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Introduction 

Agriculture is essential critical sector globally, particularly in 

developing countries. It provides food, animal feed and various 

non-food products that support the growing global population 

and numerous industries. In recent decades, the integration of 

advanced technologies such as satellite remote sensing, 

geographic information systems (GIS), unmanned aerial vehicles 

(UAVs), global positioning systems (GPS), precision agriculture 

(PA), big data analytics, internet of things (IoT) and artificial 

intelligence (AI) in the agricultural sectors has significantly 

enhanced the productivity (1). These technologies help optimize 

agriculture operations and resource management, minimize 

yield losses and improve crop health assessment and decision-

making. Among these, remote sensing (RS) technologies (both 

active and passive) play an essential role across various 

platforms. Handheld devices, aircraft and satellites are widely 

used RS platforms for collecting the data at different spatial, 

temporal and spectral resolutions enhancing, monitoring and 

analysis for various applications (2).  

 Remote sensing refers to the acquisition of information 

about objects, areas or phenomena without physical contact, 

typically through the analysis of imagery. RS image analysis is 

typically accomplished by detecting electromagnetic radiation 

(EMR) reflected, emitted or backscattered by the target (3). 

Thermal remote sensing (TRS) is a branch of remote sensing 

that captures, analyses and interprets data in the thermal 

infrared (TIR) range. Unlike optical remote sensing, which 

detects reflected radiations, TRS measures emitted radiation 

from the target's surface (4). In vegetation analysis, the thermal 

infrared range typically spans 3–14 µm, further subdivided into 

mid-wave infrared (MWIR) at 3-5 µm and long-wave infrared 

(LWIR) at 8-14 µm (Fig. 1). In the 5-8 µm range, atmospheric 

gases such as water vapor, carbon dioxide (CO₂) and ozone (O₃) 

completely absorb emitted energy, preventing effective remote 

sensing (6). TRS captures emitted radiation from an object's 

surface, converting it into temperature data without direct 

contact (7, 8).  

 The behaviour of EMR is governed by several physical 

laws, including Planck’s radiation law, Wien’s displacement 

law, Stefan-Boltzmann law and Kirchhoff’s law (3). TRS takes 

advantage of the principle that all objects above                           

absolute zero (0 K or -273.15 ˚C) emit radiation within the 

electromagnetic spectrum's infrared range, producing a 

thermal image. Compared to a cooler thing, a warmer object 

releases more thermal energy. Consequently, an image's 

object becomes apparent more clearly (9). TRS is widely 

applied across agriculture, forestry, environmental monitoring, 

urban planning and disaster management (10). In agriculture, 
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Abstract  

Agriculture is a fundamental sector globally, particularly in developing countries, as it provides food, feed and non-food products essential 

for economic and societal stability. Advancements in remote sensing technologies have greatly enhanced agricultural productivity and 

management. Thermal infrared remote sensing (TIRS) is a transformative tool in agriculture, enabling precise monitoring of crop and soil 
conditions by capturing and analysing the emitted radiation in the thermal infrared spectrum (3–14 µm). This technology offers critical 

insights into crop and soil health. Unlike optical sensing, thermal remote sensing supports crop water stress assessment, soil moisture 

detection, irrigation scheduling, evapotranspiration monitoring, drought stress analysis, disease detection, soil property mapping, crop 

maturity assessment, yield estimation, tile drainage mapping and residue cover analysis. Integrating TIRS with multispectral and 
hyperspectral imaging enhances agricultural decision-making, optimises resource allocation and improves crop health. Future research 

should prioritize AI-driven real-time data processing by integrating machine learning, UAV-based imaging and IoT-enabled monitoring 

systems. These advancements can enhance precision agriculture, optimize resource use and improve crop stress detection. As 

technological innovations continue to evolve, thermal remote sensing is poised to play a pivotal role in sustainable agricultural 
management, offering valuable insights to improve efficiency and resilience in farming practices.        
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TRS is involved in crop and soil monitoring, including crop 

water stress assessment, soil moisture detection, irrigation 

planning, evapotranspiration analysis, drought stress 

evaluation, disease and pest damage detection, soil texture 

mapping, crop maturity, yield assessment, residue cover 

analysis and tillage mapping (7). 

 The thermal characteristics of plants are significantly 

influenced by their complex and heterogeneous internal 

structures, including specific water content per unit area. This 

structural complexity enable detailed investigations of 

individual plants using TRS, thanks to infrared thermography's 

high resolution, accuracy and versatility (4). Temperature is a 

crucial factor that significantly affects key plant physiological 

processes such as transpiration, leaf water potential and 

photosynthesis (11). TRS has emerged as a valuable method for 

assessing surface temperature. In recent years, advancements 

in sensor technology and declining costs have expanded the 

application of thermal sensors. These sensors provide sensitive 

and timely surface temperature information, which is essential 

for monitoring plant growth and detecting stress (7, 12, 13).  

 Thermal information is commonly utilized to assess 

water stress in plants caused by various factors. Canopy 

temperature measurements using thermal infrared 

radiometers (IRT) strongly correlate with leaf water potential, 

confirming that TRS is an effective method for assessing plant 

water stress (14). TRS holds significant potential for detecting 

and monitoring several agricultural factors such as yield 

prediction, plant phenotyping and the assessment and 

monitoring of both biotic and abiotic stresses (13). This review 

explores major thermal sensors, their agricultural applications, 

existing challenges and future perspectives, offering a 

comprehensive overview of TRS technologies in agriculture. 

Fundamentals of thermal remote sensing 

In TRS, the radiation emitted by objects surface is quantified to 
estimate their temperature. These estimated temperatures 

provide the radiant temperature of an object, which is 

influenced by both kinetic temperature and emissivity (8). TRS 

is based on the detection of radiation emitted within the TIR 

range of the electromagnetic (EM) spectrum. This emitted 

energy is interpreted and converted into surface temperature 

data. The infrared (IR) range of the EM spectrum ranging from 

0.7 to 100 μm and is divided into two broad segments: reflected 

IR (0.7-3.0 μm) and TIR (3.0-100 μm). All natural and man-made 

features on Earth's surface like plants, soil, water bodies and 

humans emit TIR radiation, mainly between the 3.0–14 μm 

region (5). Within this band, there are two major atmospheric 

windows between 3–5 μm and 8–14 μm through which IR 

radiation penetrates from the surface of the Earth to space with 

least absorption (Fig. 1). However, IR radiation of 5-8 μm is 

mainly absorbed by atmospheric gases such as water vapor, 

CO₂ and O₃ (13). 

 According to Planck’s law, each energy component (Q) is 

directly proportional to its frequency (ν) with Planck's constant 

(h) is used to adjust this relationship, as shown in Eqn. 1 (3). 

           Q =  hv                                      (Eqn. 1) 

 Given that the frequency of a wave (ν) is proportional 

to the speed of light (c) and is inversely proportional to its 

wavelength (λ), Eqn. 1 is reformulated as follows Eqn. 2 (3): 

 

 

 The relation between a black body's radiations and 
the wavelength of maximum emission with a black body's 

temperature, is explained by Wien's displacement law and 

the Stefan-Boltzmann law (15). Wien's displacement law was 

used to determine a blackbody's dominant wavelength at a 

specific temperature. The actual temperature (T) of a black 

body, expressed in Kelvin, is correlated with the wavelength 

at which it radiates the most energy, referred to as the peak 

spectral exitance or dominant wavelength (λmax), as described 

by Eqn. 3 (5). With increasing temperature, the peak of 

radiation from a black body moves towards the shorter 

wavelengths (16).  

 

 

 K is a constant equal to 2898 µm. This equation 
calculates the wavelength at which maximum radiant spectral 

exitance is attained. The result of this equation is crucial for 

determining the appropriate measurement range of the sensor 

to capture the radiation emitted by a given object (5). The total 

spectral radiant exitance (E) from a blackbody in watts per 

square meter is directly proportional to the fourth power of its 

temperature (T) (3). This relationship is described by the Stefan

-Boltzmann law (Eqn. 4) (3). 

  E = σT4   (Eqn. 4) 

Fig. 1. Electromagnetic radiation spectrum (5). 

(Eqn. 2) 
hc 

λ 
Q = 

(Eqn. 3) 
K 

T 
λmax  = 
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 where E represents spectral radiant exitance, σ is 

Stefan-Boltzmann constant (5.6697 × 10-8 Wm-2 K-4) and T is 

absolute temperature in Kelvin. The equation clearly states 

that, the total EMR emitted by a black body is a function of its 

absolute temperature. Kirchhoff's law is based on conditions 

of thermal equilibrium. It states that, the spectral emissivity 

of an object equals its spectral absorptance at a given 

wavelength (Eqn. 5) (3).  

  ε  =  α                                             (Eqn. 5) 

 Where α represents absorbance and ε emittance. This 

is derived frequently; materials that are good heat absorbers 

also emit heat well and vice versa and those that reflect heat 

well typically emit it poorly. The energy conservation concept 

is expressed (Eqn. 6). 

  ε+τ+ρ= 1   (Eqn.6) 

 where τ is transmission and ρ is reflection. Since most 

of the materials are not transparent to TIR radiation, the 

above equation becomes (Eqn. 7). 

  ε + ρ  = 1                                         (Eqn. 7)                           

 All objects in the real world at temperatures above 

absolute zero (0 K; -273.16 °C; -459.69 °F) show random 

motion. Energy of this random motion of the particles is 

referred as kinetic heat or kinetic temperature Tkin (5). The 

object also emits energy depending on its temperature and 

this radiated energy is utilized to calculate its temperature 

radiant Trad. While Tkin and Trad are highly positively correlated, 

Trad is generally less than Tkin because of the object's 

emissivity (ε) (13). Due to this reason, the temperature read 

by the sensor Trad is always lesser than the actual temperature 

as described by Kirchhoff's law (16) (Eqn. 8). 

 Trad =  ε 1/4 Tki n                                                                     (Eqn. 8) 

 Emissivity is the ratio of the radiation emitted by a 

surface to that emitted by a black body at the same 

temperature (17). Since the radiance of any real object at the 

same temperature is always less than that of a black body 

(which has an emissivity of 1), emissivity value range between 0 

and 1 (5). According to Planck's law, an object emits and 

absorbs radiation less effectively than a black body at a given 

temperature. In practice, materials with low emissivity tend to 

show significantly lower sensed temperatures compared to 

nearby objects at the same temperature, leading to less 

accurate assessments of Tkin. Emissivity is influenced by many 

factors, such as color, surface texture, chemical composition, 

moisture content, field of view, viewing angle and spectral 

wavelength (5). Measuring emissivity in materials can be 

challenging, although it remains relatively stable across the EM 

spectrum in the 8 to 14 µm range. Vegetation is usually of high 

emissivity, approximately between 0.96 and 0.99, soil is of 

relatively low emissivity at around 0.89 and water is of almost 

0.99 emissivity (3, 13). Table 1 presents typical emissivity values 

for various surface materials over the range of 8-14 µm 

wavelength range. 

Thermal infrared remote sensing platforms and sensors 

RS sensors identify, measure and evaluate target objects on, 
above or below the Earth's surface by analyzing reflected, 
emitted or scattered EMR signals over long distances. 

Thermal sensors have become essential in agriculture and 
forestry for monitoring environmental and crop conditions 
(18). RS systems in PA are classified based on their sensor 
platforms and types. Platforms include satellites, aerial 
systems (aircraft and UAVs) and ground-based sensors.  
Multispectral TIR satellite systems such as advanced 
spaceborne thermal emission and reflection radiometer 
(ASTER) effectively distinguish various surface types. The 
development of hyperspectral TIR sensors has greatly 
improved the capability for the identification and mapping of 
a broader range of materials and surface characteristics, 
providing higher accuracy and attribute information than 
multispectral thermal sensors. High spatial resolution 
hyperspectral TIR data is primarily obtained through airborne 
imaging systems such as spatially-enhanced broadband array 
spectrograph system (SEBASS), airborne hyperspectral 
imager (AHI), AisaOWL, Hyper-Cam and hyperspectral 
thermal emission spectrometer (HyTES) (19). 

 Satellite-based sensing has been widely used since the 
1970s, while UAVs have gained popularity recently. Ground-
based sensors such as hand-held, field-mounted and tractor-
mounted are called proximal RS systems, as they operate close 
to plants and soil, unlike satellite and aerial sensors (20). RS 
sensors vary based on spatial, spectral, radiometric and 
temporal resolution (21). Spatial resolution refers to the pixel 
size covering the ground area. Temporal resolution indicates 
the time a satellite takes to complete an orbit and revisit the 
same location, while the spectral resolution represents the 
number of bands recorded in a specified electromagnetic 
spectrum range (20). TIR sensors are used to quantify energy 
radiated from a target (e.g., crops) to estimate the temperature 
of the target, which further estimates crop water stress, 
evapotranspiration (ET) and irrigation demand (7). For 
vegetation analysis, mostly TIR sensor radiation emissions in 
the mid-range (3-8 µm) and more frequently in the long-range 
(8-14 µm) regions are utilised (2). Various sensors facilitate 
agricultural data collection directly or indirectly, supporting for 
crop yield prediction, irrigation planning, water stress 
assessment, soil moisture analysis, pest monitoring and early 
warning systems (20, 22, 23). Lists of thermal infrared platforms 
and sensors are shown in Table 2. 

Application of thermal remote sensing in agriculture 

TRS is a powerful technique used in agriculture to gather 
valuable information about surface temperatures. By detecting 
infrared radiation emitted by objects (4), thermal sensors 
provide insights into temperature variations across landscapes, 
aiding in crop health assessment, water management, disease 
and pest detection, yield estimation and soil moisture 
monitoring (Fig. 2). This technology enables farmers to make 
informed decisions regarding irrigation, fertilization, pest 

 

Material Average emissivity (ε) 
Clear water 0.98–0.99 
Healthy green vegetation 0.96–0.99 
Wet soil 0.95–0.98 
Dry mineral soil 0.92–0.94 
Dry vegetation 0.88–0.94 
Wood 0.93–0.94 
Wet snow 0.98–0.99 
Dry snow 0.85–0.90 

Table 1. Emissivity of various surface materials over the range of             
8-14 µm (13) 
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control and other management practices, ultimately 
optimizing crop yields and resource efficiency (7). Furthermore, 
TRS aids in the early detection of stress and environmental 
factors such as drought, heat stress and salinity affecting crops, 
enhancing resilience and sustainable agricultural practices. Its 
non-destructive, large-area coverage makes TRS essential in 
precision agriculture and environmental monitoring, 
accelerating innovation and advances in the agricultural sector 
(13). 

 

 

Irrigation scheduling 

Adequate irrigation is crucial in agriculture, as in-season rainfall 

is often insufficient to meet crop water requirements. 

Consequently, improper irrigation timing and inadequate 

water application are significant challenges that constrain 

production in many farming areas (24). As plants undergo 

changes in water potential, their stomata were closed and, 

increased the water stress (25). Optimizing irrigation timing, 

location and quantity is essential for minimizing yield losses, 

enhancing responsiveness to management practices and 

maximizing water-use efficiency-agricultural productivity.  

Name of the platform Name of the sensor Wavelength (µm) No. of bands Spatial resolution 

Satellite operational 
NOAA-19/B/C AVHRR3 10.3–12.5 µm 2 1100 m 

JPSS-1, JPSS-2 VIIRS 8.55–12.01 µm 4 750 m 
GOES-16/17/18 ABI 7.24–13.6 µm 7 2000 m 

TERRA ASTER 8.12-11.65 µm 5 90 m 
Landsat 9 TIRS-2 10.5–12 µm 2 100 m 
Landsat-8 TIRS 10.6-12.51µm 2 100 m 
Landsat-7 ETM+ 10.4-12.5 µm 1 60 m 

Sentinal-3A/3B SLSTR 10.85-12 µm 2 1000 m 
Terra, Aqua MODIS 8.4-14.38 µm 8 1000 m 
ECOSTRESS PHyTIR 8–12.5 µm 1 60 m 

Himawari-8/9 AHI 7.3–13.28 µm 7 2000 m 
PhiSat-1 HyperScout-2 8–14 um 4 390 m 
ALOS-2 CIRC 8–12 µm 1 210 m 

GCOM-C SGLI 10.8–12 µm 1 1000 m 
HJ-2A/2B IRMSS-2 (HJ-2) 10.5–12.5 µm 1 300 m 

Kanopus-V-IR N2 MSU-IK-SR 8.4–9.4 µm 1 200 m 
Satellite planned 

Sentinel LSTM-A/B LSTR 8.42–12.47 µm 5 50 m 
Landsat series LandIS 8.3–12 µm 5 60 m 

Meteor-MP N1/2/3 Advanced MSU-MR 10.5–12.5 µm 2 1000 m 
Resurs-PM N1/2/3/4 BIK-SD 1 8.1–12.5 µm 5 20 m 

Airborne 
ITRES TASI-600 ITRES 8–11.5 µm 32 0.85 m at 1000 m 

Aisa Owl SPECIM 7.6–12.3 µm 96 1.1–1.5 m at 1000 m 
Vulcanair P-68 Observer 2 ImageIR 9400 3.6–4.9 μm 1 1 m at 1270 m 

Cessna aircraf SC655 7.5–14 μm 1 0.6 m at 350 m 

Table 2. Thermal infrared platforms and sensors 

 

Fig. 2. Thermal remote sensing applications in agriculture. 
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 The necessity for irrigation depends on four key factors: 

soil water availability, crop requirements and precipitation (7). 

Thermal imaging provides a valuable tool for water 

management in agricultural crops, as it allows rapid 

assessment of canopy surface temperature, which is linked to 

transpiration and reflects (26, 27). UAV-based thermal imaging 

offers an effective approach to improving irrigation efficiency in 

pecan cultivation by accurately determining water 

requirements and optimizing (28). Irrigation scheduling based 

on canopy temperature relies on thermal stress indices such as 

stress day index, degrees above non-stressed plants (DANS), 

crop water stress index (CWSI) (29). Thermal imaging and the 

CWSI method facilitate monitoring spatial and temporal crop 

water stress, enabling variable irrigation scheduling across 

different field zones (30). Thermal infrared sensors measure 

canopy temperature, aiding in CWSI calculation and plant 

water status assessment for irrigation scheduling in crops like 

cotton, corn, sunflower and  grapevine (31). In addition to 

canopy temperature assessment, irrigation scheduling also 

involves soil moisture detection, crop water stress assessment, 

evapotranspiration and drought stress monitoring. 

Crop water stress assessment  

Identifying plant water stress is crucial for global food and 
water security. Water stress causes dehydration, disrupting 
plant cell ability to maintain optimal water balance (25). As a 
major abiotic factor, crop water stress reduces growth, lowers 
yield and affects food quality, posing a serious challenge to 
agricultural production (32). Key physiological indicators of 
crop water stress assessment include leaf water potential, stem 
water potential and stomatal conductance (33, 34). Traditional 
assessment methods such as soil moisture estimation, 
meteorological variables and physiological measurements 
such as water potential and stomatal conductivity provide 
direct insights. However, they are time-consuming, labour 
intensive and unsuitable for large-scale monitoring (35).  

 Plants respond to water stress by closing stomata to 
reduce transpiration, leading to increased leaf and canopy 
temperatures compared to well-hydrated plants (36). Crop 
canopy temperature is a widely recognized water stress 
indicator (37). Timely monitoring and detection of plant 
responses to water stress are crucial for effective agricultural 
management. RS provides high spatial, spectral and temporal 
resolution data, supporting precision agriculture (38). TIR 
techniques effectively detect crop water stress by analyzing the 
mean leaf temperature and foliage regions. TIR imaging 
systems include cooled and uncooled cameras, cooled 
cameras offer high sensitivity at small spatial scales and detect 
minute temperature changes from highly sensitive data. In 
contrast, uncooled infrared cameras are cost-effective and 
widely used for canopy temperature in crop water stress 
assessment and are used in ground-based and UAV systems 
due to their light weight (39). UAVs are increasingly used over 
ground-based platforms for thermal imagery acquisition in 
large-scale commercial agriculture. The continued 
advancement of UAV-based technology enhances crop stress 
detection and optimizes irrigation scheduling (33).  

 Thermal infrared systems analyze imagery data to 

assess crop water levels and monitor water stress (39). CWSI is 

widely used to evaluate plant water stress based on TRS data 

(34). The CWSI was initially introduced to monitor the crops 

using canopy temperature, subsequently, refinements based 

on the energy balance approach and a method utilizing wet 

and dry reference surfaces were developed for field screening 

applications  (40-42). The commonly used formula to calculate 

the CWSI is following (25, 33): 

 

 

 

 Where, Tcanopy is the measured canopy temperature, Twet is 

the minimum canopy temperature, assuming fully open stomata 

and maximum transpiration. Tdry is the upper boundary, where a 

non-transpiring leaf has fully closed stomata and minimal 

potential transpiration. The CWSI has been applied to evaluate 

water stress in various field crops, including potatoes (32), 

grapevines (43), olives (44), wheat (45) and cotton (46). 

Soil moisture detection  

Soil moisture regulates water availability to plants and mediates 

water exchange between the atmosphere and the Earth's 

surface and subsurface (47). The uppermost 0-5 cm of soil 

controls energy and material exchanges. Surface soil moisture 

impacts hydrology and meteorology, influencing environmental 

and climatic processes (48). It is essential to determine optimum 

management strategies for planting, fertilization and irrigation 

(49). Soil moisture acts as a medium for nutrient supply, supports 

microbial growth and helps regulate soil temperature (50). RS 

technology is essential for large-scale near-surface soil moisture 

monitoring, surpassing conventional methods like thermo-

gravimetric and calcium-carbide techniques. TIR sensing utilizes 

wavelengths of 3,500–14,000 nm to assess soil moisture. ET is 

frequently employed to measure land-surface temperature (LST) 

for accurate soil moisture prediction (51). The common thermal-

based soil moisture detection methods include thermal inertia 

(TI), triangle method (TM) and the soil moisture index. TI 

technique developed using TIRS data in the TIR region 

represents the resistance to temperature change induced by 

external energy (52). TI governs temperature fluctuation 

amplitude and depends on surface layer characteristics, soil 

thermal conductivity and soil heat capacity. Higher TI results in 

lower temperature fluctuation. Quantitative TI-soil moisture 

relationships can be derived from soil temperature variation 

between TI and soil moisture or diurnal surface temperature 

amplitude (53-56).  

 Triangle method (TM) interprets the distribution of 

image pixels by relating surface radiant temperature to 

fractional vegetation cover. As vegetation cover increases, 

surface radiant temperature decreases, forming a triangle 

pattern, with a vertex representing limited temperature 

variation in dense vegetation (7, 57). The perpendicular soil 

moisture index (PSMI) is evaluated pixel-by-pixel using red, 

near infrared and thermal bands from Landsat imagery without 

requiring atmospheric calibration (7, 24, 58). Historically, TRS 

for soil moisture estimation has been constrained by 

acquisition costs. However, advancements in UAV-based 

platforms have made high-resolution thermal imagery more 

economical, significantly enhancing the ability to assess the 

spatial variability of soil conditions (51). RS data can be 

integrated with other geospatial data sets to provide greater 

Tcanopy - Twet 

Tdry - T wet 
(Eqn. 9) CWSI = 



SIVAKUMAR  ET AL  6     

https://plantsciencetoday.online 

insights into the drivers of soil properties. This integrated 

approach also tracks environmental dynamics, such as 

deforestation and urban growth (59). 

Evapotranspiration and drought stress monitoring 

Precise crop water requirement calculations are essential for 
optimizing irrigation scheduling in agriculture (60). ET estimation 

is critical in precision agriculture, influencing irrigation strategies. 

Remote sensing-based ET monitoring is widely used in 

agriculture, hydrology, climatology and meteorology, with 

applications ranging from irrigation optimization to predicting 

floods and droughts (61). ET is a combined process of 

evaporation, such as water transitioning from liquid to gas from 

plants, soil and water bodies and transpiration, where plants 

release water through leaves after root absorption (62). Factors 

affecting evapotranspiration are shown in Table 3. ET estimation 

using conventional methods like the Bowen ratio and Eddy 

correlation is reliable for homogeneous regions, but their 

accuracy declines when extrapolated to larger landscape or 

regional scales (63). RS is widely recognized as a cost-effective 

and reliable approach for regional and mesoscale ET mapping. It 

utilizes surface radiances and surface energy balance 

components for precise ET assessments, making it an essential 

tool for large-scale ET monitoring (62, 63). Satellite-based LST 

measurements from TIR imagery have been proven for assessing 

ET and plant stress (64). 

 NASA's GRACE follow-on and ECOSTRESS missions 

enhance the accuracy of terrestrial ET estimation. ECOSTRESS, 

equipped with a TIR multispectral scanner, captures high-

resolution diurnal temperature variations, providing insights 

into plant water stress responses and sub-daily ET fluctuations 

(65). Over the past decades, several TIR-based ET models have 

been developed. Single-source surface energy balance includes 

surface energy balance system (SEBS), simplified surface 

energy balance operational application (SSEBop), simplified 

surface energy balance (SSEB), surface energy balance 

algorithm for land (SEBAL) and atmosphere-land exchange 

inverse (ALEXI). In addition, two-source surface energy balance 

(TSEB), disaggregated atmosphere-land exchange inverse 

(DisALEXI) models are widely used for ET estimation (61-63). 

The physically based two-source energy balance (TSEB) model 

effectively predicts surface energy fluxes, particularly in ET 

estimation. Initially, it was applied to high-resolution wide-

angle Infrared dual-mode line/area array scanner (WiDAS) and 

advanced spaceborne thermal emission and reflection 

radiometer (ASTER) satellite data to assess ET over agricultural 

landscapes (63). Thermal indices such as CWSI, canopy 

temperature ratio (Tcratio), degrees above non-stressed 

(DANS) and degrees above canopy threshold (DACT) are 

effective for deriving stress crop coefficients, requiring minimal 

data and demonstrating a strong response to water stress, as 

indicated by their low root mean square error (RMSE) in ET 

estimation (24, 66). Agricultural drought occurs when soil 

moisture fails to meet crop water demand due to factors like 

abnormal rainfall and temperature rise, leading to reduced soil 

moisture (67). Most commonly used thermal remote sensing-

based indices, including apparent thermal inertia (ATI), 

temperature condition index (TCI) and normalized difference 

temperature index (NDTI), serve as indirect indicators for 

vegetation health assessment, drought detection, moisture 

evaluation and thermal variation monitoring (7, 68-70). 

Detection of plant disease and pest infestation 

Plant diseases cause significant economic losses in agriculture 

worldwide. Early pathogen detection and continuous plant 

health monitoring are crucial for disease management (71). 

Some foliar diseases, such as rusts and leaf spots, induce local 

tissue alterations, while root pathogens (e.g., Rhizoctonia solani 

or Pythium spp.) and systemic infections (e.g., Fusarium spp.) 

impact transpiration rates and water circulation throughout 

the plant (72). Infrared thermography (IRT) is an effective 

technique for measuring plant temperature, assessing water 

status and evaluating transpiration differences, which serve as 

early indicators of pathogen-induced stress (73).  Diseased 

plant areas exhibit higher thermal radiation than healthy ones 

due to tissue degradation, as observed in necrotic diseases like 

Cercospora leaf spot. Due to infection, the necrotic or severely 

dehydrated tissue would have a significantly different spectral 

response than healthy tissue (74). However, TRS is limited to 

detecting water-related plant diseases, such as root infections 

or stem water transport disruptions (75). Fungal infections can 

induce plant stress, disrupting essential physiological functions 

such as photosynthesis, respiration and transpiration. These 

factors can cause temperature variations in the leaf surface. 

Thermal imaging can detect temperature changes in infected 

areas compared to healthy ones. Consequently, thermal 

imaging was utilized to potentially detect powdery mildew 

disease agents in okra at an early stage (76, 77). Infrared 

thermal imaging has been shown to allow for early detection of 

wheat stripe rust, providing a fast, non-invasive and reliable 

method of detecting the disease. Consequently, the technique 

is of significant importance for the timely diagnosis and 

continuous monitoring of plant health problems (78). 

 Local temperature fluctuations due to pathogenic 

infections or plant defence mechanisms were observed in 

tobacco plant virus interactions (79). Thermal imagery 

effectively detected early-stage fungal infections (Plasmopara 

viticola) in grapevine. Additionally, thermal image analysis 

distinguished biotic stress (root rot) from abiotic stress 

(drought) in cotton (80). Thermal imaging effectively detects 

plant diseases by identifying temperature differences in 

infected regions. Machine learning techniques enhance disease 

severity differentiation, as pre-infected areas exhibit higher 

temperatures than healthy ones, serving as a fingerprint for 

early pathogen detection in oilseed rape leaves (81). Beyond 

direct disease detection, thermal imaging can assess 

environmental factors such as leaf wetness and duration of wet 

conditions, aiding in crop disease risk estimation models (7). 

Thermal sensing is essential in disease prediction models due 

Weather parameters Crop factors Environmental 
conditions 

Humidity Crop height Ground cover 

Air temperature Difference in resistance 
to transpiration 

Plant density 

Net radiation Crop roughness Soil water content 

Wind speed 
Crop rooting 

characteristics   

Table 3. Factors affecting evapotranspiration (24) 
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to its high sensitivity to temporal and spatial plant temperature 

variations, improving disease identification precision (82). 

Different plant diseases detected by using TRS are shown in 

Table 4. 

 Thermal imaging offers an alternative approach for the 

detection of insect infestations, as respiration from the insect 

releases heat that is warmer than that of the surrounding grain. 

As a result, insects such as the rusty grain beetle can be 

identified by mapping the surface temperature of the grain (88, 

89). An infrared thermal imaging system was developed to 

detect infestation by Cryptolestes ferrugineus inside wheat 

kernels. This system was used to detect infestations by six 

developmental stages (four larval instars, pupae and adults) of 

C. ferrugineus under the seed coat on the germ of the wheat 

kernels. The highest surface temperatures of the grains were 

much greater (α = 0.05)   in those infested with young larvae 

than in grains having pupae inside. Surface temperature 

patterns of infested kernels at different developmental stages 

of C. ferrugineus show a strong correlation with the respiration 

rate of each stage. While the system effectively detects if the 

grain is infested or not, it is less effective in identifying which 

developmental stage is present (90). Thermal images were 

taken with an infrared camera for un-infested mung beans and 

for beans infested with the egg, larval and pupal instars of the 

cowpea seed beetle, including fully infested (hollowed-out) 

mung beans. Classification models, namely linear discriminant 

analysis (LDA) and quadratic discriminant analysis (QDA), were 

designed based on features extracted from thermal images by 

image processing techniques. QDA classification model 

accurately detected more than 80 % of mung beans infested 

with the early stages of C. maculatus infestation (91). 

Soil properties mapping 

Soil property mapping, including soil texture and pH, is 

fundamental to understanding agri-environmental processes. 

It enables enhanced soil fertility, efficient fertilizer use and 

water resource management (92). Precise knowledge of spatial 

variability in soil properties supports innovative farming 

systems, optimizing management and preventing soil 

degradation. Among these, soil texture is critical in water 

retention, movement and chemical transport, influencing crop 

productivity and nutrient balance in the root zone (93).  Soil 

texture also regulates thermal capacity, permeability and water 

retention, impacting climate, environmental, hydrological, 

smart agricultural modelling and soil pollution control (94). 

However, existing soil texture maps often lack the resolution 

needed for effective cropland management and precise 

modelling (93). Soil texture significantly influences soil water 

content, which in turn affects LST. Sandy soil, with low water-

holding capacity, loses moisture rapidly during dry periods, 

leading to higher LST. In contrast, clay soil with greater water 

retention depletes moisture gradually, maintaining lower LST 

(7). Linear regression models were developed using daily LST 

data from the MODIS satellite, incorporating sand (>0.05 mm), 

clay (<0.001 mm) and physical clay (<0.01 mm) content 

measurements. These models generated spatial distribution 

maps of soil texture across the Yangtze-Huai River Plain in East 

China (95).  

Crop maturity mapping 

Monitoring crop maturity is essential for harvest planning, 

particularly under adverse weather conditions (7). Early 

maturity assessment helps evaluate crop adaptability to stress 

conditions, such as drought (96). Traditionally, maturity 

assessments such as crop dissection and visual inspection are 

used, but these subjective, time-consuming methods limit 

observation capacity and measurement repeatability (4, 96). RS 

has demonstrated the ability to forecast crop maturity in 

various crops (97). Time-series vegetation index analysis is a 

conventional remote-sensing method for maturity assessment 

(98). A crop model data assimilation scheme successfully 

predicted 2018 winter wheat maturity in Henan province with 

high accuracy (RMSE = 2.42 d) (99). As row crops mature, the 

respiration rate is less than in the early growth stage. Typically, 

reduced transpiration leads to increased canopy temperature. 

In fruit trees, fruit presence influences transpiration and 

respiration. Fruitless trees have greater canopy temperatures 

than fruiting trees. Thus, thermal imaging tracks crop 

temperature variations to determine maturity stages in row 

crops and estimate fruit yields in tree crops (7). 

Crop yield mapping 

Yield prediction is essential for crop production and PA, 

impacting food security, economic stability and resource 

management (100). Accurate pre-harvest yield estimation 

helps farmers mitigate production risks and optimize logistics, 

resource allocation and market strategies. However, 

conventional methods are often expensive, subjective and time

-consuming (101). Time-series data models are widely used for 

yield estimation, though variations between predicted and 

actual yields exist. Thermal imaging, relying on object heat 

radiation, offers an alternative yield prediction approach (24). 

LST combined with NDVI can further enhance crop yield 

predictions at regional and global scales (102). Canopy thermal 

data has been used to evaluate plant transpiration and monitor 

crop yield and growth. Integrating thermal, spectral and 

structural characteristics strengthens yield predictions under 

varying weather conditions (103). LST measurements have the 

potential to be a valuable indicator of such stress and thus can 

be related to changes in the harvest index. RS methods can 

determine crop water status through indices based on the 

difference between air and surface temperatures. Such indices 

are good water stress indicators, which is highly correlated with 

yield prediction (104). 

 Several satellite-based models have been developed, a 

MODIS-based corn yield estimation model was developed to 

assess the spatial distribution of corn grain yield across the 

entire the USA over a period of more than a decade, using 8-day 

Crop Disease References 

Wheat Leaf rust (78) 

Sugar beet Cercospora leaf spot (79) 

Rose 
Downy mildew and 

grey mold 
(83) 

Apple Apple scab (84) 

Grape Downy mildew (85) 

Cucumber Downy mildew (86) 

Sweet potato Sweet potato virus (87) 

Peanut Early leaf spot and late leaf spot (74) 

Table 4. Plant disease detected by using thermal infrared remote 
sensing 
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time series datasets from the MODIS satellite (105). While 

vegetation indices from MODIS were applied to forecast barley, 

canola, field pea and wheat yields across the Canadian Prairies 

(106). Thermal infrared imaging was investigated for winter 

wheat yield estimation, assessing drip, sprinkler and flood 

irrigation systems. The infrared crop water stress index (ICWSI) 

was derived from thermal imagery, validated for precision and 

used to predict soil moisture, biomass and wheat yield. Among 

the models tested, the cubic model was superior for thermal-

based yield predictions (107). Crop maturity is generally 

determined by dissection and visual inspection. While 

automated techniques are available, conventional methods 

remain widespread. They are subjective and labour-intensive, 

which results in inconsistent outcomes and restricted 

observations (4). Thermography is used to detect mechanical 

injury, bruising and apple ripeness found thermal imaging to 

estimate fruit and vegetable maturity. It can even distinguish 

between different varieties at the same ripeness level (108). 

Thermal imaging is therefore valuable for evaluating produce 

quality and maturity since it records transpiration patterns and 

environmental interactions to determine optimal harvest time 

and inform postharvest equipment design (4). 

Field tile mapping 

Tile drainage is highly advantageous for agriculture because it 

increases soil moisture balance, encourages aeration, reduces 

surface runoff and erosion and increases water infiltration (109). 

Subsurface drainage systems are implemented in farmlands to 

drain excess water and transform poorly drained soil into 

productive farmland (110). Tile drainage systems provide 

economic and ecological advantages and simultaneously, large 

amounts of nutrients (nitrogen and phosphorus) in tile drainage 

water potentially contribute to low-quality water (7, 111, 112). 

Effective monitoring of tile drainage helps farmers and planners 

prevent environmental damage, detect broken tiles and improve 

crop yield and farm income (7). Thermal images provide 

additional opportunities in field tile mapping by measuring 

temperature variations in a field. Remote sensing-derived image 

differencing techniques and GIS-derived decision tree 

classification (DTC) were subjected to subsurface tile-drained 

areas, indicating that image differencing with remote sensing is 

more accurate when compared to the DTC (24).  

 Thermal sensors have been shown to more effectively 

map tile drainage in corn fields compared to visible and near-

infrared sensors (113).  Thermal sensors measure emitted 

radiation, reflecting surface temperature and can detect subtle 

differences in heat retention often missed by visible or near-

infrared sensors. For example, drained soils cool and heat 

faster due to lower water content, while undrained soils retain 

heat longer. These thermal contrasts provide better insights 

into soil moisture, irrigation efficiency and early crop stress (7). 

A small-scale experimental device was developed to simulate 

tile drainage, employing temperature sensors to delineate tile 

lines, showing promise for drainage detection (114). Recent 

research focuses on UAV-based thermal and optical sensors for 

tile drainage mapping, evaluating the impact of temperature 

variation, rainfall, crop cover and growth stages on mapping 

accuracy. UAVs equipped with visible, thermal and 

multispectral cameras have been used to map subsurface tile 

lines, but success depends on linear features from farming 

activities, camera type, soil moisture and vegetation variability 

(115). RS studies indicate limited field tile mapping success, as 

crop residue and soil often exhibit similar spectral values. 

Residue cover and tillage mapping 

Crop residues have a significant role in soil and water 
conservation by creating a protective cover on farmlands that 

defends soil from wind and water erosion, reduces moisture loss 

and improves soil quality (7). An accurate crop residue evaluation 

is essential for effective conservation tillage monitoring. Crop 

residues influence soil temperature regimes and radiation 

balance by capturing solar radiation, thereby minimizing 

thermal fluctuations, reducing evaporation and enhancing root-

zone water availability. These temperature variations directly 

affect plant growth, mineralization rate and nutrient availability 

(116). Crop residue management remains a key conservation 

practice in modern tillage methods, contributing to sustainable 

agriculture (117). TRS captures surface temperature data, aiding 

crop residue cover studies. Generally, residues are warmer than 

bare soil, enabling large-scale residue detection (118, 119). 

Spectral indices from Landsat (OLI) and TIR sensor bands were 

used to enhance crop residue discrimination, leveraging 

temperature differences between residue and bare soil (118). An 

airborne multispectral scanner with thermal bands and a 

handheld multispectral spectroradiometer were employed to 

map residue cover and results indicated that thermal bands 

significantly improved precision by distinguishing residues from 

bare soil under varied field conditions (120). 

Challenges and future directions 

TRS in agriculture faces several challenges that affect its 

precision. Spatial and temporal resolution limitations hinder the 

fine-scale detection of crop stress and soil moisture, requiring 

frequent high-resolution acquisition to monitor the dynamic 

temperature fluctuations. Atmospheric effects, including cloud 

cover, humidity and thermal distortions, introduce uncertainties 

in temperature measurements, impacting stress detection and 

water use assessments. Calibration and emissivity corrections 

are crucial for maintaining consistency across different thermal 

sensors and imaging periods, as sensor performance and surface 

emissivity variations affect temperature readings. Environmental 

factors such as solar radiation, sensor viewing angle, altitude and 

image acquisition timing influence thermal data accuracy.  

 Crop growth stages and species variations introduce 

further complexities, as different crops exhibit unique thermal 

signatures based on canopy structure, transpiration rates and 

water stress levels, requiring customized models for accurate 

classification. Data processing and analytics remain challenging, 

with large thermal datasets requiring advanced computational 

tools, machine learning and automated workflows for efficient 

interpretation. TRS data interpretation and processing in 

agriculture are complex because the large datasets exhibit 

variability. Effective extraction of meaningful insights requires 

sophisticated computational tools that incorporate machine 

learning algorithms with the ability to deal with non-linear 

patterns and environmental noise.  

 Currently, machine learning algorithms such as random 

forest (RF), support vector machines (SVM), artificial neural 

networks (ANN), convolutional neural networks (CNN) and 

gradient boosting machines (GBM) are widely used to estimate 
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ET, assess plant stress and predict soil moisture from TRS data. 

Furthermore, a fusion of thermal data with other remote sensing 

sources necessitates automated workflows and strong models 

to facilitate timely and accurate decision-making for crop 

management. Addressing these challenges will enhance 

agricultural monitoring, enabling improved irrigation strategies, 

stress detection and precision farming advancements.   

 Future UAV applications in agriculture should focus on 

advancing TRS for real-time data processing through AI and 

machine learning, improving precision agriculture decision-

making. Integrating UAV-based thermal imaging with the IoT and 

TRS will enable accurate crop water stress, soil moisture 

variability and heat stress detection. Enhanced temperature-

based crop discrimination using thermal, multispectral and 

hyperspectral imaging with deep learning refines the 

classification algorithms and irrigation management. Hybrid AI-

driven stress assessment models, combining machine learning, 

deep learning and IoT sensors, will aid early disease detection 

and crop health monitoring, with validation across diverse 

climates for improved robustness. Yield forecasting models 

should incorporate thermal remote sensing data, historical yield 

trends, soil characteristics and climatic factors to enhance 

prediction accuracy.  

 Future research should explore automated UAV swarms 

equipped with thermal sensors for large-scale, real-time 

agricultural monitoring, detecting stress and irrigation 

inefficiencies. Interdisciplinary collaboration among 

agronomists, data scientists and UAV engineers will be crucial in 

scaling thermal sensing advancements into practical, 

sustainable solutions. Data scientists will develop machine 

learning models for precision irrigation and stress detection, 

while agronomists will use the insights to design optimal farming 

systems. UAV engineers will focus on developing advanced 

drone technologies for effective data capture and real-time 

processing, as well as ensuring scalability in various agricultural 

environments. 

 

Conclusion 

TIRS is a transformative tool in agriculture, enabling crop water 

stress assessment, soil moisture detection, irrigation 

scheduling, evapotranspiration monitoring, drought stress 

analysis, disease detection, soil property mapping, crop 

maturity assessment, yield estimation, tile drainage mapping 

and residue coverage analysis. Combining thermal infrared 

imaging with multispectral and hyperspectral data enhances 

agricultural decision-making accuracy. However, challenges 

such as atmospheric sensitivity, cloud cover and humidity 

continue to impact measurement reliability. Spatial and 

temporal resolution constraints, calibration requirements and 

variations in crop species and growth stages complicate data 

acquisition and interpretation. Overcoming these limitations 

necessitates sensor advancements, improved calibration 

techniques and standardized crop models for different crops 

and environmental conditions.  

 Sustainable agriculture can be improved by combining 

TIRS and PA techniques to achieve optimized water use and 

effective irrigation scheduling. With multispectral and 

hyperspectral information, farmers can observe crop health, 

soil moisture and water stress, enhancing yield forecasting and 

resource management. Future research should focus on AI-

driven real-time data processing, leveraging machine learning 

and IoT for enhanced precision agriculture. UAV-based thermal 

imaging integrated with high-resolution TIRS can refine stress 

detection and irrigation management. Hybrid AI strategies 

combining machine learning, deep learning and IoT sensor 

networks will support early disease detection and plant health 

monitoring and validation in diverse climates. Additionally, 

thermal-assisted yield forecasting models incorporating 

historical trends, soil characteristics and climate data can 

improve predictive accuracy.  

 In conclusion, TRS holds immense potential for 
transforming agriculture by offering crucial insights into crop and 

soil conditions. Among its most impactful applications is 

irrigation management, where TIRS enables precise monitoring 

of crop water stress and evapotranspiration, allowing for 

optimized water use and improved yield. Additionally, its role in 

early disease detection and soil moisture assessment further 

underscores its practical value in advancing sustainable 

agricultural practices. Overcoming its limitations through 

technological advancements and interdisciplinary collaboration 

will be key to maximizing its impact. As research progresses, this 

technology is set to play an increasingly vital role in sustainable 

and efficient agricultural management. 
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