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Abstract

Pumpkin (Cucurbita moschata Duch. Ex Poir.) is incredibly useful and nutritionally rich vegetable crop having numerous industrial uses regarding
seed, flesh and flesh flour, but it is still underutilized in India. Hence, it is necessary to introduce some potential selections with high yield and
nutrition content. The present investigation was elucidated the morpho-nutritional potential of pumpkin for 28 morpho-biochemical characters
estimated and assessment of molecular diversity using Simple Sequence Repeats (SSR) and Sequence-Related Amplified Polymorphism (SRAP)
marker in 34 diverse genotypes of pumpkin collected from different regions of India. The study was conducted at the Main Vegetable Research
Station, Anand Agricultural University (AAU), Anand, during the kharif season of 2018. PCA explained 82.72 % total variation across traits, while
multi-trait genotype-ideotype distance index (MGIDI) identified three high-performing genotypes; Anand Pumpkin 1, GPPK 95 and GPPK 59. A set
of five SSR and SRAP polymorphic primers were used to estimate genetic diversity among the genotypes. The similarity matrix generates
dendrogram with UPGM based on Jaccard’s coefficient implemented in NTYSIS. The clustering grouped 34 genotypes into six main clusters viz. |,
I, 111, IV, V and VI with 25, 4, 1, 1, 2 and 1 genotypes, respectively. The maximum genetic distance (0.75) was recorded between the genotype pairs
GPPK 59 and Arka Chandan, as well as GPPK 90 and Arka Chandan. These findings highlight the potential of specific genotypes for breeding
programs aimed at enhancing yield and nutritional value in pumpkin.
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Introduction pulp of fully ripened fruit. Pulp is also mixed with tomato sauce
and ketchup (4), glucose tolerance factor (GTF) pumpkin milk
powder (5) which can be used as a diabetic food and for the
preparation of pumpkin ice-cream. Its young leaves, flowers and
tender shoots are also utilized as cooked vegetables in various
culinary preparations.

Pumpkin (Cucurbita moschata Duch. Ex Poir.) is a diploid plant
with 2n = 2x = 40, a highly nutritious but underutilized vegetable
crop. Primary centers of origin are possibly Northern and Southern
America (1). The genus Cucurbita consists of 27 species of which,
five are cultivated viz., C. maxima, C. moschata, C. pepo, C. ficifolia

and C. mixta. Among these species, C. moschata is the most widely Pumpkin s a nutritious food, providing a mode.rate amount
cultivated species and found to be cross compatible with C. pepo, of energy and carbohydrates (5.31 %), along with protein (0.98 %). It
C. mixta and C. maxima (2). is also a rich source of vitamins, particularly carotenoid pigments

(171 pg/100g) and essential minerals (6). Additionally,
phytochemicals such as trigonelline and nicotinic acid, extracted
from pumpkin, have been shown to help lower blood cholesterol
and glucose levels. Pumpkin flour can be used to supplement the
conventional flour contain nutrients and minerals in concentrated
form carbohydrate (72.41 %), protein (7.81 %) carotenoid pigments
(272 pg/100g) compared to the fruit as such. Pumpkin seeds are a
valuable source of nutrients, containing 40-50 % oils, 30 % proteins,
22 % carbohydrates, along with essential minerals and vitamins (6,
7). This vegetable holds significant potential in addressing
malnutrition, particularly in meeting vitamin A requirements (8).

Pumpkins are often regarded as remarkable wonders of
the vegetable kingdom due to their diverse and striking
characteristics (3). In India total area under cultivation is 94000 ha
and production 2043000 million tons. Every part of the pumpkin
fruit is having significant uses; the mature and immature fruits are
used as vegetable, fully matured fruits used for preparing candy or
fermented into beverages, sweets, supplement cereal flours in
bakery products, sauces, soups, spices, instant noodles, flour
mixes and natural coloring agentin pasta. Sweet delicacies such as
“Halwa” various confections and jams are made using the mashed
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Any breeding program begins with an assessment of the
genetic diversity within the available germplasm, which serves as the
foundation for developing new and improved varieties. It is said that
genetic variability is the “sine quanon” of any such programme. A
higher degree of variability within a population increases the
likelihood of effective selection for desirable traits. Direct selection
based on fruit yield performance may not be highly effective;
however, selecting for yield-related component traits has been
found to be a more reliable approach, as observed in other plant
species (9). As a result, multivariate analytic methods such as
principal component analysis (PCA) and MGIDI can be used as a
model instrument for testing and identifying the causes of variance
(10, 11). PCA, for example, reduces the dimensionality of a data set
by decreasing the number of variables while preserving as much
information as possible. It applies an orthogonal transformation to
convert a set of potentially correlated variables into a set of
uncorrelated variables, referred to as principal components.
Breeders frequently seek to generate an ideotype, which is a
genotype that combines many traits for optimal performance. The
goal of ideotype design is to improve crop performance by taking
into account multiple attributes at the same time while selecting
genotypes (12).

The analysis of genetic diversity and kinship between or
within different species, populations and individuals is a
precondition towards effective utilization and protection of plant
genetic resources (13). Simple Sequence Repeats (SSR) are generally
most reliable and highly reproducible among molecular markers.
Certainly, SSRs are now extensively acknowledged as the
foundation for many framework linkage maps. This marker system
has played a crucial role even in merging linkage maps, since they
define specific locations in the genome unequivocally (14). Recently
developed Sequence-Related Amplified Polymorphism (SRAP)
markers are found to be robust, technically less demanding, highly
variable and easy to use (15). Taking in mind the importance of
pumpkin crop and to generate more information on above stated
aspects, the present investigation was undertaken for the estimation
of morphological and nuttrionally important biochemical traits from
fruit pulp, seed, pulp flour and assessment of genetic divergence
using molecular marker system.

Materials and Methods
Experimental material and field evaluation

The present investigation was carried out in well drained sandy
loam soil at Main Vegetable Research Station, Anand Agricultural
University (AAU), Anand during kharif season of the year 2018. The
experimental material consists of 34 diverse genotypes of
pumpkin (Supplementary Table S1). Evaluation was carried out in
three replications in randomized complete block design (RBD)
with 10 plants/genotype in each replication with Inter- and intra-
row space of 2.0 x 1.0 m, respectively.

Phenotyping for morphological and biochemical traits

Data was collected for 14 morphological (Number of First Male
Flower, Node Number of First Female Flower, Main Vine Length
(m), Fruit Yield per Vine (kg), Average Fruit Weight (kg), Number of
Fruits per Vine, Polar Circumference of Fruit (cm), Equatorial
Circumference of Fruit (cm), Flesh Thickness (cm), Number of
Seeds per Fruit, Seed Weight per Fruit (g) and Seed Index (g)) and

14 biochemical (Soluble Sugar content from Pulp (%), B-Carotene
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content from Pulp (mg/100g), Ascorbic Acid content from Pulp
(mg/100g), Free Amino acid content from Seed (%), True Protein
content from Seed (%), Free Fatty Acid Content (%), Oil Content
(%), Soluble Sugar Content from Pulp Flour (%), B-Carotene
Content from Pulp Flour (mg/100g), True Protein Content from
Pulp Flour (%), Zn content (mg/100g), Fe content (mg/100g), Mn
content (mg/100g) and Cu content (mg/100g) traits from five
competitive plants of each genotype in each replication. Soluble
sugar content (%) from pulp and flour estimated by phenol
sulphuric acid method (16), ascorbic acid content from pulp
(mg/100g) determined by titrimetric method against KOH, (-
carotene content (mg/100g) from pulp and flour determined using
method described (17). True protein (%) from seed and flour, free
amino acid content (%) from seed determined by colorimetric
method (17), oil content (%), free fatty acid content (%)
determined (18), micronutrients (Zn, Fe, Mn and Cu) was
estimated in previous study (19).

DNA isolation and molecular analysis

The genomic DNA was isolated from leaf samples utilizing the Cetyl
Trimethyl Ammonium Bromide (CTAB) extraction technique, a
widely recognized and reliable method for plant-DNA extraction (20)
of 34 genotypes. The concentration of the extracted genomic DNA
was determined using a NanoDrop ND-1000 spectrop-hotometer
(Software V.3.3.0, Thermo Scientific, USA), ensuring accurate
quantification (Supplementary Table S2). Working DNA solution of
30 ng/uL TE buffer (10 mM Tris-HCl, pH 8.0 and 0.1 mM EDTA, pH 8.0)
was prepared from the known quantity of stock DNA solution and
stored at 4 °C. 25 SSR marker (Supplementary Table S3) and 30 SRAP
marker (Supplementary Table S4) were used for PCR amplification.
For amplification 15 pL of reaction mixture containing genomic
1.5 UL DNA, 7.5 pL Mater Mix (2x Genei, Bangalore, India) and 1 pL of
10 pMol primer (0.5 uL each forward & reverse) and 5 pL nuclease
free water. PCR amplification was carried out in a PCR tubes of
200 pL, for SSR marker the DNA amplification condition were as
follows: initial denaturation of 94 °C for 5 min, then 35 cycles of 94 °C
for 45 s, annealing at AT °C (specified primer) for 45 s, extension at
72 °Cfor 45 s and afinal extension at 72 °C for 7 min; for SRAP marker
the DNA amplification condition were as follows: initial denaturation
of 94 °C for 5 min, then 5 cycles of 94 °C for 30 s, annealing at AT °C
(specified primer) for 30 s, extension at 72 °C for 1 min, followed by
35 cycles of denaturation of 94 °C for 30 s, annealing at AT °C
(specified primer) for 30 s, extension at 72 °C for 1 min and a final
extension at 72 °Cfor 7 min in SensoQuest Thermocycler (Germany).

For separation and visualization of PCR products both
agarose 3.5 % SSR and 2 % SRAP as well as 6 % non-denaturing
polyacrylamide gels (PAGE) were used. The DNA fragments were
detected with silver nitrate staining (21) and the gel was scanned
under gel scanner. Polymorphism between the genotypes was
observed based on length of amplified fragments in terms of
number of base pairs by comparing with a 100 bp ladder/marker
and the molecular diversity was worked out using NTSYS 2.02
platform.

Statistical analysis of morpho-biochemical and molecular
data

The data collected for the traits studied were subjected to analysis
of variance (ANOVA) and the critical difference (CD) was calculated
to identify significantly different genotypes using the R software.
PCA and biplot diagrams developed using GRAPES software (22).
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The Multi-Trait Genotype-ldeotype Distance Index (MGIDI) was
analysed using the R Package “metan” (23). Normalisation, Factor
Analysis, Ideotype Planning and Computing Genotype Distance to
Ideotype were the four procedures used to create the MGIDI index
(12). Genetic similarity coefficients were computed using Jaccard’s
similarity coefficient through the SIMQUAL function. Cluster
analysis was conducted using the agglomerative approach with
the UPGMA (Unweighted Pair Group Method with Arithmetic
Mean) method, implemented via the SAHN clustering function in
NTSYS version 2.02. The relationships among pumpkin cultivars
were represented through a dendrogram and a genetic similarity
matrix.

Results and Discussion
Analysis of variance

The ANOVA results indicated that the mean sum of squares for
genotypes was significant across all traits, suggesting substantial
genetic variability among the genotypes (Table 1). This extensive
variation provides plant breeders with ample opportunities to
select superior and desirable genotypes for crop enhancement.
The observed morphological and biochemical diversity within the
studied germplasm (Table 1) can be effectively utilized in selection
and breeding programs to develop high-yielding pumpkin
varieties with improved nutritional value. Similar wide and
signification variation among the characters in the genotypes
studied (24-26).

Character variance analysis

The estimates of the mean, range and coefficient of variation for
the various traits analyzed are presented in Table 1.

Mean performance of morphological traits

Descriptive mean value of morpho and biochemical traits were
visualized using a box plot (Fig. 1). Fruit yield per plant varied from
0.93 to 6.85 kg (mean: 4.07 kg), with GPPK 115 (6.85 kg) yielding the
highest, statistically at par with GPPK 105, GPPK 95, GPPK 143 and
GPPK 18. Fruit weight ranged from 0.94 to 6.61 kg (mean: 3.66 kg),
with GPPK 115 (6.61 kg) being the highest, comparable to GPPK
105 and GPPK 95. GPPK 56 had the earliest male flowering (40
days), statistically at par with GPPK 33, GP 141 and GPPK 95. GPPK
95 had the earliest female flowering (47.13 days), at par with Pusa
Vishwas, Azad Pumpkin 1 and Arka Chandan. First male flower
node ranged from 4.00 to 10.53 (mean: 6.65), lowest in Kashi Harit
(4.00), at par with GPPK 18, Pusa Vishwas and Azad Pumpkin 1.
First female flower node varied from 16.87 to 26.93 (mean: 20.92),
with Kashi Harit (16.87) being the lowest, at par with GPPK 2, Arka
Chandan and Pusa Vishwas. Main vine length ranged from 2.00 to
6.80 m (mean: 4.16 m), with GPPK 90 (6.80 m) being the longest.
Fruits per plant ranged from 0.13 to 1.87 (mean: 0.84), highest at
GPPK 113 (1.87), at par with GPPK 115. These findings align with
previous studies (26-31). The maximum equatorial circumference
was recorded in GPPK 115 (75.61 cm), statistically at par with AP 1,
Azad Pumpkin 1, GPPK 69, GPPK 105, GPPK 143 and GPPK 201.
The highest polar circumference was observed in GPPK 95 (73.85
cm), found statistically at par with genotypes GPPK 150, GPPK 59,
GPPK 105, GPPK 30 and GPPK 56. Flesh thickness ranged from 1.35
to 4.69 cm (mean: 2.89 cm), with GPPK 115 (4.69 cm) having the
highest, followed by Saras and GPPK 18.

The maximum number of seeds per fruit was recorded in
GPPK 150 (496.27), statistically at par with GPPK 109, GPPK 113,
GPPK 155 and GPPK 143, while GPPK 100 had the lowest (168.73).
GPPK 109 (78.87 g) had the highest seed weight per fruit, found

Table 1. Estimation of mean performance of 28 traits in 34 pumpkin genotypes evaluated at Anand during kharif, 2018-19

Mean performance Mean square

Sr.
no. Characters Mean Range S.Em CD(0.05) CV (%) genotypes
(DF=33)
1 Fruit yield per vine 4.07 0.93-6.85 0.30 1.44 14.78 7.069**
2 Average fruit weight 3.66 0.94-6.61 0.19 0.53 14.86 1.635*
3 Days to opening first male flower 44.52 40.0-51.33 0.60 1.68 2.32 28.293**
4 Days to opening first female flower 53.41 47.13-64.20 0.19 2.58 2.97 57.272**
5 Node number of first male flower 6.65 4.0-10.53 0.31 0.89 8.19 5.935**
6 Node number of first female flower 20.92 16.87-26.93 0.58 1.65 4.83 26.034**
7 Main vine length 4.16 2.0-6.80 0.15 0.41 6.05 3.540**
8 Number of fruits per vine 0.84 0.13-1.87 0.07 0.21 15.13 0.656**
9 Equatorial circumference of fruit 59.51 44.29-75.61 3.63 10.24 10.56 148.952**
10 Polar circumference of fruit 61.88 42.63-73.85 4.28 12.08 11.98 168.869*
11 Flesh thickness 2.89 1.35-4.69 0.09 0.25 5.30 1.735**
12 Number of seeds per fruit 360.35 168.33-496.27 23.08 65.18 11.10 22866.790**
13 Seed weight per fruit 45.18 17.36-78.87 3.86 10.91 14.81 866.619**
14 Seed index 12.41 5.73-21.33 0.54 1.53 7.55 30.473*
15 Soluble sugar content from pulp (%) 12.80 2.06-32.13 0.27 0.75 3.61 150.204**
16 Ascorbic acid content from pulp (mg/100g) 4.20 2.92-5.97 0.18 0.50 7.28 1.572**
17 B-carotene content from pulp (mg/100g) 1.90 1.67-3.15 0.04 0.13 4.09 0.273**
18 True protein content from seeds (%) 9.23 6.47-15.97 0.21 0.58 3.88 17.345**
19 Free amino acid content from seeds (%) 3.65 2.25-5.67 0.07 0.19 3.17 2.919**
20 Oil content (%) 31.61 14.2-41.10 0.74 2.08 4.03 112.826™*
21 Free fatty acid content 0.85 0.60-1.43 0.02 0.07 4.99 0.113**
22 Soluble sugar content from flour (%) 33.30 20.24-40.84 1.40 3.94 7.26 117.459**
23 B-carotene content from flour (mg/100g) 4.25 3.34-6.44 0.04 0.11 1.56 2.731**
24 True protein content from flour (%) 11.46 8.39-14.31 0.26 0.72 3.88 5.677**
25 Fe content (mg/100g) 8.07 3.75-11.32 0.06 0.16 1.16 8.909**
26 Zn content (mg/100g) 6.43 2.82-11.14 0.06 0.18 1.70 17.213**
27 Mn content (mg/100g) 4.9 1.92-9.27 0.03 0.10 1.19 13.225**
28 Cu content (mg/100g) 1.76 0.64-4.09 0.02 0.05 1.72 2.027**

**Significant at 1 % level. S.Em: standard error of mean; CD: critical difference; CV: coefficient of variation; DF: degree of freedom.
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Fig. 1. Box plots displaying mean performance of the traits studied. C1: Fruit Yield per Vine (kg), C2: Average Fruit Weight (kg), C3: Days to
Opening of First Male Flower, C4: Days to Opening of First Female Flower, C5: Node Number of First Male Flower, C6: Node Number of First
Female Flower, CT: Main Vine Length (m), C8: Number of Fruits per Vine, C9: Equatorial Circumference of Fruit (cm), C10: Polar Circumference
of Fruit (cm), C11: Flesh Thickness (cm), C12: Number of Seeds per Fruit, C13: Seed Weight per Fruit (g), C14: Seed Index (g), C15: Soluble Sugar
content from Pulp (%), C16: Ascorbic Acid content from Pulp (mg/100g), C17: B-Carotene content from Pulp (mg/100g), C18: True Protein
content from Seed (%), C19: Free Amino acid content from Seed (%), C20: Oil Content (%), C21: Free Fatty Acid Content (%), C22: Soluble Sugar
Content from Pulp Flour (%), C23: B-Carotene Content from Pulp Flour (mg/100g), C24: True Protein Content from Pulp Flour (%), C25: Fe
content (mg/100g), C26: Zn content (mg/100g), C27: Mn content (mg/100g) and C28: Cu content (mg/100g).
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statistically at par with genotypes GPPK 95 and GPPK 105, whereas
the lowest was in Saras (17.36 g). The highest seed weight per fruit
was recorded at GPPK 100 (21.33 g), statistically at par with GPPK
95, while the lowest was in GPPK 50 (5.73 g). These findings align
with previous studies (25, 26, 30, 32, 33) which reported similar
trends in fruit circumference, flesh thickness, seed count and seed
weight across different genotypes.

Mean performance of biochemical parameters
Pulp

Higher sugar content is desirable for pumpkins. The average soluble
sugar content was 12.80 % and ranged from 2.06 % to0 32.13 %. Arka
Chandan had significantly highest sugar content (32.13 %) at par
with GPPK 18 (31.17 %). Similar results were reported (24-26). The
average ascorbic acid content was 4.20 mg/100g and ranged from
2.92 to 5.97 mg/100mg. The genotype AP 1 had significantly highest
ascorbic acid (5.97 %). Similar results were reported (26, 34). A range
from 1.67 to 3.15 mg/100g for B-carotene content was depicted with
mean of 190 mg/100g. AP 1 (3.15 mg/100g) manifested the
maximum [-carotene content. The wide variation observed in -
carotene content aligns with earlier reports (25, 26, 32, 35), which
also documented significant diversity in carotenoid concentration
among pumpkin accessions. The consistency of the present findings
with previous research reinforces the role of inherent genetic factors
in determining carotenoid biosynthesis and further suggests that
high-carotene genotypes like AP 1 can be effectively exploited in
varietal improvement to enhance the nutritional quality of pumpkin.

Seed

The average true protein content was 9.23 %, ranged from 6.47 % to
15.97 %. GPPK 148 had significantly highest protein content (15.97
%) and similar results were also reported (36-38). Free amino acid
content (%) varied from 2.25 %to 5.67 % with mean of 3.65 %. Ambili
had significantly highest protein content (5.67 %). Same result in
pumpkin genotypes was also reported (4, 38, 39). Pumpkin seeds are
good source of oil content (%) estimated with mean of 21.29 %,
ranged from 14.20 % to 41.10 %. GPPK 95 reported with highest oil
content (41.10 %) which was at par with GPPK 115 (39.03 %). Various
Researchers (36-38, 40) also reported similar oil content but with
narrower range. Lower value of free fatty acid content (%) is
desirable for oil to be edible. The range recorded was from 0.60 % to
1.43 % with average of 0.85 %. The minimum free fatty acid content
was found in GPPK 201, GPPK 115 and GPPK 48 (0.60 %), which was
at par with GPPK 100 (0.62 %). Edible range of free fatty acid content
was also reported (36-38,40). The average Fe, Zn, Mn and Cu content
were 8.26 mg/100g, 6.43 mg/100g, 4.98 mg/100g and 1.76 mg/100g
respectively. The present findings are in close agreement with earlier
studies (36, 38), which also reported comparable ranges for these
micronutrients across diverse pumpkin accessions. Such
consistency across studies suggests that the mineral composition of
pumpkin is predominantly governed by genetic factors, with
relatively stable expression across environments.

Pulp flour (%)

The average sugar content in pulp flour was 33.30 %, ranged from
20.24 % to 40.84 %. Azad Pumpkin 1 had highest content (40.84 %)
significantly at par with Ambili (40.42%), Pusa Vishwas (40.15 %),
Pusa Vikas (39.99%) and GPPK 143 (39.89) similar results were also
reported (39). The average B-carotene content was 4.25 mg/100g,
ranged from 3.34 to 6.44 mg/100g. The genotype AP 1 had
significantly highest B-carotene content (6.44 mg/100g) results were
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in accordance with (39). The average protein content from pulp flour
was 11.46 %, ranged from 8.39 to 14.31 %. The genotype GPPK 139
had significantly highest protein content (14.31 %) which was at par
with GPPK 56 (13.76%). The elevated protein content observed in
these genotypes is consistent with earlier reports (36, 39), which
similarly documented substantial genotypic variation for seed
protein concentration in pumpkin. These findings underscore the
strong genetic influence on protein accumulation and highlight the
possibility of exploiting high-protein genotypes such as GPPK 139
and GPPK 56 for developing nutritionally enriched cultivars suited for
consumer and industrial needs.

Principal component and biplot analysis

PCA, a sophisticated multivariate data analysis tool, was specifically
utilized in this study to simplify and interpret complex, high-
dimensional datasets. This method enabled the identification of key
traits that contributed the most to overall variability, providing
deeper insights into trait interactions. Among the 28 principal
components (PCs), ten components exhibited Eigenvalues greater
than 1, accounting for 82.72 % of the cumulative variability for the
traits under investigation (Supplementary Table S5 and Fig. 2A).

The cumulative contribution rate was 82.72 %. Principal
Component | (PC ) had an Eigenvalue of 7.11, contributing 25.39 %
of the total variability. Germplasm in PC I had the most significant
positive impact on fruit yield per vine, average fruit weight, number
of fruits per vine, polar circumference of fruit, number of seeds per
fruit, seed weight per fruit and seed index (Supplementary Table
S5). Principal Component Il (PC 1) exhibited an Eigenvalue of 2.95,
explaining 10.52 % of the variability. Germplasm lines exhibiting
maximum positive PC scores and common presence in PC1 to
PC10 are lines GPPK 113, GPPK 141, GPPK 105 and GPPK 115
(Supplementary Table S6). Selecting these lines can contribute
significantly to the further development of new high yielding with
good nutritional varieties. The cos?® (squared cosines or squared
coordinates) values are used to assess the quality of variable
representation on the factor map. A high cos? value signifies a
strong representation of the variable on the principal component,
whereas a low cos? value indicates that the variable is not well
represented by the PCs (Fig. 2B).

The PC (1-2) biplot (Fig. 2C) illustrates trait variability, inter-
trait correlations (positively associated characteristics (<90°),
independent attributes (=90°) and negatively associated traits
(>90°)) and genotype dispersion. Most traits displayed relatively
long vector lengths, except for soluble sugar content from pulp
flour, true protein content from pulp flour, true protein content
from seeds, free amino acid content from seeds, Zn content and
ascorbic acid content from pulp suggesting significant variability.
In character biplot for the fruit yield exhibited association with days
to opening first female flower, average fruit weight, first female
flowering node, number of fruits per vine, main vine length, polar
circumference of fruit, equatorial circumference of fruit, flesh
thickness, number of seed per fruit, seed weight per fruit, seed
index, ascorbic acid and oil content as indicated by the very low
angle between their corresponding lines (Fig. 2C). Fruit yield
showed a marked negative correlation with soluble sugar from
pulp, B-carotene flour, Zn, Cu, B carotene from pulp and total free
fatty acid as indicated by the angle between their corresponding
vectors being greater than 90°. The genotypes Arka Chandan,
Kashi Harit, GPPK 126, GPPK 50, GPPK 148, GPPK 150, GPPK 115,
GPPK 105 and GPPK 95 exhibited the highest diversity for various
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Fig. 2. (A) Depict butterfly bar charts show the variable percentage contribution of each principal component (PC) as well as the eigenvalue.
(B) Quality of representation of different traits (cos2). (C, D) Biplots involving PC1 and PC2, illustrating the allocation of 28 traits and 34
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traits, as they were positioned far from the origin (Fig. 2D). These
highly diverse genotypes have the potential to be valuable in
future pumpkin improvement programs.

Selection of high yielding and good grain quality genotypes
using MGIDI

There are various drawbacks to PCA that can make it difficult to pick
high yielding genotypes. These include subjective interpretation,
difficulties managing missing data, inadequate dimensionality
reduction, the inability to consider interaction effects and lack of
statistical rigor (41). To address these constraints, it is critical to
incorporate additional analytical approaches. PCA can be integrated
with quantitative indicators such as MGIDI to help identify short
duration, high yielding with good grain quality genotypes. MGIDI is
an ideal and innovative method for genotypic selection due to its
ability to address multicollinearity and eliminate the need for
assigning economic weights (23).

Selection of genotypes using MGIDI

The MGIDI index identified three genotypes Anand Pumpkin 1, GPPK
95 and GPPK 59 as high performing for multiple traits,
demonstrating significant potential for simultaneously improving
the 28 measured traits in pumpkin breeding programs (Fig. 3A).
These genotypes were particularly notable for traits such as early
flowering, high yielding with high nutritional quality traits. Among
them G17, positioned near the cut-off point indicated by the red line,
displayed intriguing characteristics warranting further investigation,
as suggested (12). Successful applications of this selection index had
been demonstrated in evaluating ideal yield and yield-related traits
across various crops including wheat (42), brinjal (43) and guar (44).
These different studies demonstrated the effectiveness of
multivariate selection indices for simultaneous trait selection. MGIDI
is the most efficient index for choosing genotypes with desirable
features, demonstrating its relevance and usefulness in crop
development (12). These selected derivatives serve as the
foundation for establishing recombinant populations through
judicious crossings, ensuring maximum genetic diversity for the
breeding of novel pumpkin lines.

Strength and weakness

Fig. 3B illustrates the relative strengths and weaknesses of the
examined genotypes, as determined by total of nine factors (FA1,
FA2, FA3, FA4, FA5, FAG, FAT, FA8 and FA9) each factor's contribution
to the MGIDI score for each genotype. MGIDI serves as a valuable
graphical tool that highlights the strengths and weaknesses of
genotypes, offering insights into how they perform in traits that
require enhancement. A strength-weakness analysis revealed that
FAL, FA2, FA3, FA4 and FA5 had the greatest influence on Anand

Pumpkin 1. FA6, FA7, FA8 and FA9 contributed most significantly to
GPPK 95. FA1 FA3 and FA9 made the more contribution to GPPK 59.
Asimilar methodology to evaluate the performance of 13 strawberry
cultivars in earlier research (12). In a different study, a system using
MGIDI to identify promising guar genotypes with high gum and seed
yield over three seasons (44). Likewise, MGIDI is a powerful tool for
enhancing selection methods in breeding climate-resilient maize
hybrids, assessing their performance under varying moisture and
drought conditions (45). The use of MGIDI in quinoa, focusing on
different plant spacing strategies (46). In our study, MGIDI is applied
to upland cotton, providing a comprehensive framework for
identifying genotypes with both high yield and superior quality traits,
which are well-suited for hybrid development. The detailed
examination of strengths and weaknesses yielded useful insights,
emphasising the importance of selecting the best rice genotype with
superior quantitative traits. These selected genotypes stood out as
promising candidates for future breeding projects, establishing
MGIDI as a revolutionary technique forimproving pumpkin varieties.

Marker polymorphism and genetic distance

In the present investigation the molecular diversity among 34
genotypes of pumpkin was studied using SSRs or microsatellite
markers and SRAP molecular markers. A single sharp band was
observed for isolated DNA for all 34 genotypes. The DNA extracted
from pumpkin leaves had an average concentration of 1401.09 ng/
uL, as quantified using a NanoQuant spectrophotometer. Eventually
PCR reaction was carried out with 25 SSR and 30 SRAP primers in
order to analyze the genetic diversity in pumpkin genotypes. Out of
25 SSR primers, 10 (40 %) were amplified successfully but only 5
primers (20 %) were recorded polymorphic and for 30 SRAP marker
only 5 (16.66 %) gave proper and informative amplification and were
polymorphic too (Table 2). All these polymorphic markers were
eventually PCR amplified to analyze the genetic diversity among 34
pumpkin genotypes (Fig. 4 and 5).

The Polymorphism Information Content (PIC) values of
markers serve as an indicator of their ability to differentiate among
accessions by considering both the number of alleles and their
relative frequencies (47). In the present study, a total of 38 loci were
amplified, of which 35 (95.24 %) exhibited polymorphism. The PIC
values ranged from 0.29 (CMTm80) to 0.85 (SRAP 7), with an
average of 0.60, indicating a high level of genetic diversity. In this
study, SRAP markers were found to be the most informative, as
they demonstrated PIC values exceeding 0.5. The average PIC
value (0.60) observed here is higher than that reported (48) for
RAPD (0.46) and SSR (0.28) markers in C. pepo, as well as (49) for
AFLP (0.53). However, these values are lower than those reported

Table 2. Characteristics of SSR and SRAP markers and amplified products used for genetic diversity analysis of 34 pumpkin genotypes

evaluated at Anand During kharif 2018-19

Sr. No. Locus Name Total number of loci Number of polymorphic loci Percentage of polymorphism PIC?
1. CMTm11 2 2 100.00 0.45
2. CMTm35 2 2 100.00 0.50
3. CMTme64 2 2 100.00 0.39
4. CMTm80 2 2 100.00 0.29
5. CMTm112 2 2 100.00 0.42
6. SRAP 7 (me2+em1) 7 6 85.71 0.85
T. SRAP 8 (me2+em?2) 4 4 100.00 0.72
8. SRAP 19 (me4+em1) 6 5 83.33 0.83
9. SRAP 20 (me4+em?2) 5 5 100.00 0.78
10. SRAP 25 (me5+em1) 6 5 83.33 0.82

Total 38 35 - -
Average 3.8 3.5 95.24 0.60

3PIC: polymorphism information content.
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in previous studies for SRAP (0.73) (49) and for AFLP (0.63) and ISSR
(0.74) (50). The relatively lower PIC value in this study could be
attributed to the limited genotypic diversity among the 34
pumpkin genotypes analyzed. Additionally, the high PIC values
and greater allele numbers per marker may also be influenced by
the genetic composition of the materials studied (51).

The clustering analysis of accessions based on molecular
data revealed that the 34 genotypes were grouped into six main
clusters: 1,11, 111, IV, Vand VI, containing 25,4, 1, 1,2 and 1 genotypes,
respectively (Fig. 6). Main cluster | was further subdivided into three
sub-clusters: A (14 genotypes), B (6 genotypes) and C (5
genotypes). Most accessions were grouped in sub-cluster A,
suggesting a high degree of genetic similarity among these
genotypes. Main cluster Il comprised four genotypes, while Cluster
V contained two genotypes. The remaining three clusters ll, IV and
VI each consisted of a single genotype. The Jaccard’s similarity
coefficient (Supplementary Table S6) among the genotypes varied
from 0.25 to 1.00, with an average similarity coefficient of 0.60. The
greatest genetic distance (0.75) was observed between the
genotypes GPPK 59/Arka Chandan and GPPK 90/Arka Chandan,
indicating substantial genomic divergence. This suggests that
these genotypes could serve as promising parental lines for
biparental mapping populations and genetic enhancement
programs aimed at broadening the genetic base of pumpkin.
Conversely, the lowest genetic distance (0.00) was recorded
between GPPK 100 and GPPK 105, implying that these genotypes
likely share a common genetic lineage.

Conclusion

Based MGIDI Anand Pumpkin 1, GPPK 95 and GPPK 59 were
identified as elite genotypes and could be used in future breeding
programmes for improving yield and nutritional content in
pumpkin. The reported resultant molecular diversity can be used
to produce high yielding varieties and hybrids, help in solving the
emerging need to fight malnutrition in developing countries.
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