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Abstract

Agriculture is a fundamental sector globally, particularly in developing countries, as it provides food, feed and non-food products essential
for economic and societal stability. Advancements in remote sensing technologies have greatly enhanced agricultural productivity and
management. Thermal infrared remote sensing (TIRS) is a transformative tool in agriculture, enabling precise monitoring of crop and soil
conditions by capturing and analysing the emitted radiation in the thermal infrared spectrum (3-14 pm). This technology offers critical
insights into crop and soil health. Unlike optical sensing, thermal remote sensing supports crop water stress assessment, soil moisture
detection, irrigation scheduling, evapotranspiration monitoring, drought stress analysis, disease detection, soil property mapping, crop
maturity assessment, yield estimation, tile drainage mapping and residue cover analysis. Integrating TIRS with multispectral and
hyperspectral imaging enhances agricultural decision-making, optimises resource allocation and improves crop health. Future research
should prioritize Al-driven real-time data processing by integrating machine learning, UAV-based imaging and loT-enabled monitoring
systems. These advancements can enhance precision agriculture, optimize resource use and improve crop stress detection. As
technological innovations continue to evolve, thermal remote sensing is poised to play a pivotal role in sustainable agricultural
management, offering valuable insights to improve efficiency and resilience in farming practices.
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Introduction Thermal remote sensing (TRS) is a branch of remote sensing
that captures, analyses and interprets data in the thermal
infrared (TIR) range. Unlike optical remote sensing, which
detects reflected radiations, TRS measures emitted radiation
from the target's surface (4). In vegetation analysis, the thermal
infrared range typically spans 3-14 um, further subdivided into
mid-wave infrared (MWIR) at 3-5 um and long-wave infrared
(LWIR) at 8-14 um (Fig. 1). In the 5-8 um range, atmospheric
gases such as water vapor, carbon dioxide (CO,) and ozone (O5)
completely absorb emitted energy, preventing effective remote
sensing (6). TRS captures emitted radiation from an object's
surface, converting it into temperature data without direct
contact (7, 8).

Agriculture is essential critical sector globally, particularly in
developing countries. It provides food, animal feed and various
non-food products that support the growing global population
and numerous industries. In recent decades, the integration of
advanced technologies such as satellite remote sensing,
geographic information systems (GIS), unmanned aerial vehicles
(UAVs), global positioning systems (GPS), precision agriculture
(PA), big data analytics, internet of things (IoT) and artificial
intelligence (Al) in the agricultural sectors has significantly
enhanced the productivity (1). These technologies help optimize
agriculture operations and resource management, minimize
yield losses and improve crop health assessment and decision-
making. Among these, remote sensing (RS) technologies (both The behaviour of EMR is governed by several physical
active and passive) play an essential role across various laws, including Planck’s radiation law, Wien’s displacement
platforms. Handheld devices, aircraft and satellites are widely @, Stefan-Boltzmann law and Kirchhoff's law (3). TRS takes
used RS platforms for collecting the data at different spatial, ~2dvantage of the principle that all objects above

temporal and spectral resolutions enhancing, monitoring and ~ absolute zero (0 K or -273.15 “C) emit radiation within the
analysis for various applications (2). electromagnetic spectrum's infrared range, producing a

thermal image. Compared to a cooler thing, a warmer object
releases more thermal energy. Consequently, an image's
object becomes apparent more clearly (9). TRS is widely
applied across agriculture, forestry, environmental monitoring,
urban planning and disaster management (10). In agriculture,

Remote sensing refers to the acquisition of information
about objects, areas or phenomena without physical contact,
typically through the analysis of imagery. RS image analysis is
typically accomplished by detecting electromagnetic radiation
(EMR) reflected, emitted or backscattered by the target (3).
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Atmospheric Windows in the Electromagnetic Spectrum
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Fig. 1. Electromagnetic radiation spectrum (5).

TRS is involved in crop and soil monitoring, including crop
water stress assessment, soil moisture detection, irrigation
planning, evapotranspiration analysis, drought stress
evaluation, disease and pest damage detection, soil texture
mapping, crop maturity, yield assessment, residue cover
analysis and tillage mapping (7).

The thermal characteristics of plants are significantly
influenced by their complex and heterogeneous internal
structures, including specific water content per unit area. This
structural complexity enable detailed investigations of
individual plants using TRS, thanks to infrared thermography's
high resolution, accuracy and versatility (4). Temperature is a
crucial factor that significantly affects key plant physiological
processes such as transpiration, leaf water potential and
photosynthesis (11). TRS has emerged as a valuable method for
assessing surface temperature. In recent years, advancements
in sensor technology and declining costs have expanded the
application of thermal sensors. These sensors provide sensitive
and timely surface temperature information, which is essential
for monitoring plant growth and detecting stress (7, 12, 13).

Thermal information is commonly utilized to assess
water stress in plants caused by various factors. Canopy
temperature  measurements using thermal infrared
radiometers (IRT) strongly correlate with leaf water potential,
confirming that TRS is an effective method for assessing plant
water stress (14). TRS holds significant potential for detecting
and monitoring several agricultural factors such as yield
prediction, plant phenotyping and the assessment and
monitoring of both biotic and abiotic stresses (13). This review
explores major thermal sensors, their agricultural applications,
existing challenges and future perspectives, offering a
comprehensive overview of TRS technologies in agriculture.

Fundamentals of thermal remote sensing

In TRS, the radiation emitted by objects surface is quantified to
estimate their temperature. These estimated temperatures
provide the radiant temperature of an object, which is
influenced by both kinetic temperature and emissivity (8). TRS
is based on the detection of radiation emitted within the TIR
range of the electromagnetic (EM) spectrum. This emitted
energy is interpreted and converted into surface temperature
data. The infrared (IR) range of the EM spectrum ranging from
0.7 to 100 ym and is divided into two broad segments: reflected
IR (0.7-3.0 um) and TIR (3.0-100 pm). All natural and man-made
features on Earth's surface like plants, soil, water bodies and

humans emit TIR radiation, mainly between the 3.0-14 pym
region (5). Within this band, there are two major atmospheric
windows between 3-5 ym and 8-14 pm through which IR
radiation penetrates from the surface of the Earth to space with
least absorption (Fig. 1). However, IR radiation of 5-8 ym is
mainly absorbed by atmospheric gases such as water vapor,
CO,and 0,4 (13).

According to Planck’s law, each energy component (Q) is
directly proportional to its frequency (v) with Planck's constant
(h) is used to adjust this relationship, as shown in Eqn. 1 (3).

Q=hv (Egn. 1)

Given that the frequency of a wave (v) is proportional
to the speed of light (c) and is inversely proportional to its
wavelength (A), Eqn. 1 is reformulated as follows Eqn. 2 (3):

hc

A

The relation between a black body's radiations and
the wavelength of maximum emission with a black body's
temperature, is explained by Wien's displacement law and
the Stefan-Boltzmann law (15). Wien's displacement law was
used to determine a blackbody's dominant wavelength at a
specific temperature. The actual temperature (T) of a black
body, expressed in Kelvin, is correlated with the wavelength
at which it radiates the most energy, referred to as the peak
spectral exitance or dominant wavelength (Amax), as described
by Eqn. 3 (5). With increasing temperature, the peak of
radiation from a black body moves towards the shorter
wavelengths (16).

Q= (Eq n. 2)

Amax = (Egn. 3)

K is a constant equal to 2898 um. This equation
calculates the wavelength at which maximum radiant spectral
exitance is attained. The result of this equation is crucial for
determining the appropriate measurement range of the sensor
to capture the radiation emitted by a given object (5). The total
spectral radiant exitance (E) from a blackbody in watts per
square meter is directly proportional to the fourth power of its
temperature (T) (3). This relationship is described by the Stefan
-Boltzmann law (Eqn. 4) (3).

E=0oT* (Egn. 4)
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where E represents spectral radiant exitance, o is
Stefan-Boltzmann constant (5.6697 x 10% Wm2 K*) and T is
absolute temperature in Kelvin. The equation clearly states
that, the total EMR emitted by a black body is a function of its
absolute temperature. Kirchhoff's law is based on conditions
of thermal equilibrium. It states that, the spectral emissivity
of an object equals its spectral absorptance at a given
wavelength (Egn. 5) (3).

€=a (Egn.5)

Where a represents absorbance and € emittance. This
is derived frequently; materials that are good heat absorbers
also emit heat well and vice versa and those that reflect heat
well typically emit it poorly. The energy conservation concept
is expressed (Eqn. 6).

etttp=1 (Egn.6)

where 1 is transmission and p is reflection. Since most
of the materials are not transparent to TIR radiation, the
above equation becomes (Eqn. 7).

e+p=1 (Egn.7)

All objects in the real world at temperatures above
absolute zero (0 K; -273.16 °C; -459.69 °F) show random
motion. Energy of this random motion of the particles is
referred as kinetic heat or kinetic temperature Tin (5). The
object also emits energy depending on its temperature and
this radiated energy is utilized to calculate its temperature
radiant Tr¢. While Twin and Trq are highly positively correlated,
Ted is generally less than Tun because of the object's
emissivity (€) (13). Due to this reason, the temperature read
by the sensor Trq is always lesser than the actual temperature
as described by Kirchhoff's law (16) (Eqn. 8).

Trad= € ¥ Tiin (Eq n. 8)

Emissivity is the ratio of the radiation emitted by a
surface to that emitted by a black body at the same
temperature (17). Since the radiance of any real object at the
same temperature is always less than that of a black body
(which has an emissivity of 1), emissivity value range between 0
and 1 (5). According to Planck's law, an object emits and
absorbs radiation less effectively than a black body at a given
temperature. In practice, materials with low emissivity tend to
show significantly lower sensed temperatures compared to
nearby objects at the same temperature, leading to less
accurate assessments of Tiin. Emissivity is influenced by many
factors, such as color, surface texture, chemical composition,
moisture content, field of view, viewing angle and spectral
wavelength (5). Measuring emissivity in materials can be
challenging, although it remains relatively stable across the EM
spectrum in the 8 to 14 um range. Vegetation is usually of high
emissivity, approximately between 0.96 and 0.99, soil is of
relatively low emissivity at around 0.89 and water is of almost
0.99 emissivity (3, 13). Table 1 presents typical emissivity values
for various surface materials over the range of 8-14 um
wavelength range.

Thermal infrared remote sensing platforms and sensors

RS sensors identify, measure and evaluate target objects on,
above or below the Earth's surface by analyzing reflected,
emitted or scattered EMR signals over long distances.

Table 1. Emissivity of various surface materials over the range of
8-14 um (13)

Material Average emissivity (&)
Clear water 0.98-0.99
Healthy green vegetation 0.96-0.99
Wet soil 0.95-0.98
Dry mineral soil 0.92-0.94
Dry vegetation 0.88-0.94
Wood 0.93-0.94
Wet snow 0.98-0.99
Dry snow 0.85-0.90

Thermal sensors have become essential in agriculture and
forestry for monitoring environmental and crop conditions
(18). RS systems in PA are classified based on their sensor
platforms and types. Platforms include satellites, aerial
systems (aircraft and UAVs) and ground-based sensors.
Multispectral TIR satellite systems such as advanced
spaceborne thermal emission and reflection radiometer
(ASTER) effectively distinguish various surface types. The
development of hyperspectral TIR sensors has greatly
improved the capability for the identification and mapping of
a broader range of materials and surface characteristics,
providing higher accuracy and attribute information than
multispectral thermal sensors. High spatial resolution
hyperspectral TIR data is primarily obtained through airborne
imaging systems such as spatially-enhanced broadband array
spectrograph system (SEBASS), airborne hyperspectral
imager (AHI), AisaOWL, Hyper-Cam and hyperspectral
thermal emission spectrometer (HyTES) (19).

Satellite-based sensing has been widely used since the
1970s, while UAVs have gained popularity recently. Ground-
based sensors such as hand-held, field-mounted and tractor-
mounted are called proximal RS systems, as they operate close
to plants and soil, unlike satellite and aerial sensors (20). RS
sensors vary based on spatial, spectral, radiometric and
temporal resolution (21). Spatial resolution refers to the pixel
size covering the ground area. Temporal resolution indicates
the time a satellite takes to complete an orbit and revisit the
same location, while the spectral resolution represents the
number of bands recorded in a specified electromagnetic
spectrum range (20). TIR sensors are used to quantify energy
radiated from a target (e.g., crops) to estimate the temperature
of the target, which further estimates crop water stress,
evapotranspiration (ET) and irrigation demand (7). For
vegetation analysis, mostly TIR sensor radiation emissions in
the mid-range (3-8 um) and more frequently in the long-range
(8-14 pm) regions are utilised (2). Various sensors facilitate
agricultural data collection directly or indirectly, supporting for
crop vyield prediction, irrigation planning, water stress
assessment, soil moisture analysis, pest monitoring and early
warning systems (20, 22, 23). Lists of thermal infrared platforms
and sensors are shown in Table 2.

Application of thermal remote sensing in agriculture

TRS is a powerful technique used in agriculture to gather
valuable information about surface temperatures. By detecting
infrared radiation emitted by objects (4), thermal sensors
provide insights into temperature variations across landscapes,
aiding in crop health assessment, water management, disease
and pest detection, yield estimation and soil moisture
monitoring (Fig. 2). This technology enables farmers to make
informed decisions regarding irrigation, fertilization, pest
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Table 2. Thermal infrared platforms and sensors

Name of the platform Name of the sensor Wavelength (um) No. of bands Spatial resolution
Satellite operational
NOAA-19/B/C AVHRR3 10.3-12.5 um 2 1100 m
JPSS-1, JPSS-2 VIIRS 8.55-12.01 pm 4 750 m
GOES-16/17/18 ABI 7.24-13.6 um 7 2000 m
TERRA ASTER 8.12-11.65 um 5 90 m
Landsat 9 TIRS-2 10.5-12 um 2 100 m
Landsat-8 TIRS 10.6-12.51um 2 100 m
Landsat-7 ETM+ 10.4-12.5 um 1 60 m
Sentinal-3A/3B SLSTR 10.85-12 um 2 1000 m
Terra, Aqua MODIS 8.4-14.38 um 8 1000 m
ECOSTRESS PHyYTIR 8-12.5um 1 60 m
Himawari-8/9 AHI 7.3-13.28 um 7 2000 m
PhiSat-1 HyperScout-2 8-14um 4 390 m
ALOS-2 CIRC 8-12 um 1 210 m
GCOM-C SGLI 10.8-12 pm 1 1000 m
HJ-2A/2B IRMSS-2 (HJ-2) 10.5-12.5 um 1 300 m
Kanopus-V-IR N2 MSU-IK-SR 8.4-9.4 um 1 200 m
Satellite planned
Sentinel LSTM-A/B LSTR 8.42-12.47 pm 5 50m
Landsat series LandIS 8.3-12 um 5 60m
Meteor-MP N1/2/3 Advanced MSU-MR 10.5-12.5 um 2 1000 m
Resurs-PM N1/2/3/4 BIK-SD 1 8.1-12.5 um 5 20m
Airborne
ITRES TASI-600 ITRES 8-11.5um 32 0.85m at 1000 m
Aisa Owl SPECIM 7.6-12.3 um 96 1.1-1.5m at 1000 m
Vulcanair P-68 Observer 2 ImagelR 9400 3.6-4.9 um 1 1mat1270 m
Cessna aircraf SC655 7.5-14 uym 1 0.6 mat350m
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Fig. 2. Thermal remote sensing applications in agriculture.
control and other management practices, ultimately Irrigation scheduling

optimizing crop yields and resource efficiency (7). Furthermore,
TRS aids in the early detection of stress and environmental
factors such as drought, heat stress and salinity affecting crops,
enhancing resilience and sustainable agricultural practices. Its
non-destructive, large-area coverage makes TRS essential in
precision agriculture and environmental monitoring,
accelerating innovation and advances in the agricultural sector
(13).

Adequate irrigation is crucial in agriculture, as in-season rainfall
is often insufficient to meet crop water requirements.
Consequently, improper irrigation timing and inadequate
water application are significant challenges that constrain
production in many farming areas (24). As plants undergo
changes in water potential, their stomata were closed and,
increased the water stress (25). Optimizing irrigation timing,
location and quantity is essential for minimizing yield losses,
enhancing responsiveness to management practices and
maximizing water-use efficiency-agricultural productivity.
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The necessity for irrigation depends on four key factors:
soil water availability, crop requirements and precipitation (7).
Thermal imaging provides a valuable tool for water
management in agricultural crops, as it allows rapid
assessment of canopy surface temperature, which is linked to
transpiration and reflects (26, 27). UAV-based thermal imaging
offers an effective approach to improving irrigation efficiency in
pecan cultivation by accurately determining water
requirements and optimizing (28). Irrigation scheduling based
on canopy temperature relies on thermal stress indices such as
stress day index, degrees above non-stressed plants (DANS),
crop water stress index (CWSI) (29). Thermal imaging and the
CWSI method facilitate monitoring spatial and temporal crop
water stress, enabling variable irrigation scheduling across
different field zones (30). Thermal infrared sensors measure
canopy temperature, aiding in CWSI calculation and plant
water status assessment for irrigation scheduling in crops like
cotton, corn, sunflower and grapevine (31). In addition to
canopy temperature assessment, irrigation scheduling also
involves soil moisture detection, crop water stress assessment,
evapotranspiration and drought stress monitoring.

Crop water stress assessment

Identifying plant water stress is crucial for global food and
water security. Water stress causes dehydration, disrupting
plant cell ability to maintain optimal water balance (25). As a
major abiotic factor, crop water stress reduces growth, lowers
yield and affects food quality, posing a serious challenge to
agricultural production (32). Key physiological indicators of
crop water stress assessment include leaf water potential, stem
water potential and stomatal conductance (33, 34). Traditional
assessment methods such as soil moisture estimation,
meteorological variables and physiological measurements
such as water potential and stomatal conductivity provide
direct insights. However, they are time-consuming, labour
intensive and unsuitable for large-scale monitoring (35).

Plants respond to water stress by closing stomata to
reduce transpiration, leading to increased leaf and canopy
temperatures compared to well-hydrated plants (36). Crop
canopy temperature is a widely recognized water stress
indicator (37). Timely monitoring and detection of plant
responses to water stress are crucial for effective agricultural
management. RS provides high spatial, spectral and temporal
resolution data, supporting precision agriculture (38). TIR
techniques effectively detect crop water stress by analyzing the
mean leaf temperature and foliage regions. TIR imaging
systems include cooled and uncooled cameras, cooled
cameras offer high sensitivity at small spatial scales and detect
minute temperature changes from highly sensitive data. In
contrast, uncooled infrared cameras are cost-effective and
widely used for canopy temperature in crop water stress
assessment and are used in ground-based and UAV systems
due to their light weight (39). UAVs are increasingly used over
ground-based platforms for thermal imagery acquisition in
large-scale  commercial  agriculture. The  continued
advancement of UAV-based technology enhances crop stress
detection and optimizes irrigation scheduling (33).

Thermal infrared systems analyze imagery data to
assess crop water levels and monitor water stress (39). CWSI is
widely used to evaluate plant water stress based on TRS data

(34). The CWSI was initially introduced to monitor the crops
using canopy temperature, subsequently, refinements based
on the energy balance approach and a method utilizing wet
and dry reference surfaces were developed for field screening
applications (40-42). The commonly used formula to calculate
the CWSl is following (25, 33):

Tcanopy - Twet
CWSI=

Eqn.9
Tdry-Twet ( q )

Where, Teanopy is the measured canopy temperature, Tuet is
the minimum canopy temperature, assuming fully open stomata
and maximum transpiration. Tay is the upper boundary, where a
non-transpiring leaf has fully closed stomata and minimal
potential transpiration. The CWSI has been applied to evaluate
water stress in various field crops, including potatoes (32),
grapevines (43), olives (44), wheat (45) and cotton (46).

Soil moisture detection

Soil moisture regulates water availability to plants and mediates
water exchange between the atmosphere and the Earth's
surface and subsurface (47). The uppermost 0-5 cm of soil
controls energy and material exchanges. Surface soil moisture
impacts hydrology and meteorology, influencing environmental
and climatic processes (48). It is essential to determine optimum
management strategies for planting, fertilization and irrigation
(49). Soil moisture acts as a medium for nutrient supply, supports
microbial growth and helps regulate soil temperature (50). RS
technology is essential for large-scale near-surface soil moisture
monitoring, surpassing conventional methods like thermo-
gravimetric and calcium-carbide techniques. TIR sensing utilizes
wavelengths of 3,500-14,000 nm to assess soil moisture. ET is
frequently employed to measure land-surface temperature (LST)
for accurate soil moisture prediction (51). The common thermal-
based soil moisture detection methods include thermal inertia
(TI), triangle method (TM) and the soil moisture index. TI
technique developed using TIRS data in the TIR region
represents the resistance to temperature change induced by
external energy (52). Tl governs temperature fluctuation
amplitude and depends on surface layer characteristics, soil
thermal conductivity and soil heat capacity. Higher Tl results in
lower temperature fluctuation. Quantitative Tl-soil moisture
relationships can be derived from soil temperature variation
between Tl and soil moisture or diurnal surface temperature
amplitude (53-56).

Triangle method (TM) interprets the distribution of
image pixels by relating surface radiant temperature to
fractional vegetation cover. As vegetation cover increases,
surface radiant temperature decreases, forming a triangle
pattern, with a vertex representing limited temperature
variation in dense vegetation (7, 57). The perpendicular soil
moisture index (PSMI) is evaluated pixel-by-pixel using red,
near infrared and thermal bands from Landsat imagery without
requiring atmospheric calibration (7, 24, 58). Historically, TRS
for soil moisture estimation has been constrained by
acquisition costs. However, advancements in UAV-based
platforms have made high-resolution thermal imagery more
economical, significantly enhancing the ability to assess the
spatial variability of soil conditions (51). RS data can be
integrated with other geospatial data sets to provide greater
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insights into the drivers of soil properties. This integrated
approach also tracks environmental dynamics, such as
deforestation and urban growth (59).

Evapotranspiration and drought stress monitoring

Precise crop water requirement calculations are essential for
optimizing irrigation scheduling in agriculture (60). ET estimation
is critical in precision agriculture, influencing irrigation strategies.
Remote sensing-based ET monitoring is widely used in
agriculture, hydrology, climatology and meteorology, with
applications ranging from irrigation optimization to predicting
floods and droughts (61). ET is a combined process of
evaporation, such as water transitioning from liquid to gas from
plants, soil and water bodies and transpiration, where plants
release water through leaves after root absorption (62). Factors
affecting evapotranspiration are shown in Table 3. ET estimation
using conventional methods like the Bowen ratio and Eddy
correlation is reliable for homogeneous regions, but their
accuracy declines when extrapolated to larger landscape or
regional scales (63). RS is widely recognized as a cost-effective
and reliable approach for regional and mesoscale ET mapping, It
utilizes surface radiances and surface energy balance
components for precise ET assessments, making it an essential
tool for large-scale ET monitoring (62, 63). Satellite-based LST
measurements from TIR imagery have been proven for assessing
ET and plant stress (64).

NASA's GRACE follow-on and ECOSTRESS missions
enhance the accuracy of terrestrial ET estimation. ECOSTRESS,
equipped with a TIR multispectral scanner, captures high-
resolution diurnal temperature variations, providing insights
into plant water stress responses and sub-daily ET fluctuations
(65). Over the past decades, several TIR-based ET models have
been developed. Single-source surface energy balance includes
surface energy balance system (SEBS), simplified surface
energy balance operational application (SSEBop), simplified
surface energy balance (SSEB), surface energy balance
algorithm for land (SEBAL) and atmosphere-land exchange
inverse (ALEXI). In addition, two-source surface energy balance
(TSEB), disaggregated atmosphere-land exchange inverse
(DisALEXI) models are widely used for ET estimation (61-63).
The physically based two-source energy balance (TSEB) model
effectively predicts surface energy fluxes, particularly in ET
estimation. Initially, it was applied to high-resolution wide-
angle Infrared dual-mode line/area array scanner (WiDAS) and
advanced spaceborne thermal emission and reflection
radiometer (ASTER) satellite data to assess ET over agricultural
landscapes (63). Thermal indices such as CWSI, canopy
temperature ratio (Tcratio), degrees above non-stressed
(DANS) and degrees above canopy threshold (DACT) are

Table 3. Factors affecting evapotranspiration (24)

Environmental

Weather parameters conditions

Crop factors

Humidity Crop height Ground cover

Difference in resistance

Air temperature to transpiration

Plant density

Net radiation Crop roughness Soil water content

Crop rooting

Wind speed characteristics

6

effective for deriving stress crop coefficients, requiring minimal
data and demonstrating a strong response to water stress, as
indicated by their low root mean square error (RMSE) in ET
estimation (24, 66). Agricultural drought occurs when soil
moisture fails to meet crop water demand due to factors like
abnormal rainfall and temperature rise, leading to reduced soil
moisture (67). Most commonly used thermal remote sensing-
based indices, including apparent thermal inertia (ATI),
temperature condition index (TCI) and normalized difference
temperature index (NDTI), serve as indirect indicators for
vegetation health assessment, drought detection, moisture
evaluation and thermal variation monitoring (7, 68-70).

Detection of plant disease and pest infestation

Plant diseases cause significant economic losses in agriculture
worldwide. Early pathogen detection and continuous plant
health monitoring are crucial for disease management (71).
Some foliar diseases, such as rusts and leaf spots, induce local
tissue alterations, while root pathogens (e.g., Rhizoctonia solani
or Pythium spp.) and systemic infections (e.g., Fusarium spp.)
impact transpiration rates and water circulation throughout
the plant (72). Infrared thermography (IRT) is an effective
technique for measuring plant temperature, assessing water
status and evaluating transpiration differences, which serve as
early indicators of pathogen-induced stress (73). Diseased
plant areas exhibit higher thermal radiation than healthy ones
due to tissue degradation, as observed in necrotic diseases like
Cercospora leaf spot. Due to infection, the necrotic or severely
dehydrated tissue would have a significantly different spectral
response than healthy tissue (74). However, TRS is limited to
detecting water-related plant diseases, such as root infections
or stem water transport disruptions (75). Fungal infections can
induce plant stress, disrupting essential physiological functions
such as photosynthesis, respiration and transpiration. These
factors can cause temperature variations in the leaf surface.
Thermal imaging can detect temperature changes in infected
areas compared to healthy ones. Consequently, thermal
imaging was utilized to potentially detect powdery mildew
disease agents in okra at an early stage (76, 77). Infrared
thermal imaging has been shown to allow for early detection of
wheat stripe rust, providing a fast, non-invasive and reliable
method of detecting the disease. Consequently, the technique
is of significant importance for the timely diagnosis and
continuous monitoring of plant health problems (78).

Local temperature fluctuations due to pathogenic
infections or plant defence mechanisms were observed in
tobacco plant virus interactions (79). Thermal imagery
effectively detected early-stage fungal infections (Plasmopara
viticola) in grapevine. Additionally, thermal image analysis
distinguished biotic stress (root rot) from abiotic stress
(drought) in cotton (80). Thermal imaging effectively detects
plant diseases by identifying temperature differences in
infected regions. Machine learning techniques enhance disease
severity differentiation, as pre-infected areas exhibit higher
temperatures than healthy ones, serving as a fingerprint for
early pathogen detection in oilseed rape leaves (81). Beyond
direct disease detection, thermal imaging can assess
environmental factors such as leaf wetness and duration of wet
conditions, aiding in crop disease risk estimation models (7).
Thermal sensing is essential in disease prediction models due
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to its high sensitivity to temporal and spatial plant temperature
variations, improving disease identification precision (82).
Different plant diseases detected by using TRS are shown in
Table 4.

Table 4. Plant disease detected by using thermal infrared remote
sensing

Crop Disease References
Wheat Leaf rust (78)
Sugar beet Cercospora leaf spot (79)
Rose D°Wg3r’e’;'rf;“’j“ and (83)
Apple Apple scab (84)
Grape Downy mildew (85)
Cucumber Downy mildew (86)
Sweet potato Sweet potato virus (87)
Peanut Early leaf spot and late leaf spot (74)

Thermal imaging offers an alternative approach for the
detection of insect infestations, as respiration from the insect
releases heat that is warmer than that of the surrounding grain.
As a result, insects such as the rusty grain beetle can be
identified by mapping the surface temperature of the grain (88,
89). An infrared thermal imaging system was developed to
detect infestation by Cryptolestes ferrugineus inside wheat
kernels. This system was used to detect infestations by six
developmental stages (four larval instars, pupae and adults) of
C. ferrugineus under the seed coat on the germ of the wheat
kernels. The highest surface temperatures of the grains were
much greater (a = 0.05) in those infested with young larvae
than in grains having pupae inside. Surface temperature
patterns of infested kernels at different developmental stages
of C. ferrugineus show a strong correlation with the respiration
rate of each stage. While the system effectively detects if the
grain is infested or not, it is less effective in identifying which
developmental stage is present (90). Thermal images were
taken with an infrared camera for un-infested mung beans and
for beans infested with the egg, larval and pupal instars of the
cowpea seed beetle, including fully infested (hollowed-out)
mung beans. Classification models, namely linear discriminant
analysis (LDA) and quadratic discriminant analysis (QDA), were
designed based on features extracted from thermal images by
image processing techniques. QDA classification model
accurately detected more than 80 % of mung beans infested
with the early stages of C. maculatus infestation (91).

Soil properties mapping

Soil property mapping, including soil texture and pH, is
fundamental to understanding agri-environmental processes.
It enables enhanced soil fertility, efficient fertilizer use and
water resource management (92). Precise knowledge of spatial
variability in soil properties supports innovative farming
systems, optimizing management and preventing soil
degradation. Among these, soil texture is critical in water
retention, movement and chemical transport, influencing crop
productivity and nutrient balance in the root zone (93). Soil
texture also regulates thermal capacity, permeability and water
retention, impacting climate, environmental, hydrological,
smart agricultural modelling and soil pollution control (94).
However, existing soil texture maps often lack the resolution
needed for effective cropland management and precise

modelling (93). Soil texture significantly influences soil water
content, which in turn affects LST. Sandy soil, with low water-
holding capacity, loses moisture rapidly during dry periods,
leading to higher LST. In contrast, clay soil with greater water
retention depletes moisture gradually, maintaining lower LST
(7). Linear regression models were developed using daily LST
data from the MODIS satellite, incorporating sand (>0.05 mm),
clay (<0.001 mm) and physical clay (<0.01 mm) content
measurements. These models generated spatial distribution
maps of soil texture across the Yangtze-Huai River Plain in East
China (95).

Crop maturity mapping

Monitoring crop maturity is essential for harvest planning,
particularly under adverse weather conditions (7). Early
maturity assessment helps evaluate crop adaptability to stress
conditions, such as drought (96). Traditionally, maturity
assessments such as crop dissection and visual inspection are
used, but these subjective, time-consuming methods limit
observation capacity and measurement repeatability (4, 96). RS
has demonstrated the ability to forecast crop maturity in
various crops (97). Time-series vegetation index analysis is a
conventional remote-sensing method for maturity assessment
(98). A crop model data assimilation scheme successfully
predicted 2018 winter wheat maturity in Henan province with
high accuracy (RMSE = 2.42 d) (99). As row crops mature, the
respiration rate is less than in the early growth stage. Typically,
reduced transpiration leads to increased canopy temperature.
In fruit trees, fruit presence influences transpiration and
respiration. Fruitless trees have greater canopy temperatures
than fruiting trees. Thus, thermal imaging tracks crop
temperature variations to determine maturity stages in row
crops and estimate fruit yields in tree crops (7).

Crop yield mapping

Yield prediction is essential for crop production and PA,
impacting food security, economic stability and resource
management (100). Accurate pre-harvest yield estimation
helps farmers mitigate production risks and optimize logistics,
resource allocation and market strategies. However,
conventional methods are often expensive, subjective and time
-consuming (101). Time-series data models are widely used for
yield estimation, though variations between predicted and
actual yields exist. Thermal imaging, relying on object heat
radiation, offers an alternative yield prediction approach (24).
LST combined with NDVI can further enhance crop yield
predictions at regional and global scales (102). Canopy thermal
data has been used to evaluate plant transpiration and monitor
crop yield and growth. Integrating thermal, spectral and
structural characteristics strengthens yield predictions under
varying weather conditions (103). LST measurements have the
potential to be a valuable indicator of such stress and thus can
be related to changes in the harvest index. RS methods can
determine crop water status through indices based on the
difference between air and surface temperatures. Such indices
are good water stress indicators, which is highly correlated with
yield prediction (104).

Several satellite-based models have been developed, a
MODIS-based corn yield estimation model was developed to
assess the spatial distribution of corn grain yield across the
entire the USA over a period of more than a decade, using 8-day
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time series datasets from the MODIS satellite (105). While
vegetation indices from MODIS were applied to forecast barley,
canola, field pea and wheat yields across the Canadian Prairies
(106). Thermal infrared imaging was investigated for winter
wheat yield estimation, assessing drip, sprinkler and flood
irrigation systems. The infrared crop water stress index (ICWSI)
was derived from thermal imagery, validated for precision and
used to predict soil moisture, biomass and wheat yield. Among
the models tested, the cubic model was superior for thermal-
based yield predictions (107). Crop maturity is generally
determined by dissection and visual inspection. While
automated techniques are available, conventional methods
remain widespread. They are subjective and labour-intensive,
which results in inconsistent outcomes and restricted
observations (4). Thermography is used to detect mechanical
injury, bruising and apple ripeness found thermal imaging to
estimate fruit and vegetable maturity. It can even distinguish
between different varieties at the same ripeness level (108).
Thermal imaging is therefore valuable for evaluating produce
quality and maturity since it records transpiration patterns and
environmental interactions to determine optimal harvest time
and inform postharvest equipment design (4).

Field tile mapping

Tile drainage is highly advantageous for agriculture because it
increases soil moisture balance, encourages aeration, reduces
surface runoff and erosion and increases water infiltration (109).
Subsurface drainage systems are implemented in farmlands to
drain excess water and transform poorly drained soil into
productive farmland (110). Tile drainage systems provide
economic and ecological advantages and simultaneously, large
amounts of nutrients (nitrogen and phosphorus) in tile drainage
water potentially contribute to low-quality water (7, 111, 112).
Effective monitoring of tile drainage helps farmers and planners
prevent environmental damage, detect broken tiles and improve
crop yield and farm income (7). Thermal images provide
additional opportunities in field tile mapping by measuring
temperature variations in a field. Remote sensing-derived image
differencing techniques and GIS-derived decision tree
classification (DTC) were subjected to subsurface tile-drained
areas, indicating that image differencing with remote sensing is
more accurate when compared to the DTC (24).

Thermal sensors have been shown to more effectively
map tile drainage in corn fields compared to visible and near-
infrared sensors (113). Thermal sensors measure emitted
radiation, reflecting surface temperature and can detect subtle
differences in heat retention often missed by visible or near-
infrared sensors. For example, drained soils cool and heat
faster due to lower water content, while undrained soils retain
heat longer. These thermal contrasts provide better insights
into soil moisture, irrigation efficiency and early crop stress (7).
A small-scale experimental device was developed to simulate
tile drainage, employing temperature sensors to delineate tile
lines, showing promise for drainage detection (114). Recent
research focuses on UAV-based thermal and optical sensors for
tile drainage mapping, evaluating the impact of temperature
variation, rainfall, crop cover and growth stages on mapping
accuracy. UAVs equipped with visible, thermal and
multispectral cameras have been used to map subsurface tile
lines, but success depends on linear features from farming
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activities, camera type, soil moisture and vegetation variability
(115). RS studies indicate limited field tile mapping success, as
crop residue and soil often exhibit similar spectral values.

Residue cover and tillage mapping

Crop residues have a significant role in soil and water
conservation by creating a protective cover on farmlands that
defends soil from wind and water erosion, reduces moisture loss
and improves soil quality (7). An accurate crop residue evaluation
is essential for effective conservation tillage monitoring. Crop
residues influence soil temperature regimes and radiation
balance by capturing solar radiation, thereby minimizing
thermal fluctuations, reducing evaporation and enhancing root-
zone water availability. These temperature variations directly
affect plant growth, mineralization rate and nutrient availability
(116). Crop residue management remains a key conservation
practice in modern tillage methods, contributing to sustainable
agriculture (117). TRS captures surface temperature data, aiding
crop residue cover studies. Generally, residues are warmer than
bare soil, enabling large-scale residue detection (118, 119).
Spectral indices from Landsat (OLI) and TIR sensor bands were
used to enhance crop residue discrimination, leveraging
temperature differences between residue and bare soil (118). An
airborne multispectral scanner with thermal bands and a
handheld multispectral spectroradiometer were employed to
map residue cover and results indicated that thermal bands
significantly improved precision by distinguishing residues from
bare soil under varied field conditions (120).

Challenges and future directions

TRS in agriculture faces several challenges that affect its
precision. Spatial and temporal resolution limitations hinder the
fine-scale detection of crop stress and soil moisture, requiring
frequent high-resolution acquisition to monitor the dynamic
temperature fluctuations. Atmospheric effects, including cloud
cover, humidity and thermal distortions, introduce uncertainties
in temperature measurements, impacting stress detection and
water use assessments. Calibration and emissivity corrections
are crucial for maintaining consistency across different thermal
sensors and imaging periods, as sensor performance and surface
emissivity variations affect temperature readings. Environmental
factors such as solar radiation, sensor viewing angle, altitude and
image acquisition timing influence thermal data accuracy.

Crop growth stages and species variations introduce
further complexities, as different crops exhibit unique thermal
signatures based on canopy structure, transpiration rates and
water stress levels, requiring customized models for accurate
classification. Data processing and analytics remain challenging,
with large thermal datasets requiring advanced computational
tools, machine learning and automated workflows for efficient
interpretation. TRS data interpretation and processing in
agriculture are complex because the large datasets exhibit
variability. Effective extraction of meaningful insights requires
sophisticated computational tools that incorporate machine
learning algorithms with the ability to deal with non-linear
patterns and environmental noise.

Currently, machine learning algorithms such as random
forest (RF), support vector machines (SVM), artificial neural
networks (ANN), convolutional neural networks (CNN) and
gradient boosting machines (GBM) are widely used to estimate
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ET, assess plant stress and predict soil moisture from TRS data.
Furthermore, a fusion of thermal data with other remote sensing
sources necessitates automated workflows and strong models
to facilitate timely and accurate decision-making for crop
management. Addressing these challenges will enhance
agricultural monitoring, enabling improved irrigation strategies,
stress detection and precision farming advancements.

Future UAV applications in agriculture should focus on
advancing TRS for real-time data processing through Al and
machine learning, improving precision agriculture decision-
making. Integrating UAV-based thermal imaging with the loT and
TRS will enable accurate crop water stress, soil moisture
variability and heat stress detection. Enhanced temperature-
based crop discrimination using thermal, multispectral and
hyperspectral imaging with deep learning refines the
classification algorithms and irrigation management. Hybrid Al-
driven stress assessment models, combining machine learning,
deep learning and loT sensors, will aid early disease detection
and crop health monitoring, with validation across diverse
climates for improved robustness. Yield forecasting models
should incorporate thermal remote sensing data, historical yield
trends, soil characteristics and climatic factors to enhance
prediction accuracy.

Future research should explore automated UAV swarms
equipped with thermal sensors for large-scale, real-time
agricultural monitoring, detecting stress and irrigation
inefficiencies. Interdisciplinary collaboration among
agronomists, data scientists and UAV engineers will be crucial in
scaling thermal sensing advancements into practical,
sustainable solutions. Data scientists will develop machine
learning models for precision irrigation and stress detection,
while agronomists will use the insights to design optimal farming
systems. UAV engineers will focus on developing advanced
drone technologies for effective data capture and real-time
processing, as well as ensuring scalability in various agricultural
environments.

Conclusion

TIRS is a transformative tool in agriculture, enabling crop water
stress assessment, soil moisture detection, irrigation
scheduling, evapotranspiration monitoring, drought stress
analysis, disease detection, soil property mapping, crop
maturity assessment, yield estimation, tile drainage mapping
and residue coverage analysis. Combining thermal infrared
imaging with multispectral and hyperspectral data enhances
agricultural decision-making accuracy. However, challenges
such as atmospheric sensitivity, cloud cover and humidity
continue to impact measurement reliability. Spatial and
temporal resolution constraints, calibration requirements and
variations in crop species and growth stages complicate data
acquisition and interpretation. Overcoming these limitations
necessitates sensor advancements, improved calibration
techniques and standardized crop models for different crops
and environmental conditions.

Sustainable agriculture can be improved by combining
TIRS and PA techniques to achieve optimized water use and
effective irrigation scheduling. With multispectral and
hyperspectral information, farmers can observe crop health,

soil moisture and water stress, enhancing yield forecasting and
resource management. Future research should focus on Al-
driven real-time data processing, leveraging machine learning
and loT for enhanced precision agriculture. UAV-based thermal
imaging integrated with high-resolution TIRS can refine stress
detection and irrigation management. Hybrid Al strategies
combining machine learning, deep learning and IoT sensor
networks will support early disease detection and plant health
monitoring and validation in diverse climates. Additionally,
thermal-assisted yield forecasting models incorporating
historical trends, soil characteristics and climate data can
improve predictive accuracy.

In conclusion, TRS holds immense potential for
transforming agriculture by offering crucial insights into crop and
soil conditions. Among its most impactful applications is
irrigation management, where TIRS enables precise monitoring
of crop water stress and evapotranspiration, allowing for
optimized water use and improved yield. Additionally, its role in
early disease detection and soil moisture assessment further
underscores its practical value in advancing sustainable
agricultural practices. Overcoming its limitations through
technological advancements and interdisciplinary collaboration
will be key to maximizing its impact. As research progresses, this
technology is set to play an increasingly vital role in sustainable
and efficient agricultural management.

Acknowledgements

The authors extend their gratitude to the Department of Remote
Sensing and GIS and acknowledge the support provided by the
Centre for Water and Geospatial Studies, Tamil Nadu Agricultural
University, in preparing and successfully submitting this
manuscript. The authors would like to express sincere gratitude
to Mr. S. Kamalesh Kanna for his valuable support in the
preparation of this review article. His assistance in designing the
graphical abstract and collecting relevant literature significantly
contributed to the quality and completeness of this work.
Furthermore, the authors express appreciation to their
colleagues and the reviewers who offered constructive feedback
and recommendations to enhance the quality of the manuscript.

Authors' contributions

SP collected the literature review, structured the manuscript
and prepared the initial draft. MD developed the framework
and revised the manuscript. PS, JR and GK contributed to the
revision and refinement of the manuscript.

Compliance with ethical standards

Conflict of interest: Authors do not have any conflict of
interests to declare.

Ethicalissues: None

Declaration of generative Al and Al-assisted technologies
in the writing process: During the preparation of this work,
the authors used QuillBot Paraphrasing Tool in order to refine
the language of the contents. After using this tool, the authors
reviewed and edited the content as needed and take full
responsibility for the content of the publication.

Plant Science Today, ISSN 2348-1900 (online)



SIVAKUMAR ET AL

References

1

10.

11.

12.

13.

14.

15.

16.

17.

18.

Alazzai WK, Abood BSZ, Al-Jawahry HM, Obaid MK. Precision
farming: The power of Al and loT technologies. E3S Web of
Conferences. 2024;491:04006. https://doi.org/10.1051/
e3sconf/202449104006

Farella MM, Fisher JB, Jiao W, Key KB, Barnes ML. Thermal remote
sensing for plant ecology from leaf to globe. J Ecol. 2022; 110:1996
-2014. https://doi.org/10.1111/1365-2745.13957

Lillesand T, Kiefer RW, Chipman J. Remote sensing and image
interpretation: John Wiley & Sons; 2015.

Ishimwe R, Abutaleb K, Ahmed F. Applications of thermal imaging
in agriculture-A Review. Adv Remote Sens. 2014;03(03):128-40.
https://doi.org/10.4236/ars.2014.33011

Jensen JR. Remote sensing of the environment: An earth resource
perspective 2/e: Pearson Education India; 2009.

Ullah S, Schlerf M, Skidmore AK, Hecker C. Identifying plant
species using mid-wave infrared (2.5-6 um) and thermal infrared

(8-14 um) emissivity spectra. Remote Sens Environ. 2012; 118:95-
102. https://doi.org/10.1016/j.rse.2011.11.008

Khanal S, Fulton J, Shearer S. An overview of current and
potential applications of thermal remote sensing in precision
agriculture. Comput Electron Agric. 2017;139:22-32. https://
doi.org/10.1016/j.compag.2017.05.001

Prakash A. Thermal remote sensing: Concepts, issues and
applications. ISPRS Arch. 2000; XXXII (Part B1):239-43.

Zhu L, Suomalainen J, Liu J, Hyyppa J, Kaartinen H, Haggren H. A
review: Remote sensing sensors. In: Rustamov RB, Hasanova S,
Zeynalova MH, editors. Multi-purposeful application of geospatial
data. Intechopen; 2018. p. 9-42. https://doi.org/10.5772/
intechopen.71049

Hendel IG, Ross GM. Efficacy of remote sensing in early forest fire
detection: A thermal sensor comparison. Can J Remote Sens.
2020;46(4):414-28. https://doi.org/10.1080/07038992.2020.1776597

Sagan V, Maimaitijiang M, Sidike P, Eblimit K, Peterson KT,
Hartling S, et al. UAV-based high resolution thermal imaging for
vegetation monitoring and plant phenotyping using ICI 8640 P,
FLIR Vue Pro R 640 and thermomap cameras. Remote Sens.
2019;11(3):330. https://doi.org/10.3390/rs11030330

Anderson MC, Hain C, Otkin J, Zhan X, Mo K, Svoboda M, et al. An
intercomparison of drought indicators based on thermal remote
sensing and NLDAS-2 simulations with US drought monitor
classifications. J Hydrometeorol. 2013;14(4):1035-56. https://
doi.org/10.1175/JHM-D-12-0140.1

Messina G, Modica G. Applications of UAV thermal imagery in
precision agriculture: State of the art and future research outlook.
Remote  Sens.  2020;12(9):1491. https://doi.org/10.3390/
rs12091491

Maguire MS, Neale CMU, Woldt WE. Improving accuracy of
unmanned aerial system thermal infrared remote sensing for use
in energy balance models in agriculture applications. Remote
Sens. 2021;13(9):1635. https://doi.org/10.3390/rs13091635

Halliday D, Resnick R, Walker J. Fundamentals of physics: John
Wiley & Sons; 2013.

Kuenzer C, Dech S. Thermal infrared remote sensing: Sensors,
Methods, Applications. Springer Nature. 2013. https://
doi.org/10.1007/978-94-007-6639-6

Jacob F, Petitcolin Fo, Schmugge T, Vermote E, French A, Ogawa
K. Comparison of land surface emissivity and radiometric
temperature derived from MODIS and ASTER sensors. Remote
Sens  Environ.  2004;90(2):137-52.  https://doi.org/10.1016/
j.rse.2003.11.015

Palazzi V, Gelati F, Vaglioni U, Alimenti F, Mezzanotte P, Roselli L.
Leaf-compatible autonomous RFID-based wireless temperature

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

10

sensors for precision agriculture. 2019 IEEE topical conference on
wireless sensors and sensor networks (WiSNet); 2019: IEEE.
https://doi.org/10.1109/WISNET.2019.8711808

Udelhoven T, Schlerf M, Segl K, Mallick K, Bossung C, Retzlaff R, et
al. A satellite-based imaging instrumentation concept for
hyperspectral thermal remote sensing. Sensors. 2017;17(7):1542.
https://doi.org/10.3390/s17071542

Sishodia RP, Ray RL, Singh SK. Applications of remote sensing in
precision agriculture: A review. Remote Sens. 2020;12(19):3136.
https://doi.org/10.3390/rs12193136

Sundaresan J, Santosh K, Déri A, Roggema R, Singh R. Geospatial
technologies and climate change: Springer; 2014. https://
doi.org/10.1007/978-3-319-01689-4

Wang J, Wang Y, Li G, Qi Z. Integration of remote sensing and
machine learning for precision agriculture: A comprehensive
perspective on applications. Agronomy. 2024;14(9):1975. https://
doi.org/10.3390/agronomy14091975

Szpakowski D, Jensen J. A review of the applications of remote
sensing in fire ecology. Remote Sens. 2019;11(22):2638. https://
doi.org/10.3390/rs11222638

Aryalekshmi B, Biradar RC, Mohammed Ahamed J. Thermal
imaging techniques in agricultural applications. Int J Innov Tech
Explor Engin. 2019;8(12):2162-68. https://doi.org/10.35940/
ijitee.L2949.1081219

Gerhards M, Schlerf M, Mallick K, Udelhoven T. Challenges and
future perspectives of multi-/hyperspectral thermal infrared
remote sensing for crop water-stress detection: A review. Remote
Sens. 2019;11(10):1240. https://doi.org/10.3390/rs11101240

Santesteban L, Di Gennaro S, Herrero-Langreo A, Miranda C, Royo
J, Matese A. High-resolution UAV-based thermal imaging to
estimate the instantaneous and seasonal variability of plant
water status within a vineyard. Agric Water Manag. 2017;183:49-
59. https://doi.org/10.1016/j.agwat.2016.08.026

Parihar G, Saha S, Giri LI. Application of infrared thermography for
irrigation scheduling of horticulture plants. Smart Agric Technol.
2021;1:100021. https://doi.org/10.1016/j.atech.2021.100021

Garcia-Vasquez AC, Mokari E, Samani Z, Fernald A. Using UAV-
thermal imaging to calculate crop water use and irrigation
efficiency in a flood-irrigated pecan orchard. Agric Water Manag.
2022;272:107824. https://doi.org/10.1016/j.agwat.2022.107824

Taghvaeian S Andales AA, Allen LN, Kisekka I, 0'Shaughnessy SA,
Porter DO, et al. Irrigation scheduling for agriculture in the United
States: The progress made and the path forward. Trans ASABE.
2020;63(5):1603-18. https://doi.org/10.13031/trans.14110

Gu Z, Qi Z, Burghate R, Yuan S, Jiao X, Xu J. Irrigation scheduling
approaches and applications: A review. J Irrig Drain Eng. 2020;146
(6):04020007. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001464

Quebrajo L, Pérez-Ruiz M, Pérez-Urrestarazu L, Martinez G, Egea G.
Linking thermal imaging and soil remote sensing to enhance
irrigation management of sugar beet. Biosyst Eng. 2018;165:77-
87. https://doi.org/10.1016/j.biosystemseng.2017.08.013

Gerhards M, Rock G, Schlerf M, Udelhoven T. Water stress
detection in potato plants using leaf temperature, emissivity and
reflectance. Int J Appl Earth Obs Geoinf. 2016;53:27-39. https://
doi.org/10.1016/j.jag.2016.08.004

Zhou Z, Majeed Y, Naranjo GD, Gambacorta EM. Assessment for
crop water stress with infrared thermal imagery in precision
agriculture: A review and future prospects for deep learning
applications. Comput Electron Agric. 2021;182:106019. https://
doi.org/10.1016/j.compag.2021.106019

Payares LKA, Gomez-del-Campo M, Tarquis AM, Garcia M. Thermal
imaging from UAS for estimating crop water status in a Merlot
vineyard in semi-arid conditions. Irrig Sci. 2025;43:87-103. https://
doi.org/10.1007/s00271-024-00955-1

https://plantsciencetoday.online


https://plantsciencetoday.online
https://doi.org/10.1051/e3sconf/202449104006
https://doi.org/10.1051/e3sconf/202449104006
https://doi.org/10.1111/1365-2745.13957
https://doi.org/10.4236/ars.2014.33011
https://doi.org/10.1016/j.rse.2011.11.008
https://doi.org/10.1016/j.compag.2017.05.001
https://doi.org/10.1016/j.compag.2017.05.001
https://doi.org/10.5772/intechopen.71049
https://doi.org/10.5772/intechopen.71049
https://doi.org/10.1080/07038992.2020.1776597
https://doi.org/10.3390/rs11030330
https://doi.org/10.1175/JHM-D-12-0140.1
https://doi.org/10.1175/JHM-D-12-0140.1
https://doi.org/10.3390/rs12091491
https://doi.org/10.3390/rs12091491
.%20https:/doi.org/10.3390/rs13091635
https://doi.org/10.1007/978-94-007-6639-6
https://doi.org/10.1007/978-94-007-6639-6
https://doi.org/10.1016/j.rse.2003.11.015
https://doi.org/10.1016/j.rse.2003.11.015
https://doi.org/10.1109/WISNET.2019.8711808
https://doi.org/10.3390/s17071542
https://doi.org/10.3390/rs12193136
https://doi.org/10.1007/978-3-319-01689-4
https://doi.org/10.1007/978-3-319-01689-4
https://doi.org/10.3390/agronomy14091975
https://doi.org/10.3390/agronomy14091975
https://doi.org/10.3390/rs11222638
https://doi.org/10.3390/rs11222638
https://doi.org/10.35940/ijitee.L2949.1081219
https://doi.org/10.35940/ijitee.L2949.1081219
https://doi.org/10.3390/rs11101240
https://doi.org/10.1016/j.agwat.2016.08.026
https://doi.org/10.1016/j.atech.2021.100021
https://doi.org/10.1016/j.agwat.2022.107824
https://doi.org/10.13031/trans.14110
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001464
https://doi.org/10.1016/j.biosystemseng.2017.08.013
https://doi.org/10.1016/j.jag.2016.08.004
https://doi.org/10.1016/j.jag.2016.08.004
https://doi.org/10.1016/j.compag.2021.106019
https://doi.org/10.1016/j.compag.2021.106019
https://doi.org/10.1007/s00271-024-00955-1
https://doi.org/10.1007/s00271-024-00955-1

35.

36.

37.

38.

39.

40.

41.

42.

43.

a4,

45.

46.

47.

48.

49.

50.

51.

Cho SB, Soleh HM, Choi JW, Hwang WH, Lee H, Cho YS, et al.
Recent methods for evaluating crop water stress using Al
Techniques: A review. Sensors. 2024;24(19):6313. https://
doi.org/10.3390/524196313

DongH, Dong J, Sun S, Bai T, Zhao D, Yin Y, et al. Crop water stress
detection based on UAV remote sensing systems. Agric Water
Manag. 2024;303:109059. https://doi.org/10.1016/
j.agwat.2024.109059

Mangus DL, Sharda A, Zhang N. Development and evaluation of
thermal infrared imaging system for high spatial and temporal
resolution crop water stress monitoring of corn within a
greenhouse. Comput Electron Agric. 2016;121:149-59. https://
doi.org/10.1016/j.compag.2015.12.007

Gebbers R, Adamchuk VI. Precision agriculture and food security.
Science. 2010;327(5967):828-31. https://doi.org/10.1126/
science.1183899

Ahmad U, Alvino A, Marino S. A review of crop water stress
assessment using remote sensing. Remote Sens. 2021;13
(20):4155. https://doi.org/10.3390/rs13204155

Idso S, Jackson R, Pinter Jr P, Reginato R, Hatfield J. Normalizing
the stress-degree-day parameter for environmental variability.
Agric Meteorol. 1981;24:45-55. https://doi.org/10.1016/0002-1571
(81)90032-7

Jackson RD, Idso S, Reginato R, Pinter Jr P. Canopy temperature
as a crop water stress indicator. Water Resour Res. 1981;17
(4):1133-38. https://doi.org/10.1029/WR017i004p01133

Jones H, Schofield P. Thermal and other remote sensing of plant
stress. Genet Plant Physiol. 2008;34(1-2):19-32.

Gutiérrez S, Diago M, Fernandez-Novales J, Tardaguila J. On-the-
go thermal imaging for water status assessment in commercial
vineyards. Adv Anim Biosci. 2017;8(2):520-24.  https://
doi.org/10.1017/S204047001700108X

Egea G, Padilla-Diaz CM, Martinez-Guanter J, Fernandez JE, Pérez-
Ruiz M. Assessing a crop water stress index derived from aerial
thermal imaging and infrared thermometry in super-high density
olive orchards. Agric Water Manag. 2017;187:210-21. https://
doi.org/10.1016/j.agwat.2017.03.030

Elsayed S, Elhoweity M, lbrahim HH, Dewir YH, Migdadi HM,
Schmidhalter U. Thermal imaging and passive reflectance sensing
to estimate the water status and grain yield of wheat under
different irrigation regimes. Agric Water Manag. 2017;189:98-110.
https://doi.org/10.1016/j.agwat.2017.05.001

Bian J, Zhang Z, Chen J, Chen H, Cui C, Li X, et al. Simplified
evaluation of cotton water stress using high resolution unmanned
aerial vehicle thermal imagery. Remote Sens. 2019;11(3):267.
https://doi.org/10.3390/rs11030267

Yue J, Tian J, Tian Q, Xu K, Xu N. Development of soil moisture
indices from differences in water absorption between shortwave-
infrared bands. ISPRS J Photogramm Remote Sens. 2019;154:216-
30. https://doi.org/10.1016/j.isprsjprs.2019.06.012

Han L, Wang C, Liu Q, Wang G, Yu T, Gu X, et al. Soil moisture
mapping based on multi-source fusion of optical, near-infrared,
thermalinfrared and digital elevation model data via the bayesian
maximum entropy framework. Remote Sens. 2020;12(23):3916.
https://doi.org/10.3390/rs12233916

Khanal S, Kc K, Fulton JP, Shearer S, Ozkan E. Remote sensing in
agriculture-accomplishments, limitations and opportunities.
Remote  Sens.  2020;12(22):3783.  https://doi.org/10.3390/
rs12223783

Sharma N. Thermal remote sensing as a tool for irrigation
scheduling. Agriculture & Food: e-Newsletter. 2020;2(4):97-98.

Mu T, Liu G, Yang X, Yu Y. Soil-moisture estimation based on
multiple-source remote-sensing images. Remote Sens. 2023;15
(1):139. https://doi.org/10.3390/rs15010139

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

11

Hassan-Esfahani L, Torres-Rua A, Jensen A, McKee M. Assessment
of surface soil moisture using high-resolution multi-spectral
imagery and artificial neural networks. Remote Sens. 2015;7
(3):2627-46. https://doi.org/10.3390/rs70302627

Kashyap B, Kumar R. Sensing methodologies in agriculture for soil
moisture and nutrient monitoring. IEEE Access. 2021;9:14095-121.
https://doi.org/10.1109/ACCESS.2021.3052478

Liu Z, Zhao L, Peng Y, Wang G, Hu Y. Improving estimation of soil
moisture content using a modified soil thermal inertia model.
Remote  Sens.  2020;12(11):1719.  https://doi.org/10.3390/
rs12111719

Zhang D, Zhou G. Estimation of soil moisture from optical and
thermal remote sensing: A review. Sensors. 2016;16(8):1308.
https://doi.org/10.3390/s16081308

Wang L, Qu JJ. Satellite remote sensing applications for surface
soil moisture monitoring: A review. Front Earth Sci. 2009;3:237-47.
https://doi.org/10.1007/s11707-009-0023-7

Carlson T. An overview of the "triangle method" for estimating
surface evapotranspiration and soil moisture from satellite
imagery. Sensors. 2007;7(8):1612-29. https://doi.org/10.3390/
s7081612

Shafian S, Maas SJ. Index of soil moisture using raw landsat image
digital count data in Texas high plains. Remote Sens. 2015;7
(3):2352-72. https://doi.org/10.3390/rs70302352

Tarig A, Shu H, Siddiqui S, Imran M, Farhan M. Monitoring land use
and land cover changes using geospatial techniques, a case study
of Fateh Jang, Attock, Pakistan. Geogr Environ Sustain. 2021;14
(1):41-52. https://doi.org/10.24057/2071-9388-2020-117

Ghiat I, Mackey HR, Al-Ansari T. A review of evapotranspiration
measurement models, techniques and methods for open and
closed agricultural field applications. Water. 2021;13(18):2523.
https://doi.org/10.3390/w13182523

Garcia-Santos V, Sanchez JM, Cuxart J. Evapotranspiration
acquired with remote sensing thermal-based algorithms: A state-
of-the-art review. Remote Sens. 2022;14(14):3440. https://
doi.org/10.3390/rs14143440

Derardja B, Khadra R, Abdelmoneim AAA, El-Shirbeny MA,
Valsamidis T, De Pasquale V, et al. Advancements in remote
sensing for evapotranspiration estimation: A comprehensive
review of temperature-based models. Remote Sens. 2024;16
(11):1927. https://doi.org/10.3390/rs16111927

Cheng J, Kustas WP. Using very high resolution thermal infrared
imagery for more accurate determination of the impact of land
cover differences on evapotranspiration in an irrigated
agricultural area. Remote Sens. 2019;11(6):613. https://
doi.org/10.3390/rs11060613

Knipper KR, Kustas WP Anderson MC, Alfieri JG, Prueger JH, Hain
CR, et al. Evapotranspiration estimates derived using thermal-
based satellite remote sensing and data fusion for irrigation
management in California vineyards. Irrig Sci. 2019;37:431-49.
https://doi.org/10.1007/s00271-018-0591-y

Pan S, Pan N, Tian H, Friedlingstein P, Sitch S, Shi H, et al.
Evaluation of global terrestrial evapotranspiration using state-of-
the-art approaches in remote sensing, machine learning and land
surface modeling. Hydrol Earth Syst Sci. 2020;24(3):1485-509.
https://doi.org/10.5194/hess-24-1485-2020

Kullberg EG, DeJonge KC, Chavez JL. Evaluation of thermal
remote sensing indices to estimate crop evapotranspiration
coefficients. Agric Water Manag. 2017;179:64-73. https://
doi.org/10.1016/j.agwat.2016.07.007

Alkaraki KF, Hazaymeh K. A comprehensive remote sensing-based
agriculture drought condition indicator (CADCI) using machine
learning. Environ Chall. 2023;11:100699. https://doi.org/10.1016/
j.envc.2023.100699

Plant Science Today, ISSN 2348-1900 (online)


https://doi.org/10.3390/s24196313
https://doi.org/10.3390/s24196313
https://doi.org/10.1016/j.agwat.2024.109059
https://doi.org/10.1016/j.agwat.2024.109059
https://doi.org/10.1016/j.compag.2015.12.007
https://doi.org/10.1016/j.compag.2015.12.007
https://doi.org/10.3390/rs13204155
https://doi.org/10.1016/0002-1571(81)90032-7
https://doi.org/10.1016/0002-1571(81)90032-7
https://doi.org/10.1029/WR017i004p01133
https://doi.org/10.1017/S204047001700108X
https://doi.org/10.1017/S204047001700108X
https://doi.org/10.1016/j.agwat.2017.03.030
https://doi.org/10.1016/j.agwat.2017.03.030
https://doi.org/10.1016/j.agwat.2017.05.001
https://doi.org/10.3390/rs11030267
https://doi.org/10.1016/j.isprsjprs.2019.06.012
https://doi.org/10.3390/rs12233916
https://doi.org/10.3390/rs12223783
https://doi.org/10.3390/rs12223783
https://doi.org/10.3390/rs15010139
https://doi.org/10.3390/rs70302627
https://doi.org/10.1109/ACCESS.2021.3052478
https://doi.org/10.3390/rs12111719
https://doi.org/10.3390/rs12111719
https://doi.org/10.3390/s16081308
https://doi.org/10.1007/s11707-009-0023-7
https://doi.org/10.3390/s7081612
https://doi.org/10.3390/s7081612
https://doi.org/10.3390/rs70302352
https://doi.org/10.24057/2071-9388-2020-117
https://doi.org/10.3390/w13182523
https://doi.org/10.3390/rs14143440
https://doi.org/10.3390/rs14143440
https://doi.org/10.3390/rs16111927
https://doi.org/10.3390/rs11060613
https://doi.org/10.3390/rs11060613
https://doi.org/10.1007/s00271-018-0591-y
https://doi.org/10.5194/hess-24-1485-2020
https://doi.org/10.1016/j.agwat.2016.07.007
https://doi.org/10.1016/j.agwat.2016.07.007
https://doi.org/10.1016/j.envc.2023.100699
https://doi.org/10.1016/j.envc.2023.100699

SIVAKUMAR ET AL

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

Qin Q,Wu Z, Zhang T, Sagan V, Zhang Z, Zhang Y, et al. Optical and
thermal remote sensing for monitoring agricultural drought.
Remote  Sens.  2021;13(24):5092.  https://doi.org/10.3390/
rs13245092

Hazaymeh K, Hassan QK. Remote sensing of agricultural drought
monitoring: A state of art review. AIMS Environ Sci. 2016;3(4):604-
30. https://doi.org/10.3934/environsci.2016.4.604

Choi M, Jacobs JM, Anderson MC, Bosch DD. Evaluation of
drought indices via remotely sensed data with hydrological
variables. J Hydrol. 2013;476:265-73. https://doi.org/10.1016/
j.jhydrol.2012.10.042

Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, et
al. Advanced methods of plant disease detection. A review. Agron
Sustain Dev. 2015;35:1-25. https://doi.org/10.1007/5s13593-014-
0246-1

Shakeel Q, Bajwa RT, Rashid I, Aslam HMU, Iftikhar Y, Mubeen M,
et al. Concept and application of infrared thermography for plant
disease measurement. In: Ul Haq |, ljaz S, editors. Trends in Plant
Disease Assessment. Springer, Singapore; 2022. p. 109-25. https://
doi.org/10.1007/978-981-19-5896-0_7

Choudhary A, Sharma S, Yadav P. Remote sensing: A tool of plant
disease management. Just Agriculture Multidisciplinary
Newsletter. 2022;2(7):1-6.

Omran ESE. Early sensing of peanut leaf spot using spectroscopy
and thermal imaging. Arch Agron Soil Sci. 2017;63(7):883-96.
https://doi.org/10.1080/03650340.2016.1247952

Oerke EC. Remote sensing of diseases. Annu Rev Phytopathol.
2020;58(1):225-52. https://doi.org/10.1146/annurev-phyto-010820
-012832

Sahin YS, Butuner AK, Erdogan H. Potential for early detection of
powdery mildew in okra under field conditions using thermal
imaging. Scientific Papers Series Management, Economic
Engineering in Agriculture and Rural Development. 2023;23(3):867
-70.

Raza SE, Prince G, Clarkson JP, Rajpoot NM. Automatic detection
of diseased tomato plants using thermal and stereo visible light
images. PloS One. 2015;10(4):e0123262. https://doi.org/10.1371/
journal.pone.0123262

Yao Z, He D, Lei Y. Thermal imaging for early non destructive
detection of wheat stripe rust. 2018 ASABE Annual International
Meeting. 2018;1801728. https://doi.org/10.13031/aim.201801728

Chaerle L, Hagenbeek D, De Bruyne E, Valcke R, Van Der Straeten
D. Thermal and chlorophyll-fluorescence imaging distinguish
plant-pathogen interactions at an early stage. Plant Cell Physiol.
2004;45(7):887-96. https://doi.org/10.1093/pcp/pch097

Zhang J, Huang Y, Pu R, Gonzalez-Moreno P, Yuan L, Wu K, et al.
Monitoring plant diseases and pests through remote sensing
technology: A review. Comput Electron Agric. 2019;165:104943.
https://doi.org/10.1016/j.compag.2019.104943

Cao F, Liu F, Guo H, Kong W, Zhang C, He Y. Fast detection of
Sclerotinia sclerotiorum on oilseed rape leaves using low-altitude
remote sensing technology. Sensors. 2018;18(12):4464. https://
doi.org/10.3390/518124464

Hashim |, Shariff A, Bejo S, Muharam F, Ahmad K, Hashim H.
Application of thermal imaging for plant disease detection. IOP
Conf Ser: Earth Environ Sci. 2020;540:012052. https://
doi.org/10.1088/1755-1315/540/1/012052

Jafari M, Minaei S, Safaie N. Detection of pre-symptomatic rose
powdery-mildew and gray-mold diseases based on thermal
vision. Infrared Phys Technol. 2017;85:170-83. https://
doi.org/10.1016/j.infrared.2017.04.023

Oerke EC, Frohling P, Steiner U. Thermographic assessment of
scab disease on apple leaves. Precis Agric. 2011;12:699-715.
https://doi.org/10.1007/s11119-010-9212-3

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

12

Stoll M, Schultz HR, Baecker G, Berkelmann-Loehnertz B. Early
pathogen detection under different water status and the
assessment of spray application in vineyards through the use of
thermal imagery. Precis Agric. 2008;9:407-17.  https://
doi.org/10.1007/s11119-008-9084-y

Oerke EC, Steiner U, Dehne HW, Lindenthal M. Thermal imaging of
cucumber leaves affected by downy mildew and environmental
conditions. J Exp Bot. 2006;57(9):2121-32. https://doi.org/10.1093/
jxb/erj170

Wang L, Poque S, Valkonen JP. Phenotyping viral infection in
sweet potato using a high-throughput chlorophyll fluorescence
and thermal imaging platform. Plant Methods. 2019;15:1-14.
https://doi.org/10.1186/s13007-019-0501-1

Al-doski J, Mansor SB, Shafri H, Zulhaidi H. Thermal imaging for
pests detecting-A review. Int J Agric Plant. 2016;2:10-30.

Ibrahim A, Yousry M, Saad M, Mahmoud M, Said M, Ameen A.
Infrared thermal imaging as an innovative approach for early
detection infestation of stored product insects in certain stored
grains. Cercetari Agronomice in Moldova. 2020;L11(4):321-31. https://
doi.org/10.46909/cerce-2019-0031

Manickavasagan A, Jayas D, White N. Thermal imaging to detect
infestation by Cryptolestes ferrugineus inside wheat kernels. J
Stored Prod Res. 2008;44(2):186-92. https://doi.org/10.1016/
j.jspr.2007.10.006

Chelladurai V, Kaliramesh S, Jayas D. Detection of Callosobruchus
maculatus (F.) infestation in mung bean (Vigna radiata) using
thermal imaging technique. In: NABEC-CSBE/SCGAB 2012 Joint
Meeting and Technical Conference Northeast Agricultural &
Biological Engineering Conference Canadian Society for
Bioengineering Lakehead University, Orillia, Ontario July 15-18,
2012. Available from: https://library.csbe-scgab.ca/docs/
meetings/2012/CSBE12121.pdf

Yuziigllli O, Fajraoui N, Liebisch F. Soil texture and pH mapping
using remote sensing and support sampling. IEEE J Sel Top Appl
Earth Obs Remote Sens. 2024;17:12685-12705. https://
doi.org/10.1109/JSTARS.2024.3422494

Mirzaeitalarposhti R, Shafizadeh-Moghadam H, Taghizadeh-
Mehrjardi R, Demyan MS. Digital soil texture mapping and spatial
transferability of machine learning models using Sentinel-1,
Sentinel-2 and terrain-derived covariates. Remote Sens. 2022;14
(23):5909. https://doi.org/10.3390/rs14235909

Liu F, Zhang GL, Song X, Li D, Zhao Y, Yang J, et al. High-resolution
and three-dimensional mapping of soil texture of China.
Geoderma. 2020;361:114061. https://doi.org/10.1016/
j.geoderma.2019.114061

Wang DC, Zhang GL, Zhao MS, Pan XZ, Zhao YG, Li DC, et al.
Retrieval and mapping of soil texture based on land surface
diurnal temperature range data from MODIS. PloS One. 2015;10
(6): €0129977. https://doi.org/10.1371/journal.pone.0129977

Jensen T, Apan A, Zeller L. Crop maturity mapping using a low-
cost low-altitude remote sensing system. Proceedings of the 2009
Surveying and Spatial Sciences Institute Biennial International
Conference (SSC 2009); 20009.

Dunn B, Dunn T. Predicting rice crop maturity using remote
sensing [Internet]. New South Wales: NSW Department of Primary
Industries; 2021 [cited 2024 Dec 20]:137-139. Available from:
https://www.dpi.nsw.gov.au/__data/assets/
pdf_file/0009/1365192/SRR21-book-web-cm290ct2021.pdf

Wang L, Gao R, Li C, Wang J, Liu Y, Hu J, et al. Mapping soybean
maturity and biochemical traits using UAV-based hyperspectral
images. Remote Sens. 2023;15(19):4807. https://doi.org/10.3390/
rs15194807

Zhuo W, Huang J, Gao X, Ma H, Huang H, Su W, et al. Prediction of
winter wheat maturity dates through assimilating remotely
sensed leaf area index into crop growth model. Remote Sens.

https://plantsciencetoday.online


https://plantsciencetoday.online
.%20https:/doi.org/10.3390/rs13245092
.%20https:/doi.org/10.3390/rs13245092
https://doi.org/10.3934/environsci.2016.4.604
https://doi.org/10.1016/j.jhydrol.2012.10.042
https://doi.org/10.1016/j.jhydrol.2012.10.042
https://doi.org/10.1007/s13593-014-0246-1
https://doi.org/10.1007/s13593-014-0246-1
https://doi.org/10.1007/978-981-19-5896-0_7
https://doi.org/10.1007/978-981-19-5896-0_7
https://doi.org/10.1080/03650340.2016.1247952
https://doi.org/10.1146/annurev-phyto-010820-012832
https://doi.org/10.1146/annurev-phyto-010820-012832
https://doi.org/10.1371/journal.pone.0123262
https://doi.org/10.1371/journal.pone.0123262
https://doi.org/10.13031/aim.201801728
https://doi.org/10.1093/pcp/pch097
https://doi.org/10.1016/j.compag.2019.104943
https://doi.org/10.3390/s18124464
https://doi.org/10.3390/s18124464
https://doi.org/10.1088/1755-1315/540/1/012052
https://doi.org/10.1088/1755-1315/540/1/012052
https://doi.org/10.1016/j.infrared.2017.04.023
https://doi.org/10.1016/j.infrared.2017.04.023
https://doi.org/10.1007/s11119-010-9212-3
https://doi.org/10.1007/s11119-008-9084-y
https://doi.org/10.1007/s11119-008-9084-y
https://doi.org/10.1093/jxb/erj170
https://doi.org/10.1093/jxb/erj170
https://doi.org/10.1186/s13007-019-0501-1
https://doi.org/10.46909/cerce-2019-0031
https://doi.org/10.46909/cerce-2019-0031
https://doi.org/10.1016/j.jspr.2007.10.006
https://doi.org/10.1016/j.jspr.2007.10.006
https://library.csbe-scgab.ca/docs/meetings/2012/CSBE12121.pdf
https://library.csbe-scgab.ca/docs/meetings/2012/CSBE12121.pdf
https://doi.org/10.1109/JSTARS.2024.3422494
https://doi.org/10.1109/JSTARS.2024.3422494
https://doi.org/10.3390/rs14235909
https://doi.org/10.1016/j.geoderma.2019.114061
https://doi.org/10.1016/j.geoderma.2019.114061
https://doi.org/10.1371/journal.pone.0129977
https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0009/1365192/SRR21-book-web-cm29Oct2021.pdf
https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0009/1365192/SRR21-book-web-cm29Oct2021.pdf
https://doi.org/10.3390/rs15194807
https://doi.org/10.3390/rs15194807

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

2020;12(18):2896. https://doi.org/10.3390/rs12182896

Trentin C, Ampatzidis Y, Lacerda C, Shiratsuchi L. Tree crop yield
estimation and prediction using remote sensing and machine
learning: A systematic review. Smart Agric Technol. 2024:100556.
https://doi.org/10.1016/j.atech.2024.100556

Ali AM, Abouelghar M, Belal A, Saleh N, Yones M, Selim Al, et al.
Crop yield prediction using multi sensors remote sensing. Egypt J
Remote Sens Space Sci. 2022;25(3):711-16.  https://
doi.org/10.1016/j.€jrs.2022.04.006

Abdul-Jabbar T, Ziboon A, Albayati M. Crop yield estimation using
different remote sensing data: Literature review. IOP Conference
Series: Earth Environ Sci. 2023: IOP Publishing. https://
doi.org/10.1088/1755-1315/1129/1/012004

Maimaitijiang M, Sagan V, Sidike P, Hartling S, Esposito F, Fritschi
FB. Soybean yield prediction from UAV using multimodal data
fusion and deep learning. Remote Sens Environ. 2020;237:111599.
https://doi.org/10.1016/j.rse.2019.111599

Leroux L, Baron C, Zoungrana B, Traoré SB, Seen DL, Bégué A.
Crop monitoring using vegetation and thermal indices for yield
estimates: Case study of a rainfed cereal in semi-arid West Africa.
IEEE J Sel Top Appl Earth Obs Remote Sens. 2015;9(1):347-62.
https://doi.org/10.1109/JSTARS.2015.2501343

Sakamoto T, Gitelson AA, Arkebauer TJ. MODIS-based corn grain
yield estimation model incorporating crop phenology
information. Remote Sens Environ. 2013;131:215-31. https://
doi.org/10.1016/j.rse.2012.12.017

Mkhabela M, Bullock P, Raj S, Wang S, Yang Y. Crop yield
forecasting on the Canadian Prairies using MODIS NDVI data. Agric
Meteorol. 2011;151(3):385-93. https://doi.org/10.1016/
j.agrformet.2010.11.012

Du WY, Zhang LD, Hu ZF, Shamaila Z, Zeng AJ, Song JL, et al.
Utilization of thermal infrared image for inversion of winter wheat
yield and biomass. Spectrosc Spect Anal. 2011;31(6):1476-80.

Hellebrand H, Linke M, Beuche H, Herold B, Geyer M. Horticultural
products evaluated by thermography. AgEng, Warwick. 2000. p.
26-27.

Tilahun T, Seyoum WM. High-resolution mapping of tile drainage
in agricultural fields using unmanned aerial system (UAS)-based
radiometric thermal and optical sensors. Hydrology. 2021;8(1):2.
https://doi.org/10.3390/hydrology8010002

Koganti T, Ghane E, Martinez LR, Iversen BV, Allred BJ. Mapping of
agricultural subsurface drainage systems using unmanned aerial
vehicle imagery and ground penetrating radar. Sensors. 2021;21
(8):2800. https://doi.org/10.3390/521082800

King KW, Williams MR, Fausey NR. Contributions of systematic tile
drainage to watershed-scale phosphorus transport. J Environ
Qual. 2015;44(2):486-94. https://doi.org/10.2134/jeq2014.04.0149

Smith DR, King KW, Johnson L, Francesconi W, Richards P, Baker
D, et al. Surface runoff and tile drainage transport of phosphorus

13

in the midwestern United States. J Environ Qual. 2015;44(2):495-
502. https://doi.org/10.2134/jeq2014.04.0176

Allred B, Eash N, Freeland R, Martinez L, Wishart D. Effective and
efficient agricultural drainage pipe mapping with UAS thermal
infrared imagery: A case study. Agric Water Manag. 2018;197:132-
37. https://doi.org/10.1016/j.agwat.2017.11.011

Woo DK, Song H, Kumar P. Mapping subsurface tile drainage
systems with thermal images. Agric Water Manag. 2019;218:94-
101. https://doi.org/10.1016/j.agwat.2019.01.031

113.

114.

115. Rahmani SR, Schulze DG. Mapping subsurface tile lines on a
research farm using aerial photography, paper maps and expert
knowledge. Agrosyst Geosci Environ. 2023;6(2):e20362. https://

doi.org/10.1002/agg2.20362

de Paul OV. Remote sensing, surface residue cover and tillage
practice. J  Environ  Prot.  2012;3(2):211-17.  https://
doi.org/10.4236/jep.2012.32026

116.

117. Lin N, Ma X, Jiang R, Wu M, Zhang W. Estimation of maize residue
cover using remote sensing based on adaptive threshold
segmentation and Cat Boost algorithm. Agriculture. 2024;14

(5):711. https://doi.org/10.3390/agriculture14050711

118. Barnes ML, Yoder L, Khodaee M. Detecting winter cover crops and
crop residues in the midwest US using machine learning
classification of thermal and optical imagery. Remote Sens.

2021;13(10):1998. https://doi.org/10.3390/rs13101998

119. Yang L, Lu B, Schmidt M, Natesan S, McCaffrey D. Applications of
remote sensing for crop residue cover mapping. Smart Agric
Technol. 2025;11:100880. https://doi.org/10.1016/

j.atech.2025.100880

Sullivan D, Shaw J, Mask P, Rickman D, Guertal E, Luvall J, et al.
Evaluation of multispectral data for rapid assessment of wheat
straw residue cover. Soil Sci Soc Am J. 2004;68(6):2007-13. https://
doi.org/10.2136/sssaj2004.2007

120.

Additional information

Peer review: Publisher thanks Sectional Editor and the other anonymous
reviewers for their contribution to the peer review of this work.

Reprints & permissions information is available at https://
horizonepublishing.com/journals/index.php/PST/open_access_policy

Publisher’s Note: Horizon e-Publishing Group remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Indexing: Plant Science Today, published by Horizon e-Publishing Group, is
covered by Scopus, Web of Science, BIOSIS Previews, Clarivate Analytics,
NAAS, UGC Care, etc

See https://horizonepublishing.com/journals/index.php/PST/
indexing_abstracting

Copyright: © The Author(s). This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution and reproduction in any medium, provided the
original author and source are credited (https://creativecommons.org/
licenses/by/4.0/)

Publisher information: Plant Science Today is published by HORIZON e-
Publishing Group with support from Empirion Publishers Private Limited,
Thiruvananthapuram, India.

Plant Science Today, ISSN 2348-1900 (online)


https://doi.org/10.3390/rs12182896
https://doi.org/10.1016/j.atech.2024.100556
https://doi.org/10.1016/j.ejrs.2022.04.006
https://doi.org/10.1016/j.ejrs.2022.04.006
https://doi.org/10.1088/1755-1315/1129/1/012004
https://doi.org/10.1088/1755-1315/1129/1/012004
https://doi.org/10.1016/j.rse.2019.111599
https://doi.org/10.1109/JSTARS.2015.2501343
https://doi.org/10.1016/j.rse.2012.12.017
https://doi.org/10.1016/j.rse.2012.12.017
https://doi.org/10.1016/j.agrformet.2010.11.012
https://doi.org/10.1016/j.agrformet.2010.11.012
https://doi.org/10.3390/hydrology8010002
https://doi.org/10.3390/s21082800
https://doi.org/10.2134/jeq2014.04.0149
https://doi.org/10.2134/jeq2014.04.0176
https://doi.org/10.1016/j.agwat.2017.11.011
https://doi.org/10.1016/j.agwat.2019.01.031
https://doi.org/10.1002/agg2.20362
https://doi.org/10.1002/agg2.20362
https://doi.org/10.4236/jep.2012.32026
https://doi.org/10.4236/jep.2012.32026
https://doi.org/10.3390/agriculture14050711
https://doi.org/10.3390/rs13101998
https://doi.org/10.1016/j.atech.2025.100880
https://doi.org/10.1016/j.atech.2025.100880
https://doi.org/10.2136/sssaj2004.2007
https://doi.org/10.2136/sssaj2004.2007
https://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://horizonepublishing.com/journals/index.php/PST/indexing_abstracting
https://horizonepublishing.com/journals/index.php/PST/indexing_abstracting
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

