
  

Plant Science Today, ISSN 2348-1900 (online) 

Introduction 

Rice, (Oryza sativa L.), was the staple food for more than half of 

the world’s population out of which 50 % of the rice produced 

and consumed comes from India and China. Every year, about 

480 million metric tonnes of milled rice were produced (1). In 

addition, it provided employment to nearly 200 million 

households and served as a source of income in the 

underdeveloped nations (Food and Agriculture Organization. 

June 29, 2013). The post-harvest storage of rice seeds was a 

critical aspect of agricultural practice, influencing their quality, 

nutritional content and market value. Ensuring the quality and 

nutritional integrity of rice seeds throughout the post-harvest 

storage process was crucial for maintaining food security and 

meeting the dietary needs of populations worldwide. Post-

harvest storage conditions had profoundly impacted the 

quality, shelf life and nutritional content of rice seeds, making it 

imperative to understand the biochemical changes that 

occurred during storage. 

 Seed longevity was influenced by the storage 

environmental conditions such as the temperature, equilibrium 

relative humidity and oxygen pressure (2). Many physiological 

and biochemical changes occurred during seed deterioration. 

The most accepted indicators of seed deterioration included 

reduced germination rates and decreased vigour. Research also 

identified various physiological, cellular, biochemical and 

metabolic changes that occur during seed storage. These 

included lipid peroxidation, enzyme inactivation, cellular 

membrane disruption, reduced energy production, alterations in 

protein synthesis and degradation of DNA and RNA and 

disruption in redox homeostasis. Among these, alterations in the 

metabolite composition of rice seeds played a pivotal role in 

determining their overall quality and nutritional value. 

Metabolomics, an advanced analytical approach, emerged as a 

powerful tool for studying these dynamic metabolic changes in 

rice seeds during storage. Thus, enhancing seed storability by 

preserving seed vigour during storage was crucial for rice 

production (3). 

 Metabolomics, a relatively new discipline within high-
throughput functional genomics, enabled global analysis and 

identification of the accumulation of metabolites or small 

molecules within a cell at a given time. Consequently, 

metabolomics, which provided a comprehensive, unbiased, 

high-throughput examination of complex metabolite mixtures 

in target organisms, was employed in various seed studies. 

Metabolomics involved a complex field of analytical chemistry 

and bioinformatics in which advanced techniques to determine 

the levels of a wide range of metabolites were employed in a 

series of procedures, including sample extraction and 

preparation, metabolite detection using analytical instruments 

and data processing and mining by means of bioinformatics 

techniques (4). The ultimate goal of plant metabolomics was 
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Abstract  

Rice is a vital staple crop that not only served as a primary food source but also contributed significantly to the national economy. Its 
propagation through seeds was therefore crucial for ensuring sustainable agricultural productivity. However, seed viability declined over 

time due to physiological and biochemical changes during storage, leading to deterioration and reduced quality. Understanding these 

metabolic changes was essential for preserving seed longevity. Metabolomics emerged as a robust analytical approach for profiling a wide 
range of rice seed metabolites and identifying biomarkers linked to seed ageing. Techniques like mass spectrometry (MS) and nuclear 

magnetic resonance (NMR) allowed for high-resolution, comprehensive analysis. Metabolomics enabled early detection of seed ageing 

with high accuracy and supported strategies that extended rice seed viability. This enhanced seed quality management and reduced post-

harvest losses effectively. This review highlighted the metabolite composition of rice seeds, factors influencing changes during storage, 
key metabolomics methodologies and their applications in improving seed quality, longevity and future breeding programs. 

Keywords: GC-MS; metabolic profiling; quality deterioration; seed ageing; seed viability   

http://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://crossmark.crossref.org/dialog/?doi=10.14719/pst.8812&domain=horizonepublishing.com
file:///E:/Journal%20Works/PlantScienceToday%20PST%20Articles/Layout%20PST/PST%20Layout/May%2025/Normal/8812/PST%208812%20Revised%20manuscript%20without%20highlighted.doc#_ENREF_1#_ENREF_1
file:///E:/Journal%20Works/PlantScienceToday%20PST%20Articles/Layout%20PST/PST%20Layout/May%2025/Normal/8812/PST%208812%20Revised%20manuscript%20without%20highlighted.doc#_ENREF_2#_ENREF_2
file:///E:/Journal%20Works/PlantScienceToday%20PST%20Articles/Layout%20PST/PST%20Layout/May%2025/Normal/8812/PST%208812%20Revised%20manuscript%20without%20highlighted.doc#_ENREF_3#_ENREF_3
file:///E:/Journal%20Works/PlantScienceToday%20PST%20Articles/Layout%20PST/PST%20Layout/May%2025/Normal/8812/PST%208812%20Revised%20manuscript%20without%20highlighted.doc#_ENREF_4#_ENREF_4
https://doi.org/10.14719/pst.8812
mailto:rv77@tnau.ac.in
https:/doi.org/10.14719/pst.8812


POORNIMA ET AL  2     

https://plantsciencetoday.online 

quantification of the metabolome in plants (5). Metabolomics 

was divided into targeted and untargeted approaches. It 

utilized high-resolution separation techniques in conjunction 

with sensitive detection methods to analyse small molecules 

over a broad dynamic range (6). 

 This approach was generally used for the 

characterization of rice aging and traceability to provide a 

potential pathway and determine the changes in biological 

phenotypes. 

Metabolite composition of rice seeds 

Rice seeds contained a wide range of metabolites which were 

broadly classified into primary and secondary metabolites. 

Understanding these metabolites was crucial for enhancing 

rice cultivation, nutritional value and storage properties. 

1. Primary metabolites of rice seeds 

Primary metabolites in rice seeds were essential compounds 

involved in the growth, development and metabolic processes 

necessary for the seed's viability and successful germination. 

The major primary metabolites in rice included carbohydrates, 

proteins, lipids. 

 Carbohydrates were the most abundant primary 

metabolites in rice seeds, serving as the primary energy source 

during germination and early seedling growth. Seeds 

contained a variety of carbohydrates, including 

oligosaccharides and polysaccharides. Starch being the chief 

component comprised of 72 % to 82 % of the dry weight in 

brown rice grain (7) and roughly 90 % in milled rice grain (8). In 

the endosperm of "albuminous" members of Poaceae family, 

carbohydrates, particularly starch, dominated, comprising 

about 80 % of the seed's total composition. The main 

components of starch, amylose and amylopectin possessed 

unique characteristics. Amylopectin, which made up 65 % to 85 

% of starch granules, was extensively branched due to α-(1,6) 

bonds, with waxy mutants possibly containing entirely 

amylopectin (9). In contrast, amylose consisted  of linear α-1,4 

linked glucose units, occasionally featuring α-1,6 branch 

points (10). Wild rice starch yielded less but contained higher 

amylose levels than long grain brown rice starch (11). Factors 

such as  grain size and sucrose levels affected the rate at which 

starch accumulated in rice grains (12). 

 While starch predominated, rice seeds also contained 

other carbohydrates, but in smaller quantities which include 

monosaccharides like glucose, fructose and oligosaccharides 

like raffinose and sucrose. In the early stages of seed 

development, monosaccharides like glucose and to a lesser 

extent, fructose were relatively abundant, but their levels 

decreased as the seed matured. In mature seeds, these 

monosaccharides comprised only a very small portion of the 

total sugar content, representing less than 0.2 % of the dry 

weight in cereals (13). In rice seeds, disaccharides were present 

in small quantities, with sucrose being the most notable. The 

sucrose concentration was significantly higher in the embryo 

compared to the endosperm of cereals (14). Sucrose was the 

predominant one, but the cereals also contained notable 

amounts of raffinose, stachyose and occasionally verbascose.  

 Lipid represented another important class of primary 

metabolites. The lipid content was higher in the embryo, 

followed by the aleurone layer of the seed where they were 

arranged in the lipid droplets and in sphaerosomes (15). In the 

endosperm, lipids were more concentrated in the outer layer, 

leading to a progressive decline towards the centre of kernel 

(16-18). Lipids in crops like rice were classified as starch lipids 

and non-starch lipids based on their cellular distribution and 

association;  they were also categorized  as neutral lipids, 

glycolipids and phospholipids (19). 

 Rice seed storage proteins (SSPs) were exclusively 

synthesized in the endosperm and accumulated in large 

quantities. These proteins were classified into albumins, 

globulins, prolamins and glutelins based on their solubility, 

using the Classical Osborne Fractionation method developed in 

1924 (20). Within the ripe grain (caryopsis) of rice, there are 

twenty primary amino acids were present, including eight 

essential amino acids crucial for human and animal health. The 

concentration of free amino acids in a mature grain was very 

low, typically ranging from 0.35 % to 0.55 % of the total amino 

acid content.  

2. Secondary metabolites of rice seeds 

Secondary metabolites performed a variety of physiological 
roles, including regulating rice growth and development, 

enhancing disease resistance, providing anti-insect properties 

and exhibiting allelopathic effects. Additionally, they possessed 

a range of biological activities, such as antimicrobial, 

antioxidant properties (21). Some important secondary 

metabolites in rice seeds included phenolic compounds, 

flavonoids and terpenoids. 

 Ferulic acid and p-coumaric acid were the predominant 

phenolic acids in rice, with higher concentrations found in 

brown rice compared to milled rice (22). Earlier studies 

revealed that rice bran had the highest total phenolic and 

flavonoid contents (23). 

 Flavonoids were typically classified into several 

categories including flavones, flavonols, flavanols (also known 

as flavan-3-ols), flavanonols, isoflavones and flavanones. As per 

previous report Tricin, among the seven typically identified 

flavonoids in rice, emerged as the predominant one in the bran, 

constituting 77 % of the total amount of these seven flavonoids 

(24). 

 The other major secondary metabolites were the 

terpenoids, which were further divided into monoterpenoids, 

diterpenoids and triterpenoids.  

The major secondary metabolites of rice seeds and their 

biological roles were illustrated in Table 1. 

Factors affecting metabolite composition during storage 

The three important external factors - temperature, relative 

humidity and  oxygen exposure determined the storage 

potential of rice seeds (25). Besides these, the genetic factors 

and the storage duration also predominantly influenced the 

metabolite composition (Fig. 1). 

1. Temperature 

The influence of temperature on the metabolite composition of 

rice seeds was a complex phenomenon  

As per report the storage at 25 °C caused a decrease in sucrose 

and glucose levels in most Basmati rice varieties. Basmati 86 
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showed a reduction in sucrose from 3.10 to 2.20 mg/ kg and in 

glucose from 37.50 to 1.70 mg/ kg, while Basmati 515 showed a 

reduction in sucrose from 5.80 to 2.40 mg/  kg and in glucose 

from 95.60 to 28.70 mg/ kg. At 5 °C, fructose increased in 

Basmati 86 from 9.70 to 15.70 mg/ kg, Basmati Super from 9.00 

to 11.80 mg/ kg and Basmati Kainat from 7.60 to 15.00 mg/ kg, 

while sucrose and glucose decreased in most varieties. Basmati 

S. fine showed an increase in glucose from 64.90 to 97.00 mg/ 

kg at 5 °C. After 3 months of storage at 25 °C, Basmati 86 

showed a significant decrease in palmitic acid (17.49 to 8.07 

g/100 g), oleic acid (38.01 to 9.89 g/100 g) and linoleic acid 

(33.45 to 8.06 g/100 g). After 6 months of storage at 5 °C, 

palmitoleic acid increased to 17.80 g/ 100 g and stearic acid to 

3.69 g/ 100 g. In Basmati Super, after 3 months at 25 °C, oleic 

acid decreased from 46.21 to 21.88 g/ 100 g, linoleic acid from 

28.64 to 10.30 g / 100 g and palmitic acid from 17.3 to 10.72 g/ 

100 g. After 6 months at 5 °C, oleic acid decreased to 10.93 g / 

100 g, linoleic acid to 16.73 g / 100 g and palmitic acid to 8.26 g / 

100 g (26). 

 The effect of storage temperature on the fatty acid 

composition of Kusabue and Katakutara rice showed notable 

differences, at 30°C resulted in Kusabue had higher levels of 

16:0 (palmitic acid-53.33 %) and 18:1 (oleic acid-(42.06 %) 

compared to Katakutara. At 60 °C, Kusabue exhibited a 

decrease in 16:0 (39.32 %) and an increase in 18:2 (linoleic acid) 

(36.83 %), while Katakutara showed a slight increase in 16:0 

(29.98 %) and a decrease in 18:2 (29.81 %). Both cultivars had 

increased 18:1 and 18:2 in neutral and polar lipids at 60 °C (27). 

Together these studies indicated that the temperature had a 

great influence on the metabolite composition of rice seeds. 

2. Relative humidity 

The influence of humidity on the metabolite composition of 

rice seeds was multifaceted. In a previous report on rice seeds 

stored under various conditions, it was noted that at 20 °C and 

40 % humidity, the initial fatty acid content measured 3.27 mg/ 

100 g and began to increase over time, with aging effects 

becoming evident from the 35th day onward (28). At 60 % 

humidity, the content also increased, peaking by the 40th day. 

In a high-humidity environment (80 %), fatty acid content rose 

steadily before decreasing after reaching the peak, with a rapid 

increase starting on the 35th day. At 30 °C and 35 °C, fatty acid 

levels increased significantly, with 80 % humidity accelerating 

the rise. Temperature and humidity together influenced the 

increase in fatty acids, with 30 °C and 35 °C showing the most 

rapid increase in fatty acid content, especially at 80 % humidity. 

The total starch content (%) in rice decreased under all relative 

humidity (RH) conditions, with higher RH (80 %) causing faster 

degradation than lower RH (40 %). At 20 °C, starch content 

dropped from 65 % to 52 % (40 % RH), 50 % (60 % RH) and 48 % 

(80 % RH) by day 10, stabilizing around 47- 45 % by day 50. At 

30 °C, it declined from 58 % to 50 % (40 % RH), 48 % (60 % RH) 

and 46 % (80 % RH) by day 6, stabilizing at 48-45 % by day 24. At 

35 °C, it fells from 62 % to 50 % (40 % RH), 48 % (60 % RH) and 

46 % (80 % RH) by day 4, stabilizing at 48-46 % by day 12. Lower 

RH slowed degradation, while higher RH accelerated it. 

Table 1. Major secondary metabolites in rice seeds and their functions  

Class of Metabolite Examples Biological Role References 

Phenolic Compounds Ferulic acid, p-Coumaric acid Antioxidant, antimicrobial (21, 22, 23) 

Flavonoids Tricin, Anthocyanins, Flavones, Flavonols, Flavanols, 
Isoflavones, Flavanones 

Antioxidant, pigmentation (24) 

Terpenoids Gibberellins, Momilactone B, Lupeol, Cycloartenol etc. Aroma, phytohormones, defence, 
allelopathy 

(21) 

Fig.1. Factors affecting metabolite composition of rice seeds during storage. 
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 Primed seeds stored under LT-V (low temperature-

vacuum), RT-V (Room temperature-vacuum) and RT-A-LH 

(Room temperature-aerobic-low RH) maintained stable α-

amylase activity and sugar content for 60 days. In contrast, RT-

A-HH (Room temperature-aerobic-high RH) storage caused 

sharp declines, with α-amylase activity decreasing by 55.0 %, 

59.6 %, 75.3 % and 70.6 % after 15, 30, 45 and 60 days, 

respectively and sugar content dropping by 51.3 %, 49.3 % and 

49.4 % compared to LT-V, RT-V and RT-A-LH, highlighting high 

humidity’s adverse effects (29). 

 Together, these studies indicated that humidity can 

indeed influence the metabolite composition of seeds. 

3. Oxygen exposure 

The impact of oxygen exposure on the metabolite composition 

of cereals during storage was a complex phenomenon. The use 

of oxygen absorbers has been shown to inhibit lipid degradation 

in unpolished grains like brown rice and whole grain wheat by 

reducing the accumulation of free fatty acids (35). Rice seeds 

stored under elevated partial pressure of oxygen (EPPO) 

conditions exhibited significant changes in lipid and volatile 

compound composition. Oxidized lipids, which were negatively 

correlated with seed viability (r < -0.98), increased during storage, 

while triacylglyceride (TAG) 52:3 + O, initially present, declined to 

non-detectable levels, transforming into other oxidized TAGs 

that negatively affected germination. Lipids like coenzyme Q9 

and tri-linoleoyl-glycerol, positively correlated with viability (r > 

0.85), decreased with storage. Volatile profiling identified 183 

compounds, with EPPO-stored samples showing marked 

increases in volatiles such as  3,5-octadien-2-one, 2-methyl-2-

propanol, hexanal, 2-heptanone, acetic acid and heptanal, all of 

which were correlated with reduced seed germination and 

extended storage (36). Conversely, under anaerobic conditions, 

only rice seeds were capable of degrading non-boiled, soluble 

starch, indicating the presence of a complete set of starch-

degrading enzymes (37). 

4. Genetic factors 

The metabolite composition of rice was notably affected by 

genetic factors, as evidenced by studies conducted (30, 31). 

Investigation into rice grains demonstrated that various 

metabolites were under the control of distinct genetic factors. 

Research further supported this notion, indicating that the 

metabolic makeup of rice kernels correlated with genetic 

diversity and can serve as a predictor of quality traits. 

Furthermore, a previous study emphasized the influence of 

crossing parentage and environmental conditions on metabolite 

profiles, particularly in wild-type cultivars, which had a significant 

impact on the metabolite composition of low phytic acid rice 

offspring.  

 In the study, among the IIYou 998 (IIY) and BoYou 998 
(BY) seeds, the IIY seeds showed significant changes in 19 

metabolites during storage whereas BoYou 998 (BY) seeds 

exhibited significant changes only in 8 metabolites (33). The 

raffinose levels were also lower in IIY seeds before and after 

storage compared to BY seeds indicating the lower storage 

potential of IIY seeds. As per previous report that after 20 days 

of storage at 10.9 % moisture content and 45 °C, 

"IR65483" (long-lived) seeds showed increased levels of 

kaempferide, quercetin-3-arabinoside, S-sulfocysteine and D-

glucose, while "WAS170" (short-lived) seeds did not, instead 

they had higher levels of thiamine monophosphate and 

harmaline, indicating seed deterioration which are due to key 

metabolic and genetic factors in seed longevity (34).  

5. Storage duration 

The impact of storage duration on the metabolite composition 

of cereals varied depending on the specific metabolite and 

cereal type. The report observed changes in the fatty 

components of cereals during prolonged storage (38). The 

metabolite composition of rice varieties changed significantly 

during storage. Total starch content decreased after storage, 

while amylose content increased by 9.63-11.65 % in japonica, 

2.99-4.67 % in indica and 8.07-8.97 % in indica-japonica 

hybrids. Fat content decreased sharply by 60.00-65.00 %, 37.21-

46.51 % and 41.67-42.42 %, respectively. Abscisic acid (ABA) 

content gradually decreased throughout the year, while 

raffinose content initially increased by 19.35-45.45 %, 7.02-

10.77 % and 16.13-28.13 % after 4 months but later declined to 

the lowest levels after one year. Additionally, antioxidant 

enzyme activity decreased, leading to increased fatty acid 

values and malondialdehyde (MDA) levels. These chemical 

changes over one year contributed to deteriorated cooking 

quality, evidenced by reduced viscosity, increased 

gelatinization temperature and harder cooked rice (39). Over 

the 120-day storage period, rice seed metabolite composition 

showed significant changes where the starch content 

decreased from 77 % at 60 days to 75 % at 120 days (40). As per 

previous report, the rice was stored at 25 °C for 0 to 7 months 

(41). The total protein content of fresh harvest rice (0 months) 

decreased by 19.81 % over the 7-month storage period. 

Metabolomics analysis techniques 

Metabolomics was a technology for analysing metabolites in 

organisms including plant metabolites which were produced 

for growth, development and defence against natural 

predators in plants. In addition, metabolomics helped in 

understanding plant metabolic states, functions of unknown 

genes and breeding crops as valuable traits like taste and yield 

were closely related to metabolic conditions (4). 

 Metabolomics studies on seed storage revealed 

significant changes in metabolite profiles during storage, 

affecting seed longevity and quality deterioration. The steps in 

metabolomics analysis of rice seed metabolites were briefed in 

Fig. 2. Comparative analyses of rice cultivars with different 

storability showed changes in amino acids and sugars, with 

raffinose potentially playing a role in seed storability (33). These 

insights enhanced our knowledge of seed storage processes 

and could have helped devise strategies to preserve seed 

quality. 

 Improving the rice cultivars with valuable traits had 

been a constant challenge as rice was the most important 

staple crop in the world (42).  It was believed that adopting 

metabolomic techniques in rice was useful in enhancing its 

quality, taste and nutritive value along with the understanding 

of useful traits like those of yield and defence response (33). 

Metabolomics utilized a few analytical platforms such as 

nuclear magnetic resonance (NMR) spectroscopy, mass 

spectrometry (MS) and separation methods based on 

chromatography and electrophoresis.  
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1. Nuclear Magnetic Resonance (NMR) Spectroscopy 

Nuclear Magnetic Resonance (NMR) spectroscopy was an 

essential tool in metabolomics, known for its high 

reproducibility, quantitative capabilities and non-invasive 

nature.  It was able to identify unknown metabolites in complex 

mixtures and trace downstream products of isotope-labelled 

substrates. Although NMR was less sensitive than mass 

spectrometry, it could  monitor content differences among 

thousands of metabolites and observe dynamic biochemical 

profile characteristics (43). The simplicity of sample preparation, 

the ability to quantify metabolite levels and its non-destructive 

nature made NMR particularly suitable for extensive or long-term 

clinical metabolomic studies. However, its lower sensitivity 

compared to other analytical techniques remains a drawback 

(44). Advancements in two-dimensional (2D) and 

multidimensional (nD) NMR  greatly improved its sensitivity and 

resolution despite those limitations(44,45). Despite longer run 

times, nD-NMR provided valuable structural and functional 

information on biomolecules. Ultra-fast (UF) 2D NMR was 

developed to reduce analysis time by acquiring various spectra 

in a single scan (44-46). Comprehensive multiphase (CMP) NMR, a 

recent innovation, was able to simultaneously analyze all three 

states (solid, gel and liquid forms) with minimal run time increase 

and was successfully used for structural elucidation in seeds and 

during plant growth (45, 47, 48). 

2. Mass Spectrometry (MS) 

Mass spectrometry (MS), in contrast, was frequently paired 

with various chromatography systems in one or two 

dimensions (49). Two-dimensional liquid chromatography (LC) 

and gas chromatography (GC), along with multidimensional 

LC/GC technologies, gained attention as analytical techniques. 

These methods combined two or more columns with different 

stationary phase selectivities, enhancing resolution and peak 

capacities (50). Ion mobility MS became increasingly popular 

due to its ability to quickly analyze samples, eliminate 

interferences and separate isomers and isobars, as well as its 

capability to identify compounds based on both ion size-to-

charge and ion mass-to-charge (m/z) ratios (51). Liquid 

chromatography-mass spectrometry (LC-MS) and capillary 

electrophoresis-mass spectrometry (CE-MS) have become 

essential tools. Advances in column technology, miniaturized 

systems and interfacing techniques have enhanced their 

reproducibility and sensitivity (52).  

3. Gas Chromatography Coupled to Mass Spectrometry (GC-MS) 

GC-MS was the most widely used analytical technique in 

metabolite profiling which combines high separation efficiency 

and resolution with mass-selective detection. It could analyse a 

wide range of volatile and/or derivatized non-volatile 

metabolites with high analytical reproducibility and lower cost 

compared to other techniques such as LC-MS or LC-NMR.GC 

Fig.2. Steps in metabolomics analysis.    

Note: The steps involved in metabolomics of rice seed metabolites such as sample preparation in which sample homogenization or extraction 
methods are employed to extract metabolites from the seeds. Following sample preparation, metabolite profiling is carried out in which 

metabolites are extracted from the rice seed samples using appropriate solvents or extraction methods. A range of analytical platforms are 
accessible for data acquisition, based on mass spectrometry (MS) or nuclear magnetic resonance (NMR) techniques (44). Additionally, Fourier 

transform infrared spectroscopy (FTIR) is gaining recognition in metabolomics for its capability for rapid analysis and characterizing intricate 
molecular structures simultaneously (100). These techniques separate, detect and quantify the metabolites present in the samples. 

Subsequently, the analytical devices produce raw data which includes retention times, mass spectra and peak intensities of identified 
metabolites and the data is processed and analysed using software. This includes statistical analysis to identify significant differences in 

metabolite abundance between samples. 

Subsequently, the analytical devices produce raw data which includes retention times, mass spectra and peak intensities of identified 
metabolites and the data is processed and analysed using software. This includes statistical analysis to identify significant differences in 

metabolite abundance between samples. Data annotation is done by making comparisons between their mass spectra and retention times 
with entries in reference databases, or via supplementary experiments like tandem mass spectrometry (MS/MS). Then the identified and 

validated metabolites are further analyzed to understand their biological significance and metabolic pathways they are involved in. This step 
helps in elucidating the metabolic processes occurring in rice seeds and their roles in various physiological and biochemical functions. 

Metabolomics data is integrated with other omics data such as genomics, transcriptomics and proteomics. The results of the metabolomics 

analysis are reported and visualization tools are used to present the data effectively. 

file:///E:/Journal%20Works/PlantScienceToday%20PST%20Articles/Layout%20PST/PST%20Layout/May%2025/Normal/8812/PST%208812%20Revised%20manuscript%20without%20highlighted.doc#_ENREF_43#_ENREF_43
file:///E:/Journal%20Works/PlantScienceToday%20PST%20Articles/Layout%20PST/PST%20Layout/May%2025/Normal/8812/PST%208812%20Revised%20manuscript%20without%20highlighted.doc#_ENREF_44#_ENREF_44
file:///E:/Journal%20Works/PlantScienceToday%20PST%20Articles/Layout%20PST/PST%20Layout/May%2025/Normal/8812/PST%208812%20Revised%20manuscript%20without%20highlighted.doc#_ENREF_44#_ENREF_44
file:///E:/Journal%20Works/PlantScienceToday%20PST%20Articles/Layout%20PST/PST%20Layout/May%2025/Normal/8812/PST%208812%20Revised%20manuscript%20without%20highlighted.doc#_ENREF_46#_ENREF_46
file:///E:/Journal%20Works/PlantScienceToday%20PST%20Articles/Layout%20PST/PST%20Layout/May%2025/Normal/8812/PST%208812%20Revised%20manuscript%20without%20highlighted.doc#_ENREF_47#_ENREF_47
file:///E:/Journal%20Works/PlantScienceToday%20PST%20Articles/Layout%20PST/PST%20Layout/May%2025/Normal/8812/PST%208812%20Revised%20manuscript%20without%20highlighted.doc#_ENREF_49#_ENREF_49
file:///E:/Journal%20Works/PlantScienceToday%20PST%20Articles/Layout%20PST/PST%20Layout/May%2025/Normal/8812/PST%208812%20Revised%20manuscript%20without%20highlighted.doc#_ENREF_50#_ENREF_50
file:///E:/Journal%20Works/PlantScienceToday%20PST%20Articles/Layout%20PST/PST%20Layout/May%2025/Normal/8812/PST%208812%20Revised%20manuscript%20without%20highlighted.doc#_ENREF_51#_ENREF_51
file:///E:/Journal%20Works/PlantScienceToday%20PST%20Articles/Layout%20PST/PST%20Layout/May%2025/Normal/8812/PST%208812%20Revised%20manuscript%20without%20highlighted.doc#_ENREF_52#_ENREF_52
file:///E:/Journal%20Works/PlantScienceToday%20PST%20Articles/Layout%20PST/PST%20Layout/May%2025/Normal/8812%20FM/figures%20pst.docx#_ENREF_44#_ENREF_44
file:///E:/Journal%20Works/PlantScienceToday%20PST%20Articles/Layout%20PST/PST%20Layout/May%2025/Normal/8812%20FM/figures%20pst.docx#_ENREF_100#_ENREF_100


POORNIMA ET AL  6     

https://plantsciencetoday.online 

time-of-flight MS (TOF-MS) was popular due to its higher mass 

accuracy and resolution. One of the important requirements for 

GC-MS analysis was analyte volatility and thermal stability. 

Hence the metabolites had to  be made volatile through 

chemical derivatization, which added time and complexity to 

sample preparation (53-57). Through chemical derivatization, GC

-MS was also able to detect hydrophilic metabolites such as 

organic acids, sugars and amino acids. It also involved the 

electron-impact ionisation analysis, which identified fragment 

peaks, provided structure information for known metabolites (4). 

4. Liquid Chromatography Coupled to Mass Spectrometry (LC-MS) 

LC-MS was an effective method for profiling hydrophobic 

secondary metabolites including alkaloids, flavonoids and 

phenylpropanoids as it offered high chromatographic 

performance for separation of these substances (4). LC-MS 

operated at lower temperatures, allowing for the analysis of 

heat-labile metabolites. LC was a versatile separation 

technique that could be used for targeted or non-targeted 

analysis of metabolites as it allowed for analyte recovery 

through fraction collection or concentration, which was more 

challenging than using GC separations. ESI was the most 

commonly used ionization technique for LC-MS, as it  reduced 

ionization competition and increased the number of detectable 

analytes.LC-MS operated at lower temperatures, which 

enabled for the analysis of heat labile metabolites (56-58). 

5. Capillary Electrophoresis Mass Spectrometry (CE-MS) 

CE-MS was able to detect ionic metabolites such as amino acids, 

organic acids, nucleotides and sugar phosphates without utilizing 

chemical derivatization experiments, primarily those belonging to 

central metabolic pathways like glycolytic and tricarboxylic acid 

cycles (4). CE-MS was considered a powerful separation technique 

for charged metabolites, with superior separation efficiencies 

compared to LC. Capillary zone electrophoresis (CZE) was the 

major CE mode used for metabolite analysis due to its simplicity 

and lack of additives. Other CE modes, such as  micellar 

electrokinetic chromatography (MEKC) or capillary 

electrochromatography (CEC), were also employed to achieve 

simultaneous separation of charged and neutral metabolites (57-

60). 

6. Fourier Transform Infrared (FTIR) Spectroscopy 

Fourier transform mass spectrometry (FT/MS) instruments, 

such as FT-ICR and FTICR-MS,  proven effective in 

metabolomics for comprehensive metabolite profiling, precise 

quantification and structural elucidation  (61-64). These 

instruments offered precise mass measurements with 

exceptional resolving power, enabling efficient high-

throughput metabolomics analyses (63, 64). Notably, FTICR-MS 

was highlighted for its suitability in high-throughput 

metabolomic investigations, being capable of profiling over 

400 metabolites within 24 hours (64). 

7. Near Infrared (NIR) Spectroscopy 

Near-infrared (NIR) spectroscopy stood as a valuable method 

for metabolite analysis, offering benefits such as non-

destructive sample examination and the capacity to analyze 

intact tissue samples (44). Its application extended to 

understanding, preventing, diagnosing and managing human 

diseases  .When paired with other analytical methods such as 

mass spectrometry and chromatography, NIR spectroscopy 

facilitated thorough qualitative and quantitative metabolite 

analysis within intricate mixtures (65). Despite its lower 

sensitivity compared to mass spectrometry, NIR spectroscopy's 

notable reproducibility and quantitative capability made it an 

invaluable asset in the realm of metabolomics. 

Metabolite changes during seed ageing and deterioration 

Metabolites served as a potential marker as their diagnostic 

procedures for their detection could be developed with ease 

(66). The metabolites with biomarker potential played an 

important role in seed ageing detection by having a significant 

function in seeds (Table 2). 

1. Fatty acid metabolism 

Alterations in the fatty acid content of rice during storage were 

evident, characterized by a decline in total fat content (67) and 

rise in fatty acid values (68). As per report the changes in lipid 

profile, with an increase in malondialdehyde content along 

with a decrease in antioxidant enzyme activity all contribute to 

the loss of rice quality during storage (67). A significant element 

in the decline of grain quality was the lipase activity (69). The 

hydrolysis of glycerol phospholipids and glycerides increased 

the amount of free fatty acids, which in turn caused lipid 

oxidation, a significant spoiling event that occurred during rice 

storage. Stored rice samples showed higher linoleic acid levels, 

disrupting the linoleic acid metabolism pathway, resulting in 

various oxidation products (70). The degradation of 

phosphatidylcholine (PC) was considered  a trigger for rice 

aging due to which rice developed rancid flavour (71).  

 As reported previously, assessed eight lipid subclasses in 

Ezhong and Liaoxing rice varieties over 540 days of storage (70). 

In Ezhong, Phosphatidylcholine (PC), Phosphatidylethanolamine 

(PE) and Phosphatidylglycerol (PG) decreased by 7.99 %, 11.4 % 

and 6.52 %, respectively, while in Liaoxing, these lipids dropped 

by 36.07 %, 39.32 % and 22.10 %. Saturated fatty acids (SFA) 

Monounsaturated fatty acids (MUFA) and increased in Ezhong by 

15.55 %, 30.88 % and in Liaoxing by 9.30 %, 6.01 %. 

Polyunsaturated fatty acid (PUFA) levels remained stable in 

Ezhong but rose by 11.56 % in Liaoxing reflecting difference in 

storage impact between the varieties. 

Metabolite Trend in Ageing Function in Seed Reference 

Malondialdehyde (MDA) Increases progressively with aging 
Marker of lipid peroxidation, indicator of 

oxidative damage 
(67) 

Raffinose Shows an initial increase, then declines. Helps maintain membrane stability and 
storability 

(33, 73) 

γ-Aminobutyric acid 
(GABA) 

Varies by stress level and variety Acts as antioxidant and stress signal 
molecule 

(33, 74, 75) 

Linoleic acid Initially accumulates, later oxidizes forming 
rancid compounds 

Component of membrane lipids  (70, 72) 

Glucose (Reducing Sugar) Gradual increase due to starch breakdown Byproduct of starch degradation (33, 39, 69) 

Table 2. Metabolites with biomarker potential for seed aging detection in rice 
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  In the study, Brown rice had higher levels of petroleum 

ether extractable lipids (PEE-L) (22.5–28.2 mg/g) compared to 

milled rice (3.0-4.5 mg/g), whereas milled rice contained 

greater amounts of aqueous propan-1-ol extractable fatty acids 

(PWE-FA) (72). Storage at 37 °C led to reductions in oleic and 

linoleic acids in brown rice PWE-FA and linoleic acid in milled 

rice PEE-L, suggesting that PWE-L were more stable. Total lipid 

content showed minimal variation, ranging from 30.5-39.2 mg / 

g in brown rice and 11.4-12.1 mg / g in milled rice. (In a previous 

report, a reduction in fatty acids in brown rice was noted 

following 12 months of storage, accompanied by notable shifts 

in lipid metabolism (69). It was further emphasized the increase 

in fatty acid levels during prolonged storage, coupled with a 

decline in rice quality (39). These investigations collectively 

underscore the dynamic nature of fatty acid composition in rice 

seeds during storage. 

2. Carbohydrates metabolism 

The carbohydrates were involved in metabolic pathways like 

Pentose Phosphate Pathway (PPP), glycolysis, TCA cycle, starch 

& sucrose metabolism etc. Reducing sugars like glucose and 

fructose were observed to increase during storage. During 

storage, the enzymatic degradation eventually led to the 

increased contents of reducing sugars in the storage sensitive 

seeds. Among the seeds of BY and IIY during natural storage, 

the sugars like glucose, sucrose, cellobiose, glucopyranose, 

gentiobiose, kestose, erythritol, sorbitol, mannitol, gluconic 

acid, glycerol and glycerol-3-phophate were higher in the 

relative storage sensitive IIY seeds, while only the raffinose level 

were lower in IIY than in BY seeds after the 24 month natural 

storage period (33). Certain cultivars with lower levels of 

raffinose exhibited poorer storability. Raffinose was shown to 

improve sucrose’s ability in retaining the dry condition of the 

membranes in liquid crystalline condition and inhibit its 

natural tendency to crystallize and lose its protective 

properties (73). 

 Changes in carbohydrate composition occurred in rice 

seeds during storage, including a reduction in total starch 

content, increased amylose content and decreased fat content 

(39). The storage of brown rice resulted in diminished level of 

carbohydrates, amino acids and fatty acids, along with 

increased levels of sugar alcohols, amines and aldehydes (69).   

  Two japonica, two indica and two indica-japonica 

hybrid varieties were assessed and the results shown that the 

amylose content increased by 9.63-11.65 % in japonica rice, 

2.99-4.67 % in indica rice and 8.07-8.97 % in indica-japonica 

hybrids (39). Incontrast, fat content decreased by 60.00-65.00 

%, 37.21-46.51 % and 41.67-42.42 %, respectively. After one 

year of storage, the raffinose levels decreased, although initially 

rose by 19.35-45.45 %, 7.02-10.77 % and 16.13-28.13 % after 

four months, before dropping to the lowest levels after a year. 

3. Amino acids metabolism 

Amino acids which have showed significant changes during 

storage include glycine, phenylalanine, proline, serine, 

tyrosine, GABA, glutamic acid etc. The altered amino acids were 

mainly involved in pathways like in glyoxylate and 

dicarboxylate metabolism, glycine, serine and threonine 

metabolism, butanoate metabolism, C5- branched dibasic acid 

metabolism (74). A comparative study between the rice 

varieties of IIY and BY revealed that,15 out of 18 amino acids in 

the storage sensitive IIY seeds which included valine, leucine, 

glutamine, tryptophan, lysine, phenylalanine, isoleucine, 

alanine, asparagine, tyrosine, glycine, GABA, serine, aspartic 

acid and glutamic acid- significantly decreased during the 

course of 24 month storage period, whereas methionine, 

glutamine and proline however, remained constant (33). GABA 

was associated with the antioxidant properties and reactive 

oxygen species (ROS) scavenging. The amount of free amino 

acids was higher at elevated temperatures compared to  lower 

temperatures during storage (75). 

 In a study, it was reported that initially, the total free 

amino acid content was 219.8 mg /100 g dry weight (3). After 1 

year, this decreased to 146.4 mg /100 g at 30 °C and 169.2 

mg/100 g at 4 °C. After 3 years, the content dropped further to 

53.1 mg /100 g in paddy rice stored at 4 °C and 58.1 mg /100 g in 

brown rice stored at the same temperature. Significant 

reductions were observed for individual amino acids like lysine, 

glutamic acid and serine, with greater losses at higher 

temperatures and prolonged storage. These changes 

highlighted the impact of storage conditions on amino acid 

stability in rice grains.  Significant variations in amino acid 

levels, especially those involved in glutathione metabolism was 

observed between the two rice varieties (76). Glutathione (GSH) 

was identified as vital for reducing oxidative damage and 

activating metabolism-related enzymes. L-cysteine levels were 

upregulated in indica rice (JZ) and downregulated in japonica 

rice (NJ), suggesting that indica rice possessed a stronger 

defense mechanism against abiotic stress. Another report state 

that the primary aroma-active compounds and taste 

components of Jasmine rice, including free amino acids, 

altered during storage, potentially affecting the rice's flavor 

profile (75). Collectively, these studies highlighted the dynamic 

nature of amino acid composition in rice during storage. 

Role of antioxidants during storage 

Hydrogen peroxide (H2O2) was a persistent reactive oxygen 

species (ROS) which is known as a significant signalling 

molecule has the ability in causing oxidative damage linked to 

damage to cellular components (77). ROS served dual 

functions they acted as a crucial messengers that started 

cellular defences against biotic and abiotic stresses, while at 

higher concentrations, they also caused  oxidative damage, 

leading to cell death (78). Prolonged seed storage resulted in 

gradual build-up of ROS thereby elevating the risk of oxidative 

damage. Increased ROS concentrations led to damage to 

proteins, DNA and phospholipids consequently resulting in 

reduction of seed viability and associated physiological 

changes. The regulation of ROS by enzymatic and non-

enzymatic (antioxidant activities) mechanisms and DNA repair 

mechanisms in the embryo needed to be optimally maintained  

to preserve seed viability (79). 

 An antioxidant was a compound that, even when 

present in a smaller amount compared to an oxidizable 

substance, could slow down or stop the oxidation of that 

substance (80, 81). Antioxidants could be enzymatic 

(superoxide dismutase, catalase, glutathione peroxidase) and 

non-enzymatic (glutathione, proteins like ferritin, transferrin, 

vitamin C, vitamin E, EDTA and low molecular weight 

scavengers, like uric acid, co-enzyme Q & lipoic acid) (82). They 
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were also classified as water-soluble antioxidants like 

flavonoids, ascorbic acid, uric acid and glutathione, as well as 

lipid-soluble antioxidants such as carotenoids, tocopherols and 

ascorbylpalmitate/stearate. 

 The seed coat (Testa) which was brown in colour in 

most seeds provide protection to the developing embryos from 

oxidative damage as it contains phenolic compounds that 

acted as antioxidants. Major antioxidant enzymes included 

superoxide dismutase (SOD), ascorbate peroxidase (APX), 

catalase and glutathione peroxidase (83). 

 Sugars helped in preserving the structural integrity of the 
proteins and membranes in dry conditions by forming a glassy 

state that inhibited deteriorative reactions (84-86). Changes in 

sugar levels during storage could trigger degenerative changes in 

seeds. Raffinose family oligosaccharides (RFOs) which were the 

most common oligosaccharides in higher plants contained D-

glucose. The addition of activated galactose moieties provided 

by galactinol enables sucrose to be converted into raffinose (87). 

Raffinose helped protect sucrose by inhibiting lipid crystallisation 

& other deteriorative effects, thereby preserving membrane 

integrity (88, 89). One of the key enzymes of the raffinose family 

oligosaccharide (RFO) pathway was the Galactinol Synthase (66). 

 Vitamin E, a naturally occurring essential nutrient 

comprised of 8 tocochromanols which are divided into α, β, γ 

& δ tocopherols and α, β, γ & δ tocotrienols. Tocopherols are 

the micronutrients with the properties of antioxidants (90). 

Tocopherols and Tocotrienols were collectively referred to as 

tocochromanols -lipophilic antioxidants that accumulated 

mainly in seeds. Tocopherols were found in most dicot seeds 

and in the embryos of monocots whereas the tocotrienols were 

mostly restricted to the endosperm of monocot seeds and in 

certain dicots. In rice, tocotrienols accumulated in higher levels 

in the pericarp and endosperm. Structurally tocotrienols differ 

from tocopherols due to the presence of three trans-double 

bonds in their hydrocarbon tail (91, 92). The rice germ fraction, 

which made up 4.6 % of the seed, contained the highest 

concentration of tocopherols (480 Kg ha-1) and tocotrienols (90 

Kg ha-1), comparable to that of the pericarp whereas 16.9 % of 

the seed contained lower tocopherols levels (38.1 Kg ha-1) but 

high concentration of tocotrienols (90.3 Kg ha-1) (83). 

Tocopherols and tocotrienols helped  protect PUFAs from 

oxidation and subsequently contributing to the seed longevity, 

as lipid oxidation was considered a major factor that 

influencing it (93). A study reported that the tocopherols 

function in protecting the embryo from ROS attack during 

ageing (including accelerated ageing) and also during stress 

conditions by ensuring optimum germination while 

tocotrienols in the pericarp may assist in lowering the seed’s 

metabolic activity during accelerated ageing (83). Tocopherols 

possessed antioxidative and free radical scavenging properties 

(94, 95)and aided in maintaining the structure and integrity of 

membranes (96).  

 

Future Prospects 

 Metabolomics involved the analysis of a wide range of 

metabolites including amino acids, lipids, nucleic acids, 

carbohydrates, amines, vitamins and secondary 

metabolites such as flavonoids, polyphenols, terpenoids, 

steroids and alkaloids (46). 

 Metabolomics was applied in numerous areas including 

agriculture, medical science and useful in metabolite 

profiling of microbial and plant metabolites. It served as a 

valuable tool, as the metabolite profiling of plant 

metabolites helped in understanding the metabolic 

pathways present and how these were influenced by 

genetic and environmental factors. The applications of 

metabolomics in various areas were illustrated in Fig. 3. 

Fig. 3. Applications of metabolomics. 
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 Plant metabolomics was an advancing field of research, 

characterized by large, chemically diverse metabolomes 

that are often under-represented in public database (97).  

 In food and agriculture metabolites served as a powerful 

tool for crop quality improvement, analysis of metabolite 

composition and changes at various stages of plant growth 

and understanding metabolic responses to various 

environmental stresses. The metabolomics was a crucial 

tool for assessing the metabolite changes in agriculture and 

it also found  applications in medicine, food industry (4).  

 Annotating detected metabolites, however, remained a 

major challenge, with ongoing efforts to isolate and 

determine their structures.  

 In spite of the challenges, integrating metabolomics with 

other methods such as phytochemical genomics showed 

potential to enhance rice grain quality and progress our 

knowledge of rice metabolism (98).  

 Food shortages were a significant global issue exacerbated 

by population growth, which drove the need for innovative 

solutions in agriculture.  

 Metabolomics, a promising advancement in biological 

research, offered potential to address these challenges by 

enhancing agricultural research.  

 Utilizing high-throughput technologies, metabolomics 

enables the discovery and analysis of new bio products by 

examining microorganisms and their genetic, protein, RNA 

and metabolic components.  

 Despite current limitations, such as inadequate processing 

tools, analytical skills and reference databases, 

metabolomics remains a valuable and evolving research 

field. 

 Addressing these limitations could significantly improve its 

effectiveness in tackling critical issues such as  climate 

change, crop stress responses, breeding and nutritional 

improvements in crops (99). 

 

Conclusion  

The study of rice seed metabolomics during storage was 
essential for understanding the biochemical changes that 

influences seed viability, vigor and overall crop performance. 

Storage conditions such as temperature, humidity and 

duration can significantly alter the seed's metabolic profile, 

including changes in amino acids, sugars, organic acids and 

lipids. These shifts impaired germination and led to quality 

deterioration, often indicated by increased lipid peroxidation. 

Metabolomics enables comprehensive profiling of these 

compounds, providing insights into the mechanisms of seed 

ageing and deterioration. It also supports the identification of 

biomarkers linked to seed viability, aiding in the selection of 

resilient rice varieties and the development of optimized 

storage protocols. Ultimately, metabolomics plays a vital role 

in preserving seed quality, improving storage practices and 

contributing to sustained rice production and food security. 
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