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Introduction 

Vegetables are essential for small-scale farmers because they 

yield much higher returns per hectare than traditional staple 

crops (1). Compared to staple crops, vegetables are believed to 

be more susceptible to adverse climatic conditions such as 

drought, high or low temperatures, salt, waterlogging, an excess 

or deficiency of mineral nutrients and variations in soil pH (2). 

High levels of soluble salts in the soil limit the production of most 

crops, including vegetables, in many areas of the world 

particularly in arid and semi-arid regions such as parts of South 

Asia (e.g., India and Pakistan), the Middle East (e.g., Iran, Iraq and 

Saudi Arabia), North Africa (e.g., Egypt and Algeria), Central Asia 

(e.g., Uzbekistan and Turkmenistan) and parts of Australia and 

southwestern United States. Climate change is expected to 

exacerbate these environmental issues by increasing 

evapotranspiration and reducing freshwater availability in 

these vulnerable regions (3). Significant crop-to-crop diversity in 

vegetable crop salt tolerance has been noted, much like with 

other crops (4). While crops such as broccoli, cauliflower, tomato, 

eggplant, potato, turnip, radish, lettuce, pumpkin, cucumber and 

pepper exhibit moderate sensitivity, red beet (Beta vulgaris) is 

relatively salt-tolerant. In contrast, carrots, onions, peas and okra 

are highly susceptible to salinity (Table 1 and 2). 

 This term “salinity” is derived from the Latin words 

“salinium,” meaning “position or quality of being,” and “salt 

cellar.” “Salt” is the term use to describe the dissolved salt found 

in soil or water. Soil salinity is a significant issue that threatens 

agricultural plants and restricts worldwide agriculture, especially 

on irrigated farmlands, in areas where high-salt groundwater is 

used for irrigation (5). Plants that are salt tolerant, or resistant to 

their natural strength, may withstand the damaging effects of 

excessive salt on their roots or leaves without experiencing 

any severe adverse effects (6).  
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Abstract  

Vegetables are essential that play a crucial role in human nutrition. Salinity is a major constraint affecting agricultural productivity 

globally. Salt affects soils comprise approximately 20 % of cultivated land and 33 % of irrigated land. Salt stress hampers plant growth, 
thereby reducing the yield and quality of various crops. Salinity and sodicity adversely affect the biological, physical and chemical 

properties of soil, leading to reduced productivity and land degradation, particularly in irrigated and rainfed agricultural systems. Salinity 

reduces protein, fatty acid and total carbohydrate content in crops, while often increasing the accumulation of amino acids. The presence 

of soluble salts and excess sodium ions (Na+) in soil adversely affects plant health, emphasizing the need for effective resource 
management and sustainable practices. High salinity leads to surface crusting, reduced water infiltration, sodium-induced soil dispersion 

and decreased hydraulic conductivity (HC), all of which negatively impact plant development. Sodicity refers to the presence of excessive 

exchangeable sodium in soil relative to calcium and magnesium, which disrupts soil structure and fertility. High sodicity inhibits plant 

growth due to salt toxicity, nutritional imbalances and reduced availability of essential minerals in the soil. This review discusses the 
impact of saline and sodic soils on various vegetable crops and explores sustainable management practices to mitigate their effects. 

Keywords: management practices; saline soil; sodic soil; vegetable crops  
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 Approximately 25 % of the world’s irrigated land 

equivalent to 45 million hectares is affected by salinity, 

compromising nearly one-third of global food production (7). 

Global agriculture, particularly in irrigated places, is 

hampered by soil salinity, another significant issue in 

locations where irrigation uses high ground salt water (5). The 

profitability of many horticultural harvests, especially 

extremely soft vegetables at the plant’s entry, is reduced by 

excessive soil salt. Symptoms of salt stress in susceptible 

plants might include decreased growth, turgor loss, leaf 

shrinkage, folding and epinasty, leaf removal, decreased 

photosynthesis, respiratory abnormalities, loss of cellular 

integrity, tissue necrosis and plant death (8, 9).  

 If the extract saturation (ECE) electrical conductivity in 

the root zone is greater than 4 dS m-1 (around 40 mM Nacl) at 

25 dC and includes 15 % exchangeable sodium, the soil is 

considered salty (Table 3). The yield of most agricultural 

plants decreases with ECE, even if the bulk of crops exhibit a 

dip in productivity at lower ECs (10, 11). Globally, soil erosion 

and decreased agricultural productivity are caused by soil 

salinization (12). Most vegetable crops are natively 

glycophytes, making salt stress one of the most severe 

environmental conditions that limits their growth.  

 Approximately one-third of the world’s irrigated land 

is affected by salinity (13), posing a significant threat to 

agricultural productivity. Alongside other environmental 

factors such as high winds, elevated temperatures, drought 

and floods, soil salinity is among the most damaging, 

especially in uncultivated areas, where it severely reduces 

crop yield and quality (14, 15). Additionally, poor soil 

structure and inadequate aeration further limit plant growth 

and productivity (16). 

 Soil salinity is a major issue in irrigated agriculture. 
Saline soils are common in hot, arid parts of the world with 

little potential for agriculture. Since, most crops grown in 

these places are irrigated, 20 % of irrigated land globally 

suffers from secondary salinization, which is exacerbated by 

inadequate irrigation (17). Salinity is the result of soil salts 

building up when rainfall is insufficient to eliminate ions from 

the soil profile (18).  

 Excessive gypsum treatment has been demonstrated 
to reduce electrical conductivity and the sodium adsorption 

ratio (SAR) while increasing the removal of excess Na+ from 

soil. Gypsum is a common agricultural soil additive used for 

sodic soil reclamation because of its high solubility, ease of 

application and low cost, helping to mitigate the negative 

effects of high salt concentrations in irrigation water.  

 Salt naturally exists in soil, surface water and 

groundwater. The most common salt is sodium chloride, 

though other salts like magnesium, calcium and potassium 

may also be present. While soluble salts may have less sodic 

acid, they often contain high levels of sodium. Sodic soils, 

characterized by high levels of exchangeable sodium, are 

unsuitable for most crops as they elevate soil pH (typically 8.5

-12), disrupt soil structure and impair water infiltration and 

aeration (Table 3). This disrupts the soil’s chemical balance 

and structure. As a result, the soil cannot easily absorb air, 

rain, or irrigation water. It becomes sticky when wet and 

forms hard crusts when dry. This problem usually doesn’t 

occur in sandy soils, as they lack enough clay to develop such 

issues (19). This review focuses on the cultivation of various 

vegetable crops under saline and sodic soil conditions and 

discusses effective management strategies to enhance 

productivity in such challenging environments (Table 4). 

Saline soil 

Saline soils are defined by the presence of excess soluble 

salts, which can hinder the growth and yield of most 

agricultural crops, even at electrical conductivity of the 

Vegetable Threshold levels (dS m-1) Reference 

Pea (Pisum sativum L.) 1.5 (55) 
Potato (Solanum tuberosum) 1.7 (56) 

Cauliflower (Brassica oleracea var. Botrytis) 1.8 (55) 

Sweet pepper (Capsicum annuum) 1.5 (56) 

Broccoli (Brassica oleracea var. Italic) 1.8 (56, 57) 

Carrot (Daucus carota) 1.0 (56, 57) 

Bhendi (Abelmoschus esculentus L.) 1.2 (55) 

Brinjal (Solanum melongena) 1.1 (56) 
Tomato (Solanum lycopersicum) 2.5 (56) 

Table 1. Threshold level of salinity for vegetable crops 

Table 2. Categorization of vegetable cultivars based on salinity tolerance 

Moderately sensible (0-4 mS/cm) Sensible (4-6 mS/cm) Tolerant (6-8 mS/cm) Highly tolerant (8-12 mS/cm) Reference 

Carrot 
Cucumber 
Watermelon 
Beans 
Radish 

Onion 
Lettuce 
Melon 
Potato 

Pumpkin 

Cabbage 
Tomato 
Spinach 

Asparagus 
Beetroot 

(21, 84, 85) 

Table 3. Characteristics of salt affected soil 

Different Salt Classes 
Affecting Soils 

Electrical conductivity 
(ECe) at 25 C (dS m-1) 

Exchange Sodium 
percentage (ESP) 

Sodium adsorption 
ratio (SAR) Reaction (pH value) Reference 

Saline soil >4 <15 < 13 <8.5 
  

(54) Sodic (alkali) soil <4 >15 >13 >8.5-10 
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extract (ECe) levels below standard thresholds (11). This ECe 

leads to reduced yields for most agricultural plants. Saline 

soils are well-structured nature, saline soils are not sodic and 

contain enough soluble salts to negatively impact the 

development of most agricultural plants (20). Salt types and 

concentrations are the primary determinants of the chemical 

properties of soils that are classified as saline. It is the 

quantity of soluble salts that determines the soil solution’s 

osmotic pressure. Magnesium and calcium concentrations on 

the exchange complex and in the soil solution might differ 

significantly. The chemical composition of saline soils varies 

depending on the dominant salts, with sodium chloride being 

the most common. However, magnesium, calcium and 

occasionally potassium both in soluble and exchangeable 

forms also contribute significantly to the ionic profile (21). 

Saline soils are widespread in hot, arid regions and generally 

have limited agricultural potential. Secondary salinization, 

which affects about 20 % of the world’s irrigated land, results 

primarily from poor irrigation management and is a major 

constraint to crop production in these areas (17). Human 

activities, especially irrigated agriculture in arid and semi-arid 

zones, accelerate secondary salinization by causing salt 

accumulation in soils and water sources. Additionally, natural 

processes such as mineral weathering contribute to the 

gradual buildup of salts. When minerals weather, they release 

salts, which are composed of electrically charged atoms or 

molecules called ions, into the soil. Secondary salinization, 

which affects 20 % of irrigated land worldwide and is made 

worse by inadequate irrigation management, is cited as the 

primary crop harming most crops farmed in these countries. 

Irrigated agriculture, a common human activity in arid and 

semi-arid regions, causes secondary salinization of the soil 

and water sources. Because saline soil is typically found in 

hot, arid regions of the world, they offer limited promise for 

agriculture (17). Electrically charged atoms or molecules 

known as ions make up salts, which are found in soil. 

Weathering minerals releases ions into the soil. Irrigation and 

fertilization are possible because they move upstream from 

shallow groundwater to land. Salts build up when the soil 

profile isn’t sufficiently cleared of ions by rainfall (18). 

Impact of salinity stress on the plants 

Salinity has a complicated effect on plants and can cause ion 

toxicity, osmotic stress, imbalances in hormones, nutrient 

uptake and antioxidant activity. The first physiological 

reaction to salt stress is a reduction in stomatal closure and leaf 

Techniques of management Utilizing vegetables Reference 

Lowering of the groundwater 

Groundwater withdrawal from rivers can lower coastal areas' groundwater levels, allow 
seawater intrusion and hinder crop cultivation. Reducing salt leaching is necessary to lessen 
the consequences of salinity and lowering the water table and ensuring adequate drainage 

are crucial to avoiding salt buildup 

(66) 

Building of structures for water 
harvesting 

To mitigate salinity impacts, groundwater use must be substituted by freshwater irrigation. 
Proper rainwater harvesting structures, such as floodwater harvesting, macro-catchments and 

micro-catchment, are needed to sustain agricultural livelihoods in drylands, including spat 
irrigation and runoff farming 

(67) 

Restoration of salinized soils 
Soil reclamation is a method that extracts soluble salts from crop roots, reducing salinity 

impact through practices like leaching, improved water management, surface and subsurface 
drainage, organic fertilizers and salt-tolerant cultivars 

(6, 68, 69) 
  

Leaching of salt The leaching process for bell peppers increases with the salt of the irrigation water (70) 

Systems of surface and 
subsurface drainage 

Drainage is the act of eliminating surface or subsurface water using artificial or natural 
systems, which lowers the water table and lessens the possibility of salt buildup and a rising 

groundwater table 
(71) 

Organic or chemical fertilizers 

By lowering Na+ toxicity, boosting water-holding capacity and releasing vital minerals, organic 
fertilizers enhance soil health. Potash fertilizers improve soil salinity, increase crop production 
and aid in element uptake. Nitrogen fertilizers overcome boron toxicity and improve soil's Cl- 

toxicity effects 

(72, 73) 

Mulching the soil Swiss chard-Mulching using rice straw and stones to increase crop yield (74) 

Calcium Sweet Pepper and tomato improve fruit quality and output while reducing blossom end rot (75) 

Phosphorus Salinity sensitivity was reduced by up to 3.5 dS m-1 by radish (76) 

Sulfur Brassica spp. and legume crops: enhanced salinity stress and defensive mechanisms (77) 

Relative humidity The cultivation of melons under salt stress fared better at 70 % relative humidity than at 30 % (78) 

Grafting to tolerant rootstock Melon and pumpkin rootstock combinations: Melon rootstocks almost eliminate Na, whilst 
pumpkin rootstocks exclude 74 % of accessible Na 

(79) 

Seed priming 
Melons treated with 18 dS m-1 NaCl solution had less adverse effects than those of salty 

irrigation (80) 

Foilar application of nutrient Brinjal-K2·HPO4 increased fruit yield (81) 

Elevated CO2 concentration Tomato-increasing aerial CO2 concentration, alleviate the negative salinity effects (82) 

Irrigation methods 
  

Sprinkler irrigation reduces salt leaching by releasing little quantities of water for infiltration, 
making it perfect for regions that are often watered 

Drip irrigation is a highly effective method for saline-irrigated lands, as it maintains low salt 
levels in the plant root zone 

(6) 
  

Crop rotation 

Crop rotation, a strategy to combat salinity, commonly uses cultivars that are tolerant of both 
water and salt 

Long-fallowing crops, however, may cause groundwater levels to rise, which would impede 
agricultural development. According to studies, annual and perennial crops should be 

cultivated alternately 

(83) 

Table 4. Management of salinity 
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elongation (22, 23). Excessive accumulation of sodium (Na+) and 

chloride (Cl-) ions in the lower leaves disrupts the ionic balance, 

leading to a decline in nutrient absorption and reduced leaf area 

index ultimately hindering plant development.  

 In sodic soils, the high osmotic pressure causes plant 

cells to lose more water than they can absorb, inducing water 

stress (24, 25). A scarcity of water results in a series of physical, 

signaling, gene expression, metabolic and physiological 

processes and activities that eventually limit photosynthesis, 

biomass accumulation, the leaf area index and yield (26, 27).  

The primary cause raising the concentration of Na+ and Cl- ions 

and producing plant toxicity in sodic soils is the fact that 50-

80% of the soluble salts are NaCl. These ions significantly 

impact the photosynthetic signaling system or the chemical 

process behind enzyme function (28, 30). 

 Sodium ions in saline soils interfere with potassium 

uptake due to similarities in ionic radii and transport 

mechanisms. This competitive inhibition often results in 

potassium (K+) deficiency in plant tissues, especially in leaves, 

where K+ plays a vital role in stomatal regulation, turgor 

maintenance and overall photosynthetic efficiency (31-33). Salt 

tension has a significant impact on the intricate plant-

physiological and biochemical process of photosynthesis in 

vegetables (20, 34). In plants that are susceptible to salt, 

stomata closure may result in a reduction in the efficiency of 

carboxylation and photosynthesis. Additionally, the over 

expression of pheophorbide and oxygenase causes chlorophyll 

to degrade, which impacts photosynthesis (20). Additionally, 

salt can cause anomalies in the oxygen-evolving complex, 

cyclic electron transport and PSII activity (35, 36). In lettuce, 

onions and tomatoes, it was demonstrated that salinity stress 

reduced stomatal conductance and transpiration rates, 

deteriorated pigments and light-harvesting complexes and 

hence reduced the quantum yield of photosynthetic energy 

and energy dissipation through non-photochemical means.  

 The secondary effect of salinity on plant cells is the 

accumulation of dangerous reactive oxygen species (ROS), 

which change gene expression and cause DNA methylation, 

regardless of the primary effects of salt stress (37, 38). 

Furthermore, ROS can cause lipid peroxidation, which raises 

the membrane's permeability and fluidity (40). In response, 

plants activate a complex defense system involving both 

enzymatic (e.g., superoxide dismutase, catalase) and non-

enzymatic (e.g., ascorbate, glutathione) antioxidants to 

mitigate ROS-induced damage (30, 40) (Table 5). 

Changes in soil salinity and sodicity 

In arid and semiarid environments, irrigation (irrigation 
agriculture) is the main cause of soil salinity, an issue that is 

becoming more common in crop production globally. Salinity 

has an impact on almost one-third of all irrigated land on 

Earth. When evapotranspiration exceeds precipitation and 

drainage is inadequate, salts accumulate at the soil surface. A 

high salt content in the soil profile is a characteristic of saline 

soils. A range of ion species with varying compositions are 

frequently present in amounts that impact crop growth (Na+, 

CI-, HCO3
-, PO4

3-,Ca2+, Mg2+, SO4
2- and borate) (41). 

 Soil quality is influenced by land use and soil 

management practices and it differs regionally from field to 

greater area size (42). Management practices and land use have 

an impact on the extent and direction of soil changes. It may be 

beneficial to use and manage land appropriately to enhance 

soil properties, reduce soil degradation and eventually attain 

agricultural sustainability (43). Understanding the spatial 

variability of soil quality and the factors influencing it is 

essential for planning sustainable land use and improving long-

term agricultural productivity (44). 

Primary salinization 

This happens naturally and is caused by salts collecting 

because the parent material or groundwater has a lot of salts 

(3). Salts are naturally formed in both dry and moist sections 

of the earth (45). Salt-affected soils (SAS) can develop due to 

high salt levels in the soil, a shallow groundwater table, or the 

use of saline water for irrigation (46). A major environmental 

problem that affects natural farming ecosystems worldwide 

is salinity during drought (47, 48). 

Secondary salinization 

Secondary salinization results from human-induced activities 

such as poor drainage, improper fertilizer application, 

inefficient irrigation systems and the use of salt-laden water for 

irrigation. Population increases and socioeconomic conditions 

are the main sources of these problems (3). As there is 

insufficient drainage, salts that were once evenly dispersed 

throughout the soil profile are carried to the upper layers by 

irrigation water and then left behind as the water evaporates. 

Secondary salinization caused by soil mineral weathering, 

fertilizer use, immobilized salts already precipitated in soils, 

atmospheric salt depositions, such as in coastal areas, water 

logging and excessive irrigation water salinity are the main 

causes of excessive salt accumulation in soil surface horizons 

(49). 

Mechanism of salinity tolerance 

Salinity tolerance in plants involves a complex interplay of 
morphological, biochemical, molecular and physiological 

mechanisms that influence growth and yield (50) (Fig 1). 

Reducing water loss from stomata and cuticles and increasing 

water intake by roots promote osmotic adjustment and 

support morphological and physiological adaptation for 

Table 5. Enhancement of possible vegetable crops' resistance to salt through several methods 

Vegetable crop Method used to increase resistance to salt Characteristics for improved Reference 

Tomato Application of salicylic acid, thiazuron and amino acids exogenously Enhanced dry biomass (60, 66) 

Brinjal Using a foliar spray to apply glycinebetaine (GB) exogenously Greater yield and growth (59) 

Potato 
Applying salts like NaCl and CaCl2 to potato tubers before they are 

harvested The shoots’ higher dry weight (62) 

Okra K and humic acid application in a saline media Increased dry biomass (58) 

Pea application of methyl jasmonate (Me-JA) to seeds prior to sowing Higher concentration of proline (63) 
Cauliflower Adding nitrogen to the growing medium Higher yield (64) 
Broccoli Topically applying urea or methyl-jasmonate (MeJA) Improved growth (65) 
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resistance to salt-induced osmotic stress (51). A number of 

molecular networks regulate tolerance and adaptation to salt 

stress. These networks initiate response mechanisms such as 

stress protein synthesis, antioxidant overexpression and the 

accumulation of appropriate solutes to stabilize cells, repair 

damaged membranes and protect proteins (25, 52).  

 Based on their response to salt, plants are classified into 
halophytes and glycophytes. Halophytes thrive and complete 

their life cycles in saline environments, whereas glycophytes 

are generally salt-sensitive (53). Plants use two primary 

strategies to combat salt stress: tissue tolerance and salt 

avoidance. Ion compartmentalization is also carried out by 

plants in their tissues. To control their osmotic pressure and 

preserve the integrity of their metabolic processes, plants 

continuously produce water-soluble, low molecular weight 

compatible solutes including proline, glycine betaine and 

sugars. Plants produce a range of enzymatic and non-

enzymatic antioxidants to address the detrimental effects of 

salt. To protect the cytoplasm of the plant cell from ion toxicity 

and water stress, ion compartmentalization in the vacuole 

creates a constant salt concentration in the cytosol during 

plant tissue tolerance (2). 

Effect of salinity and crop reaction in vegetable crops 

Bhendi (Abelmoschus esculentus L.) 

Effect of salinity and crop reaction: Bhendi (Abelmoschus 

esculentus L.) is considered a moderately salt-tolerant crop. 

Salinity stress affects bhendi, a crop that is semi-tolerant. It can 

prevent seed germination and lower cotyledon activity of Na+, 

sugar and phenol. Fresh pod yield, shoot length and shoot and 

root weights are all greatly decreased by the salinity of the 

rooting media. In reaction to salt stress caused by NaCl, ion 

absorption and ratios are also impacted, with higher 

concentrations of Na+ and Cl- and lower concentrations of K+ 

and Ca2+. 

Strategies for improving salinity tolerance: Research on 

enhancing salinity tolerance in okra remains limited (58). 

Incorporating K and humic acid into a saline medium has 

been shown to significantly increase okra’s tolerance to salt, 

especially during the seedling stage (Table 5). 

 

 

Brinjal (Solanum melongena L.) 

Effect of salinity and crop reaction: In eggplant (Solanum 

melongena L.), salinity stress moderately affects physiological 

functions, including internal CO₂ concentration, shoot and 

root biomass and gas exchange parameters, while water use 

efficiency remains largely unaffected (59). Fruit weight and 

quantity per plant are greatly reduced by salinity. 

Strategies for improving salinity tolerance: There aren't many 

ways to combat the losses in eggplant production caused by 

salt in saline environments, however exogenous application 

of inorganic fertilizers, suitable solutes and bacterial plant 

growth promotion have been discovered to be effective 

methods (59). It has been discovered that the detrimental 

effects of NaCl on plant development, fruit output and total 

soluble sugar levels can be lessened by applying di-

potassium hydrogen orthophosphate (K2·HPO4) topically. 

Potato (Solanum tuberosum L.) 

Effect of salinity and crop reaction: Salinity stress significantly 
impairs the growth and productivity of potato (Solanum 

tuberosum L.), particularly in salt-sensitive cultivars. It 

adversely affects seedling biomass accumulation, reduces 

shoot and root lengths and alters molecular responses 

involved in stress signaling and metabolism. The resulting 

physiological imbalances, such as ion toxicity and osmotic 

stress, lead to reduced tuber yield and quality. 

Strategies for improving salinity tolerance: To enhance salt 

tolerance in potatoes, several strategies have been employed, 

including the application of exogenous nutrients, 5-

aminolevulinic acid (ALA) and genetic engineering. Pre-

treatment with NaCl and CaCl₂ has shown effectiveness in 

preparing plants for salt stress, while potassium 

supplementation in the rooting medium helps mitigate salinity 

effects, particularly under potassium-deficient conditions. 

However, excessive potassium application beyond the 

recommended threshold does not confer additional benefits. 

Salt-tolerant cultivars 

The accumulation of salts in soil is a widespread issue that 

negatively influences plant physiological processes and 

reduces crop yields. The development and cultivation of salt-

tolerant potato cultivars represent a critical strategy for 

mitigating these effects.  

 

Fig. 1. Stress signaling, osmotic adjustment, enzyme activity, polyamines and ionic compartmentalization all regulate the physiological and 
metabolic processes of halophytes. 
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Sodicity 

Sodic soils are those that have so much exchangeable salt in 

their exchange complex that it hinders the growth of most 

agricultural plants. A non-saline soil that has enough 

exchangeable sodium to negatively impact crop yield and soil 

physical characteristics by altering soil structure is often 

referred to as a sodic soil (20). Poorly structured soils with 

colloidal clays scattered over the uppermost layer are known 

as sodic soils. Some of these soils’ characteristics include 

poor aeration, crusting of the surface soil, low permeability 

and infiltration rates, difficulty tilling and difficulty permitting 

plant roots to penetrate.  

 Sodic soils typically have a high pH (above 8.5) due to 

the absence of calcium carbonate buffering and the alkaline 

hydrolysis of sodium salts (86, 87). High sodicity inhibits plant 

development due to a lack of mineral nutrients in the soil, a 

plant nutritional imbalance and Na toxicity. Sodicity refers to 

the ratios of transferable sodium to calcium and magnesium in 

soil (88). Sodic conditions develop when sodium ions 

preferentially bind to negatively charged sites on soil colloids, 

displacing calcium and magnesium and causing clay 

dispersion (89). Sodic soils are the most common problem in 

the world's irrigated desert and semi-arid regions. 

Furthermore, the presence of bicarbonates, soluble sodium 

carbonates and interchangeable sodium in irrigation water 

adversely affects the increasing salinity/alkalinity in the 

agricultural soils in these regions (90). Crop type, variety, 

developmental stage, soil texture, salt type and quantity, 

cultural techniques and climate (temperature, relative 

humidity and rainfall) all affect how severe the negative effects 

(91, 92). Sodic soils inhibited asparagus and tomato 

development more than saline soils did, indicating that both 

plants are vulnerable to sodicity, as shown by the sensitivity of 

specific varieties listed in Table 6. Similarly, the bean 

demonstrated a strong sensitivity to sodicity by failing to 

survive under such conditions (93). 

The impacts of sodicity 

• Decreased water movement through the soil, which inhibits 

leaching and might eventually lead to the buildup of salt and 

the production of salt water. 

• Increasing corrosion and spreading throughout the 

subsurface, which may result in the formation of lanes and 

tunnels. 

• It eliminates aggregation, which manifests as thick, structure-

free soil. 

• Water infiltration is stopped by dispersion over the soil 

surface, which causes crusting and sealing. 

Measures of sodicity 

• There are either too many plants or trees standing, too few 

heavy plants, or poor plant development that is below 

average. 

• Differently sized plants. 

• Poor rainfall infiltration overhead. 

• The shallowness of plants. 

• The blockage of the mud channel makes it challenging to 

immerse oneself outside the study area (72). 

• Green or fluctuating water pools. 

• The soil is often darker in the shadow because of the 

intricate development of Na-humic. 

Effect of sodicity on vegetables 

Like salinity, alkalinity and tolerance vary greatly among 

plants and their species. When the ESP and salt content in the 

soil solution are higher than what is allowed for each crop, 

crop yields are often impacted. Winter crops are often hardier 

than summer crops in terms of salt tolerance. Therefore, it is 

suggested that low ET winter vegetable crops (less than 400 

mm) can be grown in areas with low rainfall that are 

categorized as arable crops during the summer. The best 

course of action would be to select rainfed crops for Kharif 

and crops that need less water for Rabi (94) (Table 7). 

Deficits in nutrients and ion toxicities 

Sodic soils, which are created by electron and proton activity, 

may limit the availability of plant nutrients due to limited 

water and oxygen flow rates, even though high pH levels can 

remain throughout the soil profile (95). The sodic soils of IGP 

have been discovered to exhibit significant deficiencies in OM, 

accessible N, Ca and Zn. Sodic soils often have low levels of 

nitrogen and organic carbon (OC). Despite the advantages of 

applying organic inputs like farmyard manure (FYM), 

regenerated soils lack organic matter (OC) (96). 

Chemical amendments 

Sodic conditions need the use of tillage, amendments and Na+ 

leaching in crop cultivation. By applying chemicals, industrial 

wastes, composts, microbial inoculants and polymers, sodic 

soils’ physico-chemical properties are improved. The most 

often utilized chemical to get beyond structural and nutritional 

constraints is gypsum. However, there is a growing shortage of 

high-quality agricultural-grade gypsum, which has raised 

interest in inexpensive, environmentally friendly soil 

conditioners for reclamation projects (97, 98). 

Restoration and handling of sodic soils 

Gypsum 

Gypsum (CaSO₄·2H₂O), a soluble calcium salt, is widely used 

to reclaim sodic soils, particularly those with an Exchangeable 

Less tolerant (ESP < 20) Semi-tolerant (ESP 20-40) Highly tolerant crops (ESP > 40) Reference 

Ginger, turmeric, cluster bean, pea 
and cowpea 

Onion, potatoes, ash gourd, radishes, 
carrots, cauliflower, fenugreek, fennel, 

tomatoes, garlic and okra 
Eggplant, spinach and sugar beets (96) 

Crops Varieties Reference 

Hot pepper (chilli) Chaman, Jawala 

  
(96) 

Tomato Azad T2, Angurlata 

Spinach Chikari, K Hari 

Garlic Hansa, Gattar Gola 

Table 6. Sodic soil tolerant crop varieties 

Table 7. Vegetable crops tolerance for sodic soil 
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Sodium Percentage (ESP) below 15. Excess Na+ may be 

eliminated by the soil exchange complex because gypsum 

increases the quantity of interchangeable Ca2+ available. In 

agriculture, gypsum has long been utilized as an ameliorant 

and as a calcium and sulfur fertilizer. Gypsum has long been 

used to improve agricultural soil and as a fertilizer for calcium 

and sulfur. Applying gypsum as a soil conditioner prevents 

runoff-induced nitrogen depletion and soil erosion (99). 

Technology using gypsum beds: In regions where irrigation 

water contains high levels of sodium carbonate, gypsum-bed 

technology offers an efficient method to mitigate sodicity. 

Traditional methods include mixing gypsum into the soil or 

placing it in irrigation channels wrapped in porous bags. 

However, using properly designed gypsum dissolving beds 

yields notably superior outcomes (100). The gypsum-bed 

technology transports irrigation water via a brick-cement 

chamber that is filled with a gypsum clod. The size of the 

chamber is determined by the discharge from irrigation water 

tube wells and the amount of sodium carbonate that is left 

over. The water channel is connected to one side, while the 

water fall box is connected to the other. Ten centimeters above 

the chamber floor is an iron bar mesh covered with a 2 mm × 2 

mm wire net. If farmers make the necessary modifications, they 

may also turn their tube wells into gypsum rooms. Dissolving 

and replenishing the gypsum in the chamber is done by sodic 

water flowing from the bottom (55). There is no change in the 

rationale for calculating the gypsum required regardless of the 

application method. On the other side, the method utilized 

affects the application time. A single basal dosage of the whole 

amount of gypsum is administered to the soil. Water-applied 

gypsum does not accumulate in the soil since it is neutralized 

before application (100).  

 Regular applications of agricultural wastes like sawdust, 

rice hulls, sugar mill waste and so on, as well as thick dressings 

of organic manures, have been shown to be advantageous. 

Preserving and enhancing the physical characteristics of soil 

while mitigating the adverse effects of excessively changing salt 

levels. Whenever possible, organic fluids that are in danger of 

becoming alkaline should be supplemented with organic 

materials. But organic modification is ineffective in reducing 

the negative effects of alkali water without gypsum. Farmyard 

Manure (FYM) added gypsum to water to boost the yields of 

knol-khol, bottle gourds, ridge gourds, bitter gourds, eggplants, 

broccoli, cluster beans, cauliflower and potatoes (94). Gypsum 

and FYM were added to counteract the adverse effects of 

alkaline water, which significantly increased crop growth and 

yield. They reasoned that high pH and alkalinity altered the 

rhizosphere’s physicochemical environment, delaying tuber 

formation. The low concentration of potatoes might also be 

attributed to the detrimental effects of salt in the soil solution. 

The beneficial effects are attributed to improved rhizosphere 

conditions, better root development and reduced surface 

crusting caused by carbonate and bicarbonate precipitation 

(101). 

Sulphur 

Elemental sulfur and pyrite can be used to reclaim sodic soils, 

but their effectiveness depends on their complete oxidation 

to produce sulfuric acid. Sulfur must be oxidized to generate 

enough sulfuric acid to replace exchangeable Na+ for it to function 

as effectively as soluble calcium ions. Therefore, as compared to 

gypsum or sulfuric acid, sulfur does not yield the optimal 

outcomes, even in chemically equivalent concentrations (85). 

Industrial by-products 

Phosphogypsum 

Phosphogypsum (PG), an acidic by-product of phosphoric 

acid production from rock phosphate, contains essential 

nutrients such as sulfur (S) and calcium (Ca), along with trace 

contaminants and heavy metals. It has been shown to 

mitigate subsoil constraints including acidity, aluminium (Al) 

toxicity, limited nutrient availability and sodicity (102). The 

application of powdered PG (5 Mg ha-1) greatly increased IR in 

a sodic soil (ESP = 21) by inhibiting crust formation; it 

increased from 0.9 mm h1 in the control to 8.3 mm h1 (105). 

 According to the study, applying PG and CaCl2 with 
canal water successfully decreased the amount of salt in saline-

sodic soil. Total Na+ and soluble salts were eliminated 90 % by 

CaCl2, 79 % by PG and 60 % by PG. In both situations, the soil 

ESP dropped by around 90 %. Because PG was inexpensive, it 

was regarded as an effective modification (104). 

Fly ash 

Large volumes of fly ash (FA), a byproduct of coal and lignite-

based thermal power plants, are generated annually. In India, 

approximately 50 % of this FA is utilized by the cement and 

concrete industries, while innovative applications for the 

remainder such as soil restoration are being actively explored 

(105). In sodic soils, the combined application of gypsum and 

acidic FA has been shown to reduce the SAR, improve nutrient 

availability, increase saturated HC and enhance soil water 

retention. For instance, treatment of sodic soil with this 

combination (initial soil conditions: pH = 9.07, EC = 3.87 dS    

m-1, Exchangeable Sodium Percentage (ESP) = 26) resulted in 

significantly higher rice and wheat yields compared to 

untreated control plots (106). These findings suggest that FA 

can effectively substitute up to 40 % of the gypsum 

requirement (GR), offering a sustainable and cost-effective 

approach for sodic soil reclamation. 

Press mud 

A by-product of sugar mills, press mud (PM) increases soil 

surface area (SAR) over untreated soil since it is low in 

irrigation and high in plant nutrients. Plant growth and 

biomass output have been reported to increase, which may 

be explained by improvements in N, P and K contents and 

decreases in Na+ in maize roots and shoots (107). When 

combined with gypsum, PM significantly enhanced zinc (Zn) 

uptake and rice yields in saline-sodic soils, demonstrating the 

synergistic effect of organic and chemical amendments (108). 

Organic wastes and composts 

Organic additives such as mulches and composts enhance 

the physico-chemical properties of SAS by improving the 

plants’ capacity to exchange cations, hold onto water and 

access nutrients. Even though these adjustments are less 

costly than the pricey chemicals (109). 

Mulching  

Mulching with organic materials and agricultural wastes 
improves soil organic carbon (OC), promotes the formation of 

water-stable aggregates and enhances moisture retention. It 
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protects the root zone by reducing erosion caused by runoff, 

insulating the soil from heat and minimizing water evaporation 

(110). Straw mulching in brackish water (3-5 g L-1) When 

compared to treatments without mulch, irrigated wheat-

summer maize rotation soils dramatically reduced salt buildup 

(111). When compared to severely saline-sodic unmulched 

soils, a 20-year continuous coverage of saline-sodic soils with 

tephra mulch that was 10-15 cm thick completely reduced salt 

danger, as seen by notable decreases in EC se and ESP. 

Reduced evaporation, enhanced water flow, positive changes in 

the soil moisture regime and limited upward migration of Na+ 

and other salts were cited as the reasons for these decreases. 

During the trial, neither soil received any irrigation (112). 

Landform and drainage treatments for wet sodic soils 

Approximately 2.46 million hectares of land in India are affected 

by waterlogged areas, which result in crop root zone saturation 

and limited air and water flow. Soils in areas impacted by salt 

have both permanent waterlogging, when water tables are 

within 2 m and seasonal waterlogging, which is brought on by 

floods, high rains and drainage congestion. Anaerobic 

conditions, osmotic stress, salinity and nutritional toxicities can 

result from subsurface waterlogging, which occurs when water 

tables are within 2 m. The states of Punjab and Uttar Pradesh 

have significant tracts of such wet sodic soils (113). 

Irrigation scheduling and management 

Sodic soil frequently has problems with permeability and 

infiltration, which leads to inadequate use of rainfall and 

decreased irrigation effectiveness. Prior to irrigation, 

adequate leveling is necessary to provide a homogeneous soil 

surface and avoid high water application depth, low 

efficiency and water inundation (114). For crops like wheat in 

particular, sodic soils need different irrigation management 

timing, depth and frequency than regular soils. Despite its 

moderate salt tolerance and sensitivity to waterlogging, 

wheat has demonstrated improved grain yields under 

optimized irrigation in sodic soils (115). 

Maintaining reclaimed sodic soils’ productivity 

The potential to reclaim and manage degraded sodic lands 

using simple methods is well recognized. However, 

challenges such as the declining availability and quality of 

agricultural-grade gypsum hinder widespread adoption, 

despite its effectiveness in addressing structural and nutrient 

limitations in sodic soils (116). A study in Etawah, Uttar 

Pradesh, revealed that 27 % of 3905 acres of reclaimed sodic 

land had resodified, indicating soil degradation and reduced 

crop productivity (117). In the Indo-Gangetic Plains (IGP), 

poor irrigation practices, suboptimal fertilizer use, excessive 

tillage and climate variability further degrade soil health and 

crop yields (118). Nevertheless, the implementation of 

conservation agriculture practices-particularly within the Rice

-Wheat Cropping System (RWCS) has shown promise in 

reducing production costs, mitigating resource degradation 

and improving overall productivity and profitability. 

 

 

 

Conclusion 

Sustainable management of saline and sodic soils is essential 

to maintain vegetable crop production and ensure long-term 

soil health. Salinity reduces plant growth and yield, but this 

challenge can be addressed through the development of salt-

tolerant varieties, traditional breeding, biotechnology and 

grafting of tolerant rootstocks. Although many vegetables like 

okra, tomato, eggplant, potato and carrot show some level of 

salt tolerance, further research is needed to classify them 

accurately based on their tolerance levels. Efficient water 

management practices, such as using agricultural drainage 

water for initial soil leaching, can significantly reduce freshwater 

use. Additionally, the application of gypsum improves soil 

structure and accelerates salt removal by increasing calcium 

and magnesium levels and reducing harmful sodium and 

potassium. Integrating these practices with the cultivation of 

salt-tolerant vegetables offers a practical and sustainable 

approach to reclaim and manage saline-sodic soils effectively. 

This holistic approach not only supports agricultural 

productivity but also contributes to the resilience and 

sustainability of agroecosystems in salt-affected regions. 
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