotton 

prices based on both historical and weather data.  

To compare the predictive accuracy of all the different 
models, Diebold-Mariano test was also conducted for 

different combinations of all four models in both Perambalur 

and Salem price datasets. The p-values obtained for all model 

comparisons were <0.0001. Since the DM test evaluates 

whether the predictive errors of two models are significantly 

different, this result highlights that the predictive 

performance of the models differs substantially. Thus, it can 

be concluded that STL-LSTM outperforms other models in 

prediction of cotton prices in Salem and Perambalur districts 

based on weather variables and past fifteen years price data. 

Subsequently, the future prices of cotton in Perambalur and 

Salem districts are forecasted via STL-LSTM model for the 

next 26 weeks from January to June 2025 which is presented 

in Fig. 7 given below.  

Conclusion 

The prediction of crop prices is of significant importance for 

Fig. 6. Cotton price prediction of different models for Salem district. 

Data Split Models 
Salem Perambalur 

MAE MAPE RMSE MAE MAPE RMSE 

Training Data 

STL-ANN 289.35 4.86 309.5861 303.49 5.64 359.4365 
STL-TDNN 267.25 3.91 324.5837 272.46 5.10 318.8218 
STL-GRU 204.12 3.06 237.2467 221.78 4.13 261.2952 

STL-LSTM 157.36 2.56 198.7826 184.51 3.45 216.3104 

Validation Data 

STL-ANN 387.24 5.07 436.8918 468.65 6.31 539.6506 

STL-TDNN 348.76 4.32 394.2873 438.43 5.88 496.3264 
STL-GRU 285.21 3.81 368.1927 338.78 4.61 392.4005 

STL-LSTM 248.26 3.17 296.5453 345.31 4.64 399.1131 

Testing Data 

STL-ANN 371.39 4.58 406.2548 422.06 5.82 498.1345 
STL-TDNN 340.35 4.02 390.5762 409.23 5.61 484.5776 
STL-GRU 285.79 3.95 319.5438 312.43 4.32 354.7807 

STL-LSTM 230.56 3.68 269.2368 295.22 4.07 337.7959 

Table 4. Quantitative evaluation metrics for prediction accuracy 

https://plantsciencetoday.online
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the 

farmers to make informed decisions and to plan crop pattern. 

This study presents a novel approach to cotton price 

forecasting in the major cotton-growing districts of 

Perambalur and Salem in Tamil Nadu, integrating weather 

variables using deep learning techniques. While the 

correlation between individual weather parameters Tmax, 

Tmin, RF and RH and cotton prices was weak, the application 

of Mutual Information measure effectively unveiled critical 

non-linear dependencies. Incorporating these exogenous 

variables improved the accuracy of price predictions. STL 

decomposition was used to uncover hidden cyclic patterns in 

the data, with separate models applied to the trend, seasonal 

and residual components. These were then ensembled to 

reconstruct the original price series. The forecasting model’s 

efficacy highlights the capability of deep learning strategies to  

model intricate relationships within agricultural data, leading 
to enhanced price prediction accuracy. Furthermore, the 

statistical significance among the four models STL-ANN, STL-

TDNN, STL-LSTM and STL-GRU was confirmed through the 

Diebold-Mariano test. The results of this research indicate 

that STL-LSTM model outperforms in predicting cotton price 

with MAPE 4.07 % and 3.68 % respectively, in Perambalur and 

Salem districts with the incorporation of weather features. 

Finally, the STL-LSTM model was used to forecast cotton 

prices for the next 26 weeks, from January 2025 to June 2025. 

This framework offers valuable decision-making support for 

farmers, helping them manage price volatility and 

contributing to greater economic stability in the agricultural 

sector. However, certain limitations exist in the model as the 

model was trained and validated using data from only two 

districts, which may limit its generalizability to other regions 

with different climatic or market conditions. Additionally, the 

dependence on historical weather and price data assumes 

stability in the underlying data-generating processes, which 

may not hold under climate change or abrupt policy shifts. 

Future research may explore on expanding these models by 

exploiting it for other regions and including additional 

variables such as soil conditions and broader market 

dynamics, which may lead to even more refined and robust 

predictive capabilities.  
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