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ABSTRACT

Several  plants  of  the  Rubiaceae  family  possess  potential  pharmacological  properties,  such  as
antioxidant activity, for subsequent drug development. We investigated the methanolic extracts from
the bark and wood of  five Rubiaceae species for  phenolic  and flavonoid contents  and antioxidant
activity. Regarding the phytochemical contents and antioxidant activity,  Mitragyna diversifolia wood
(437.57 ± 9.90 mg GAE g-1) and Haldina cordifolia wood (30.11 ± 0.20 mg QE g-1) displayed the highest
total  phenolic  content  (TPC)  and  total  flavonoid  content  (TFC)  respectively.  Morinda coreia bark
followed  the  highest  antioxidant  activities  (IC50 =  360.58  ±  19.28 µg  ml-1)  in  the  2,2-diphenyl-1-
picrylhydrazyl radical scavenging activity (DPPH), Catunaregam tomentosa bark (IC50 = 13.96 ± 5.32 µg
ml-1) in the nitric oxide radical scavenging activity (NO), M. coreia wood (IC50 = 918.27 ± 0.16 µg ml-1) in
the superoxide radical scavenging activity (SO) and  M. coreia wood  (IC50 = 236.65 ± 1.66 µg ml-1) in
ferric reducing antioxidant power activity (FRAP). The TPC and TFC displayed strong correlations with
DPPH  in  M.  diversifolia wood and  with  FRAP  in  M.  diversifolia bark  and  wood.  We  found  high
correlation between TFC and FRAP in all plant extracts except C. tomentosa wood, while no relation
was detected between TFC and NO in all  plant extracts. Comparing Rubiaceae species,  the highest
antioxidant  potential  were showed in  C. tomentosa bark.  Overall,  it  is  worth  mentioning  that  the
Rubiaceae species exhibit potential as a promising source of natural antioxidants. 

Introduction

Reactive oxygen species (ROS) are a class of chemical
products  that  are  formed from oxygen metabolism
and  largely  contribute  to  oxidative  stress,  which
damages  lipids,  proteins  and  DNA  (1,  2).  Common
ROS include the hydroxyl radical, hydrogen peroxide,
superoxide  radicals,  hydroxyl  ion  and  nitric  oxide.
Various environmental stresses lead to excessive ROS
production,  causing  progressive  oxidative  damage,
such as high irradiance, pollution, metal toxicity, UV
radiation  and  pathogenic  infection  (2,  3).  Since
oxidation  and  oxidative  damage  to  cellular
components and biomolecules have been related to
several diseases, many studies have investigated the
relationship  between  oxidative  damage  and  cancer
(4), liver disease (5), Alzheimer’s disease (6), aging (7),
arthritis  (8),  inflammation  (9),  diabetes  (10),
Parkinson’s  disease  (11),  atherosclerosis  (12)  and

AIDS (13). Based on such literature, medicinal plants
are  commonly  used  to  treat  diseases  due  to  their
therapeutic  properties  and  powerful  antioxidant
activity.

Rubiaceae  is  a  one  of  the  largest  families  of
angiosperms,  well  known  for  its  high  diversity  of
secondary  metabolites.  Various  species  from  the
Rubiaceae  family  have  proven  to  be  a  promising
source  for  the  development  of  new  potential
metabolites  and  drug  prototypes  because  of  their
diversity  and  pharmacology  properties  (14).  Their
wide  range  of  secondary  metabolites  include
anthraquinones,  alkaloids,  coumarins,  flavonoids
and  terpenes,  which  display  pharmacological
properties (15). Based on literature, medicinal plants
from  the  Rubiaceae  family  have  been  reported  to
possess rich antioxidant activity (16–20), supporting
their use in therapeutics. 
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For this study, the plant samples were obtained
from  a  woody  plant  to  evaluate  the  phenolic
compounds  and  potential  biological  properties,
especially  in  the  bark  (21).  Moreover,  the  woody
part  contains  various  secondary  metabolites  with
potential biological activities (22). Hence, this study
investigated the antioxidant activity and quantified
phenolic  and  flavonoid  content  of  selected  woody
medicinal  plants  from  the  Rubiaceae  family  in
Thailand.

Materials and Methods

Collection of plant material

Five  species  of  the  Rubiaceae  family,  including
Catunaregam  tomentosa (Blume  ex  DC.)  Tirveng.,
Haldina  cordifolia (Roxburgh)  Ridsdale.,  Mitragyna
diversifolia (Wallich ex G. Don) Haviland.,  Mitragyna
rotundifolia (Roxburgh) Kuntze. and  Morinda coreia
Buch.-Ham. were collected same location at Chainat
province, Thailand in March 2015. We identified the
plants  at  Bangkok  Forestry  Herbarium  (BKF  in
Bangkok,  Thailand).  The  voucher  specimens  of  the
plants  (PCERU_CT1,  PCERU_HC1,  PCERU_MD1,
PCERU_MR1 and PCERU_MC1) were deposited in the
Department of Botany, Kasetsart University, Bangkok,
Thailand.

Methanol  (analytical  grade)  was  obtained
from  Merck  (Darmstadt,  Germany).  Other  reagents
and chemicals included 2,2-diphenyl-1-picrylhydrazyl
(DPPH;  Merck,  USA),  tris-HCl  buffer  (Tris;  Amresco,
USA),  nitroblue  tetrazolium  (NBT;  Sigma-Aldrich,
China),  b-nicotinamide adenine dinucleotide (NADH;
Sigma,  Germany),  phenazine  methosulfate  (PMS;
Sigma,  Ukranine),  sodium  nitroprusside  (SNP;
Himedia,  India),  sulfanilamide (Carlo  Erba,  France),
phosphoric  acid  (Macron  Fine  Chemicals,  China),
naphthaylethylenediamine  hydrochloride
(AppliChem  Panreac,  Germany),  2,4,6-tri(2-pyridyl)-
1,3,5-triazine  (TPTZ;  Fluka,  Switzerland),  ferric
chloride  (Chem-supply,  Australia),  Folin-Ciocalteu
(Merck,  USA),  sodium carbonate  (Merck,  Germany),
gallic  acid  (Merck,  USA),  aluminum  trichloride
(Univar,  New  Zealand),  quercetin  acid  (Sigma-
Aldrich,  Germany),  Whatman® grade  1  filtration
paper (Sigma Aldrich, USA), Büchi Rotavapor® R-210
(Mumbai,  India)  and  T60-Visible  spectrophotometer
(PG Instruments, United Kingdom). 

Preparation of crude extract

The bark and wood samples were powdered coarsely
using  a  mechanical  grinder  and  macerated  in
absolute  methanol  for  7  days  in  the  dark  at  room
temperature (23). The extracts were filtered through
filtration paper, evaporated to dryness in vacuum at
40 °C using a rotary evaporator, then stored at -20 °C
in the dark.

Quantitative  analysis  of  phenolic  and flavonoid
compounds

Total phenolic content

The  phenolic  content  of  plant  extracts  was
determined  according  to  a  previously  described
procedure (24). The sample (0.5 ml) was mixed with

0.2 N Folin-Ciocalteu reagent (2.5 ml), left for 5 min at
room temperature, added solution of Na2CO3 (75 g l-1

in  water,  2  ml).  After  incubation  for  1  hr,  the
absorbance was measured at 765 nm. A calibration of
standard curve was produced using gallic acid (0-300
mg l-1). The results are expressed as mg of gallic acid
equivalents (mg GAE g-1).

Total flavonoid content

The  total  flavonoid  was  measured  based  on  the
method  described  in  a  previous  work  (25).  The
sample (1.5 ml) was mixed with 2% AlCl3 in methanol
(1.5 ml). The absorbance was read at 415 nm after 15
min against a blank sample. Quercetin (0–50 mg l-1)
was used as a standard compound to plot the curve.
The  results  are  expressed  as  gm  of  quercetin
equivalents (mg QE g-1).

DPPH radical scavenging activity

DPPH  scavenging  activity  was  demonstrated  using
2,2-diphenyl-1-picrylhydrazyl  (DPPH)  free  radical
(26).  The  sample  (1.5  ml)  was  mixed with  0.2  mM
DPPH solution in methanol             (1.5 ml). After
incubation for 30 min,  the  absorbance was read at
520 nm. 

Nitric oxide radical scavenging activity

Nitric  oxide,  generated  from  SNP  in  solution  at
physiological  pH,  interacts  with  oxygen  to  produce
nitrite  ions,  which  can  be  measured  by  the  Griess
reaction (27). The reaction mixture (3 ml), containing
sodium nitroprusside in phosphate PBS buffer and the
extracts  were  incubated.  After  incubation  for  150
minutes,  the reaction mixture (0.5 ml)  was removed,
then Griess reagent (1% sulfanilamide, 2% H3PO4 and
0.1% naphthaylethylene diamine hydrochloride, 0.5 ml)
was added. The absorbance was measured at 546 nm.

Superoxide radical scavenging activity 

The  NADH-PMS  condition  produced  superoxide
radicals  according  to  a  previously  described
procedure  (28).  The  mixture  contained  samples
(1 ml), 936 µM NADH (1 ml) and 300 µM NBT (1 ml).
After 10 minutes, the reaction was initiated by adding
120 µM PMS (1 ml). After incubation for 5 min, the
absorbance at 560 nm was compared against blank
samples.

Ferric  reducing  antioxidant  power  (FRAP)
activity

The ferric reducing antioxidant power (FRAP) activity
was  evaluated  using  the  followed  method  from
previous report (29). Fresh FRAP solution, containing
300 mM acetate buffer (100 ml), 10 mM TPTZ solution
(10  ml)  and  20  mM  FeCl3.6H2O  (10  ml),  was  kept
warmed at 37 °C until subsequently used. The sample
(0.15  ml) was mixed with FRAP solution (2.85 ml) in
the dark. After 30 min, the absorbance was read at
593  nm.  The  FRAP  content  in  the  sample  was
reported as mg trolox equivalent (TE) g extract-1.

Data analysis

The  experimental  treatments  were  performed  in
three independent replicates. Values are displayed as
mean with standard deviation. The results of ANOVA
analysis  and  Dunnett's  multiple  comparisons  tests

25   SUKSUNGWORN & DUANGSRISAI 



were analyzed using GraphPad Prism 6 Software (San
Diego,  CA,  USA)  for  statistical  comparison.  The
p-value  less  than  0.05  were  considered  statistically
significant.

Results and Discussion

In order to fully reflect the antioxidant activity of the
five Rubiaceae species (Fig. 1), four well-known anti-
oxidant  methods,  including  2,2-diphenyl-1-
picrylhydrazyl (DPPH), nitric oxide (NO), superoxide
(SO) radical scavenging activity,  and ferric reducing
antioxidant power activity (FRAP), were employed. It
is pertinent to measure various types of antioxidant
activity  because  most  antioxidants  have  several
functions  (30).  Despite  numerous  studies  on  C.
tomentosa fruit (31),  H. cordifolia bark, leaves, stem
and root (32-36) and M. rotundifolia bark and leaves
(37),  no  existing  work  considers  the  chemical

composition  and  antioxidant  activity  of
M. diversifolia and M. coreia bark and wood.

Determination of total phenolic and flavonoid 
content

Quantification  of  total  phenolic  content  (TPC)  is
usually  carried  out  by  the  Folin-Ciocalteu  method,
while the AlCl3 method is used for determination of
the total flavonoid content (TFC). The amount of TPC
and TFC in the plant extracts are presented in  Table
1. The TPC of plant extracts is presented the highest
in M. diversifolia wood (437.57 ± 9.90 mg GAE g-1) and
the lowest in M. coreia bark (119.48 ± 0.41 mg GAE g-1).
On  the  other  hand,  the  flavonoid  content  of  plant
extracts  shown  the  highest  in  H.  cordifolia wood
(30.11 ± 0.20 mg QE g-1) and the lowest in  M. coreia
bark (0.74 ± 0.01 mg QE g-1). In particular, phenols are
one of the most effective antioxidants (38, 39), which
possess  strong  redox properties  that  play  a  role  in
neutralizing and absorbing free radicals,  quenching
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Fig. 1. Description of five Rubiaceae species; (A) Catunaregam tomentosa, (B) Haldina cordifolia, (C) Mitragyna diversifolia,
(D) Mitragyna rotundifolia and (E) Morinda coreia.



of singlet and triplet oxygen, and the ability to chelate
metals (40, 41). In additional, flavonoids are a group
of naturally occurring polyphenolic compounds that
serve  as  excellent  hydrogen-/electron-donors.  The
resulting flavonoids radical is relatively stable due to
electron delocalization and intramolecular hydrogen
bonding  (42).  Compared  to  bark,  some  reports
suggest that wood contains higher phenolic levels (43,
44)  and  is  richer  in  polyphenols  and  resin  acids
(diterpenes).  In  the  heartwood  part,  most  soluble
sugars such as xylose, mannose and arabinose can be
derived from hydrolyses (45).  Previous reports have
demonstrated  that  the  wood  part  of  plants  have
various  secondary  metabolites  with  potential
biological  activities  (43,  46,  47). In  this  study,  the
highest  TPC and TFC were  found  in  M. diversifolia
wood and H. cordifolia wood.

DPPH radical scavenging activity

DPPH radical scavenging activity has been widely used to
evaluate  the  free  radical  scavenging  activity  of
antioxidants or hydrogen donors. As shown in  Table 2,
the scavenging effects of plant extracts on DPPH radical
were found the higest in M. coreia bark (IC50 = 360.58 ±
19.28 µg ml-1) and the lowest in                      M. coreia
wood (IC50 = 2408.18 ± 73.82 µg ml-1). The DPPH method is
based on scavenging through the addition of a radical
species  or  antioxidant  with  visually  noticeable
discoloration. The DPPH method is based on scavenging
through the addition of a radical species or antioxidant
with visually noticeable discoloration. The level of color
change is proportional to the concentration and potency
of  the  antioxidants  (48).  Concerning  the  IC50 value  of
H. cordifolia, the bark methanol extract from a previous
study (56.1 µg ml-1) was found to be 7.3-fold higher than

our DPPH test (411.80 µg ml-1) (35). This result suggests
that Rubiaceae plants are capable of donating hydrogen
to a free radical to scavenge potential damage.

Nitric oxide radical scavenging activity

Nitrite  (NO2−)  can  be  metabolized  into  nitric  oxide
(NO),  which is  an  essential  bio-regulatory  molecule
with physiological processes and functions. However,
excessive NO can interact with the superoxide anion
to form peroxynitrite ion (ONOO−). Nitrite is detected
and analysed by the formation of NO2− containing the
Griess reagent, while nitric oxide scavengers compete
with oxygen, leading to reduced production of nitrite
ions.  According  to  the  IC50 values  in  Table  2, the
inhibition  of  nitric  oxide  radical  scavenging  ability
were presented the highest IC50 value (13.96 ± 5.32 µg
ml-1) in  C. tomentosa bark and the lowest IC50 value
(651.74 ± 7.68 µg ml-1) in M. coreia bark. Nitric oxide
plays  an  important  role  in  various  inflammatory
processes  (27).  The  nitric  oxide  radical  generated
from sodium nitroprusside interacted with oxygen to
form  nitrite  (49).  Comparing  IC50 values  of  H.
cordifolia, the bark methanol extract from a previous
study (125.7 µg ml-1) was found to be 2.7-higher than
our  result  (342.57  µg  ml-1)  (35).  The  Rubiaceae
extracts from our study inhibit  nitrite formation by
competing with oxygen to react with nitric oxide.

Superoxide radical scavenging activity

Superoxide  radical  scavenging  activity  (SO)  is  an
antioxidant  enzyme related  to  ROS scavengers  and
mediators  in oxidative  chain  reactions.  To evaluate
the O2− scavenging activity of antioxidants, the PMS–
NADH–NBT system was employed. As shown in Table
2,  the  scavenging  activity  of  superoxide  in  plant
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Table 1. Total phenolic content (TPC) and total flavonoid content (TFC); the results are presented as mean ± standard in triplicate (n = 3).

Plant extracts Part
TPC

(mg GAE g-1)
TPC

ranking
TFC

(mg QE g-1)
TFC

ranking
Catunaregam tomentosa bark 396.38 ± 0.41**** 4 4.32 ± 0.02**** 5
Catunaregam tomentosa wood 285.67  ± 7.01**** 7 1.49 ± 0.01**** 8
Haldina cordifolia bark 359.24 ± 3.67**** 6 5.05 ± 0.13**** 4
Haldina cordifolia wood 258.29 ± 3.27**** 9 30.11 ± 0.20 1
Mitragyna diversifolia bark 382.33 ± 3.30**** 5 3.15 ± 0.10**** 7
Mitragyna diversifolia wood 437.57 ± 9.90 1 1.48 ± 0.01**** 9
Mitragyna rotundifolia bark 411.62 ± 10.72**** 3 3.68 ± 0.01**** 6
Mitragyna rotundifolia wood 412.81 ± 0.41*** 2 5.65 ± 0.02**** 3
Morinda coreia bark 119.48 ± 0.41**** 10 0.74 ± 0.01**** 10
Morinda coreia wood 261.14 ± 0.71**** 8 7.40 ± 0.01**** 2

Values followed by the asterisk symbol (*) are statistically significant (p < 0.05) compared to the highest value of each activity based on
Dunnett's multiple comparisons test.

Table 2. Anti-oxidant activity of plant extracts; the results are presented in mean ± standard in triplicate (n = 3).

Plant extracts Part
IC50 of DPPH

(µg ml-1)
IC50 of NO
(µg ml-1)

IC50 of SO
(µg ml-1)

FRAP
(mg TE g-1)

Catunaregam tomentosa bark 540.32 ± 27.37ns 13.96 ± 5.32 4150.13 ± 45.35**** 206.86 ± 1.33****

Catunaregam tomentosa wood 380.60 ± 99.65ns 81.33 ± 9.83** 8295.09 ± 641.25**** 96.10 ± 6.29****

Haldina cordifolia bark 411.80 ± 10.69ns 342.57 ± 8.56**** 5236.43 ± 41.50**** 199.98 ± 0.44****

Haldina cordifolia wood 532.73 ± 29.23ns 434.56 ± 14.37**** 1204.94 ± 19.25ns 61.54 ± 0.07****

Mitragyna diversifolia bark 1769.41 ± 382.95**** 73.31 ± 9.27*** 3615.47 ± 7.69**** 153.31 ± 0.39****

Mitragyna diversifolia wood 795.34 ± 8.95** 259.69 ± 14.98**** 4516.30 ± 16.07**** 62.30 ± 0.32****

Mitragyna rotundifolia bark 2225.30 ± 64.51**** 52.65 ± 6.66* 3179.04 ± 22.44**** 95.97 ± 0.39****

Mitragyna rotundifolia wood 716.53 ± 60.43* 183.94 ± 15.14**** 7036.50 ± 92.69**** 222.76 ± 0.26****

Morinda coreia bark 360.58 ± 19.28 651.74 ± 7.68**** 6622.71 ± 25.92**** 18.75 ± 0.52****

Morinda coreia wood 2408.18 ± 73.82**** 183.52 ± 31.27**** 918.27 ± 0.16 236.65 ± 1.66

IC50 = the half maximal inhibitory concentration 

Values followed by the asterisk symbol (*) are statistically significant (p < 0.05) compared to the highest value of each activity based on 
Dunnett's multiple comparisons test.



extracts  decreased  the  highest  value  in  M.  coreia
wood (IC50 = 918.27 ± 0.16 µg ml-1) and the lowest in
C. tomentosa wood (IC50 = 8295.09 ± 641.25 µg ml-1).
Reactive  oxygen  species,  such  as  superoxides,  give
rise to the generation of dangerous hydroxyl radicals,
which  contribute  to  oxidative  stress  and  damage
lipids, proteins and DNA (50). The results of our study
reveal  that  Rubiaceae  plants  have  an  effective
capacity in scavenging for superoxide radical.

Ferric reducing antioxidant power activity

The  ferric  reducing  capacity  of  plant  extracts  may
serve  as  an  indicator  of  its  potential  antioxidant
activity,  where  the  presence  of  an  antioxidant
reduces  Fe3+-TPTZ  to  Fe2+ under  acidic  conditions.
Thus, ferric reducing ability can be evaluated by the
formation of a Fe2+-TPTZ complex.  According to the
FRAP activities in Table 2, the ferric reducing effects
of plant extracts have the highest value in  M. coreia
wood (236.65 ± 1.66 mg TE g-1) and lowest value in M.
coreia bark  (18.75  ±  0.52  mg TE  g-1).  The  reducing
power  of  the  test,  the  presence  of  reductants
(antioxidants) in the solution causes the reduction of
the  Fe3+-  TPTZ  complex  to  ferrous  form  (51).  Our
results  show  that  the  extracts  act  as  an  electron
donor and thus, influence the reduction of the Fe+3-
TPTZ complex to ferrous form.

Ranking of antioxidant activity 

As shown in Table 3, the antioxidant activity of the
extracts  in  our  study  are  ranked  as  follows:  C.
tomentosa bark  >  M.  coreia wood  >  M.  diversifolia
bark > M. rotundifolia bark > C. tomentosa wood and
H.  cordifolia bark  >  M.  rotundifolia  wood  >  H.
cordifolia wood >  M.  diversifolia wood >  M.  coreia
bark. The comparison of these results  suggests that
the level  of  anti-oxidant  of  species  of  Rubiaceae  in
diffirent bark and wood part are depend on the part
and  the  spieces.  Regarding the highest value of TPC,
TFC and each antioxidant activity (Table 1 and 3), our
results show that antioxidants in wood extracts are
more effective than those in the bark extracts in TPC,
TFC,  NO  radical  scavenging,  and  FRAP  activities.
Other  studies  also  suggest  that  wood  extract  has
higher antioxidant activity than bark that is directly

related to the phenolic content, which agrees with the
highest  value  of  phenolic  content  in  wood extracts
(44, 52). However, a non-significant correlation was
observed between the TPC and TFC and antioxidant

activity to polyphenols, which may be contributable
to  proteins,  that  could  be  oxidized  using  the  Folin
reagent and aluminum chloride (53–55). This may be
further  explained  by  the  interference  of  other
chemical components in the extract (56). 

Correlation with phytochemical constituents and 
IC50 values of antioxidant 

The  correlation  between  the  TPC  and  TFC  and
antioxidant  activity,  including  DPPH,  NO  and  SO
radical scavenging activity and FRAP activity of bark
and  wood  were  analysed  (Tables  4  and  5).
Specifically,  a  correlation  coefficient  of  (r)  >  0.6
shows extracts with strong antioxidant activity (57).
Analysis  of  the  strong  correlation  between  the
phenolic  content  and  antioxidant  activities  showed
that  the  TPC  exhibits  radical  scavenging  ability  as
follow; DPPH scavenging activity of H. cordifolia bark
(r  =  0.9667)  and  wood  (r  =  0.8048),  M. diversifolia
wood (r = 0.8922),  M. rotundifolia wood (r = 0.9977)
and  M.  coreia  bark  (r  =  0.6386);  NO  scavenging
activity of C. tomentosa bark (r = 0.8879) and wood (r
=  0.7538),  H.  cordifolia wood  (r  =  0.6858),  M.
rotundifolia wood (r = 0.9479) and M. coreia  wood (r
=  0.6869);  SO  scavenging  activity  of M. diversifolia
bark (r = 0.8102) and M. coreia bark (r = 0.8061); and
FRAP of H. cordifolia wood (r = 0.7559)  M. diversifolia
bark  (r  =  0.9449)  and  wood  (r  =  0.8030) and M.
rotundifolia bark  (r  =  0.9449).  The  correlation
analysis  of  flavonoid  content  and  antioxidant
activities show as follow; DPPH scavenging activity of
C. tomentosa wood (r = 0.6171), H. cordifolia bark (r =
0.7763),  M. diversifolia wood  (r  =  0.8372),  M.
rotundifolia bark (r = 0.9983), and M. coreia wood (r =
0.8445);  and SO scavenging activity  of C.  tomentosa
bark (r = 0.9895),  M. rotundifolia wood (r = 0.9342),
and M.  coreia wood  (r  =  0.9100)  respectively.
Interestingly, the correlation of flavonoid content and
FRAP showed that all plant extracts exhibit the high
correlation coefficient except C. tomentosa wood (r = -
0.4825), while no correlation was observed between
flavonoids  and  nitric  oxide  radicals or  between
phenolic  and  flavonoid  contents  and  antioxidant
activities. Antioxidant activity can be determined by
ranking  TPC and  TFC from greatest  to  least,  which

varies  depending  on  plant  species,  growth  and
developmental  stages,  stress  conditions  and  other
factors  (58,  59).  Similar  to  previous  reports,  our
results  reveal  a  positive  relationship  between  TPC
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Table 3. Ranking of anti-oxidant activity, total phenolic and total flavonoid content.

Plant extracts Part DPPH
ranking

NO
ranking

SO
ranking

FRAP
ranking

Antioxidant rank

Catunaregam tomentosa bark 5ns 1 5**** 3**** 1

Catunaregam tomentosa wood 2ns 4** 10**** 6**** 5

Haldina cordifolia bark 3ns 8**** 7**** 4**** 5

Haldina cordifolia wood 4ns 9**** 2ns 9**** 8

Mitragyna diversifolia bark 8**** 3*** 4**** 5**** 3

Mitragyna diversifolia wood 7** 7**** 6**** 8**** 9

Mitragyna rotundifolia bark 9**** 2* 3**** 7**** 4

Mitragyna rotundifolia wood 6* 6**** 9**** 2**** 7

Morinda coreia bark 1 10**** 8**** 10**** 10

Morinda coreia wood 10**** 5**** 1 1 2
Values followed by the asterisk symbol (*) from IC50 are statistically significant (p < 0.05) compared to the highest value of each activity 
based on Dunnett's multiple comparisons test.



and  TFC  and  antioxidant  ability  from  Trifolium
pratense (60).  However,  no  significant  correlation
was  observed  between  highest  TPC  and  TFC  and
antioxidant  activity  in  samples,  which  may  be
because  of  interference  from  other  antioxidant
chemical  components  (49).  Moreover,  phenolic
content was correlated with DPPH radical scavenging
and  ferric  reducing  antioxidant  potential  activities,
suggesting  a  relation  between  TPC  and  TFC  and
antioxidant  activity  in  Garcinia  lasoar bark,  as
similarly quantified by researchers (61). Our results
revealed  that  M.  rotundifolia revealed  that  the
correlation  between  the  TFC  and  DPPH  radical
scavenging and FRAP activities were relatively higher
(DPPH;  R2 =  0.7612,  FRAP;  R2 =  0.751).  The  data  of
antioxidant activity corresponding to DPPH and TPC
had a very low correlation coefficient (R2 = 0.00008),
which  has  also  been  reported  (37).  Further,  our
analysis  shows  no  significant  correlation  between
TFC  and  NO  radical  scavenging  activity,  agreeing
with a published report that TPC and TFC of Launaea
procumbens extract  have  no  correlation  with  NO
radical  scavenging  activity  (62).  While  several
flavonoids may scavenge NO pro-oxidant properties
by increasing superoxide, flavanones  and flavonoid
glycosides did not show significant inhibition of NO
production  up  to  100  μM  (63).  Besides  NO,  under
oxidative  stress  conditions,  flavonoids  may  also
protect  NO  from O2-driven inactivation  and  inhibit
NO-scavenging  effects.  Therefore,  the  effect  of
flavonoids on NO levels depends on the structure and
the concentrations  (64).  Our results  further  suggest
that  the  plant  extracts  contain  phytochemical
constituents that are capable of donating hydrogen to
a free radical to scavenge the potential damage.

Conclusion

This work reveals the antioxidant ability of Rubiaceae
species due to the methanolic extracts from TPC in M.
diversifolia wood  and  TFC  in  H.  cordifolia wood.
Further, C.  tomentosa bark  presented  the  highest
antioxidant  activity.  However,  it  is  pertinent  to  note
that  the categorization established among the species
depends  on  the  method  used.  To  the  best  of  our
knowledge, this is the first report on the phytochemical
contents and antioxidant activity of M. diversifolia and
M. coreia. The results of our study reveal that medicinal
plants of the Rubiaceae family offer a potential source
of natural antioxidants.
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Table 4. Correlation between total phenolic content (TPC) and anti-oxidant activities of each plant extract; correlation coefficients were
analysed at the 95% confidence interval.

Plant extracts
correlation coefficient (r)

Part DPPH NO SO FRAP
Catunaregam tomentosa bark -0.2603 0.8879 -0.1446 0.0275
Catunaregam tomentosa wood -0.6171 0.7538 0.2438 0.4825
Haldina cordifolia bark 0.9667 -0.5081 -0.9541 0.2127
Haldina cordifolia wood 0.8048 0.6858 -0.9958 0.7559
Mitragyna diversifolia bark -0.5000 -0.8874 0.8102 0.9449
Mitragyna diversifolia wood 0.8922 -0.7995 -0.0262 0.8030
Mitragyna rotundifolia bark 0.4490 -0.8470 0.1742 0.9449
Mitragyna rotundifolia wood 0.9977 0.9479 -0.6307 -0.9707
Morinda coreia bark 0.6386 -0.9953 0.8061 -0.8660
Morinda coreia wood -0.8198 0.6869 0.0316 -0.6099

Table 5. Correlation between total flavonoid content (TFC) and anti-oxidant activities of each plant extract. Correlation coefficient was 
analysed at 95% confidence interval.

Plant extracts
correlation coefficient (r)

Part DPPH NO SO FRAP
Catunaregam tomentosa bark -0.9655 -0.4600 0.9895 0.9996
Catunaregam tomentosa wood 0.6171 -0.7538 -0.2438 -0.4825
Haldina cordifolia bark 0.7763 -0.9953 -0.8042 0.9148
Haldina cordifolia wood 0.1612 -0.0176 -0.7763 0.9982
Mitragyna diversifolia bark -0.9286 -0.9824 0.2740 0.9177
Mitragyna diversifolia wood 0.8372 -0.9199 -0.8788 0.9177
Mitragyna rotundifolia bark 0.9983 -0.8839 -0.7657 0.7559
Mitragyna rotundifolia wood -0.8302 -0.9802 0.9342 0.9608
Morinda coreia bark -0.9857 0.5818 -0.9155 0.8660
Morinda coreia wood 0.8445 -0.9354 0.9100 0.9664
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