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Introduction 

Increasing concerns regarding the adverse effects of synthetic 

pesticides on human health and the environment have 

prompted a global shift toward sustainable pest management 

strategies. The global pesticide market, valued at $117.5 billion 

in 2024, is projected to reach $190 billion by 2029, with annual 

usage estimated to be between 2.0 and 3.5 million metric tons. 

Major consumers include China, the USA, Brazil and India. 

However, this rising use brings severe consequences, 

pesticides harm non-target species, disrupt ecosystems and 

pose serious health risks (Table 1). Chemicals are linked to 

cancer and neurological disorders, while persistent residues 

contaminate soil, water and the food chain. Alarmingly, 

pesticide exposure poisons 3 million people and causes 

200,000 deaths each year, mostly in developing countries (1-4). 

These challenges have necessitated a reassessment of 

conventional pest control approaches and have fostered 

interest in eco-friendly alternatives, aligning with Integrated 

Pest Management (IPM) principles (5, 6). Among these 

alternatives, plant-based biopesticides have garnered 

significant attention. Derived from naturally occurring 

phytochemicals, they are recognized for their biodegradability, 

specificity to target pests and minimal ecological disruption 

(Table 2). Active compounds such as alkaloids, terpenoids, 

flavonoids, saponins and phenolics exert pesticidal effects 

through diverse mechanisms, including antifeedant, repellent, 

growth regulation and toxicity against insect pests, 

phytopathogens and nematodes (7). Importantly, the 

multifaceted composition of plant extracts reduces the 

likelihood of resistance development in pests, ensuring their 

prolonged efficacy. Globally, biopesticide production exceeds 

3,000 tons annually, with market forecasts projecting a 
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Abstract  

For decades, pest control has primarily relied on the use of synthetic chemicals. Although effective, this method has led to serious issues such 
as environmental pollution, prompting resistance in pests and posing health risks to beneficial organisms and even humans. Traditional 

methods used to extract plant-based compounds, such as maceration, Soxhlet extraction and hydrodistillation, are often outdated and 

inefficient, requiring large volumes of solvents and subjecting sensitive compounds to damaging heat. These ongoing challenges underscore 
the urgent need to seek safer, more sustainable solutions not only for managing pests but also for obtaining natural bioactive compounds. 

These methods are associated with high solvent consumption, poor selectivity, thermal degradation of heat-sensitive compounds and low 

recovery rates of active constituents, which limit the full potential of plant-derived bioactive compounds in pest management. Advanced 

extraction technologies are increasingly being adopted to overcome these challenges. Techniques such as ultrasound-assisted extraction, 
microwave-assisted extraction, supercritical fluid extraction and pressurized liquid extraction employ innovative physical principles that 

enhance mass transfer, protect thermally sensitive bioactives and significantly improve extraction yields. These methods preserve the 

structural integrity and bioactivity of the compounds, making them highly suitable for further development. Additionally, modern analytical 

tools, such as high-performance liquid chromatography, mass spectrometry and metabolomic profiling, provide precise chemical 
characterization and quantification of the phytochemicals. The combination of advanced extraction techniques with chemical and 

metabolomic profiling ensures the high purity, efficacy and safety of phytomolecule-based insect-control agents. This review presents a novel 

extract-to-characterize framework integrating green extraction and metabolomic profiling to enhance phytochemical recovery and scalability 

of plant-based biopesticides. 
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 Table 1. Common chemical pesticides usage and their side effect (3, 4) 

Pesticides/ class Common usage Side effects 
Organophosphates                                            

(e.g., Malathion, Parathion, Acephate, 
Chlorpyrifos) 

Insecticides for crops, public 
health and livestock 

Acute neurotoxicity (headaches, nausea, vomiting, muscle 
twitching, seizures); chronic neurodegeneration (Alzheimer’s, 

Parkinson’s); reproductive toxicity; cancer risk 

Carbamates                                                               
(e.g., Aldicarb, Carbaryl, Methomyl) 

Insecticides, nematicides 
Inhibit acetylcholinesterase; muscle weakness, dizziness, sweating, 

headache, nausea, nervous system depression, reproductive 
disorders, possible genotoxicity 

Organochlorines                                                      
(e.g., DDT, Endosulfan, Lindane) 

Insecticides (some banned/
restricted) 

Endocrine disruption, neurodevelopmental effects, cancer, 
reproductive toxicity, lipid metabolism disorders, persistent 

environmental contamination 
Pyrethroid (e.g., Cypermethrin, 

Deltamethrin, Fenvalerate) 
Household and agricultural 

insecticides 
Neurotoxicity (tremors, headaches, fatigue), skin irritation, genetic 

damage, reproductive harm and possible cardiovascular effects 

Glyphosate Broad-spectrum herbicide 
(e.g., Roundup) 

Skin, eye and respiratory irritation; suspected carcinogenicity; 
disrupts the shikimic acid pathway in plants and microbes 

Paraquat Non-selective herbicide Severe oral and dermal toxicity, lung fibrosis, neurodegeneration 
(Parkinson’s), multi-organ failure, skin ulceration 

Soil Fumigants                                                         
(e.g., 1,3-dichloropropene, Metam 

sodium, Chloropicrin) 

Soil sterilization against 
nematodes, fungi, insects 

Skin, eye and lung irritation; carcinogenicity; reproductive harm; 
increased premature birth rates in high-use areas 

Fungicides                                                               
(e.g., Azoxystrobin, Mancozeb, Captan) 

Control of fungal diseases in 
crops 

Skin, eye and respiratory irritation; some (e.g., Mancozeb) linked to 
thyroid and reproductive disorders 

Rodenticides   (e.g., Warfarin, 
Bromadiolone, Zinc phosphide) 

Rodent control Disrupt blood clotting (internal bleeding), nervous system effects, 
can be fatal to non-target species 

Table 2. List of plant species exhibiting pesticidal properties along with their common name, family and utilized plant parts (14, 15) 

Common name Botanical name Family Utilized part(s) 
Alexandrian Laurel Calophyllum inophyllum Clusiaceae Seed oil 

Apple of Sodom Calotropis procera Apocynaceae Leaf paste 
Bellyache Bush Jatropha gossypifolia Euphorbiaceae Seed extract 
Bergamot Mint Mentha citrate Lamiaceae Essential oil 

Bitter Lupin Lupinus termis Leguminosae Seed extract 
Black Pepper Piper nigrum Piperaceae Oil, extract 

Camphor Basil Ocimum kilimandscharicum Lamiaceae Oil extract 
Caraway Carum carvi Apiaceae Fruit extract 

Ceylon Oak Schleichera trijuga Sapindaceae Seed oil 
Chinaberry Tree Melia azedarach Meliaceae Oil, extract 

Cinnamon Cinnamomum aromaticum Lauraceae Bark tissue 
Clove Syzygium aromaticum Myrtaceae Essential oil 

Coconut Cocos nucifera Arecaceae Coconut oil 
Conyza Conyza dioscoridis Asteraceae Flower extract 

Coriander Coriandrum sativum Apiaceae Seed oil, extract 
Custard Apple Annona squamosa Annonaceae Leaf tissue 

Eastern Red Cedar Juniperus virginiana Cupressaceae Essential oil 
Eucalyptus Eucalyptus globulus Myrtaceae Leaf paste, vapor 

False Black Pepper Embelia ribes Myrsinaceae Fruit extract, oil 
Fennel Foeniculum vulgare Apiaceae Fruit extract 

Fenugreek Trigonella foenum-graecum Fabaceae Seed extract 
Field Bindweed Convolvulus arvensis Convolvulaceae Leaf extract 

Fish-Poison Tree Lonchocarpus spp. Leguminosae Seed oil 
Five-Leaved Chaste Tree Vitex negundo Lamiaceae Leaf tissue 

Garlic Allium sativum Alliaceae Powdered clove 
Guava Psidium guajava Myrtaceae Leaf, leaf paste 

Hiba Arborvitae Thujopsis dolabrata Cupressaceae Extract 
Hoary Basil Ocimum canum Lamiaceae Leaf paste 

Jimsonweed Datura alba Solanaceae Leaf paste 
Lemon/Orange Citrus spp. Rutaceae Peel oil 

Mahua Bassia longifolia Sapotaceae Plant extract 
Marigold Tagetes erecta Asteraceae Root and stem 

Mexican Tea Chenopodium ambrosioides Amaranthaceae Fruit extract, oil 
Mule Fat Baccharis salicifolia Asteraceae Volatile oil 
Mustard Brassica spp. Cruciferae Leaf, flower extract 

Neem Azadirachta indica Meliaceae Oil, seed powder, leaf paste 
Oil Palm Elaeis guineensis Arecaceae / Palmaceae Oil 

Pigeon Pea Cajanus cajan Fabaceae Fixed oil 
Pongam Tree Pongamia glabra Fabaceae Oil, extract 

Pyrethrum Daisy Tanacetum cinerariaefolium Asteraceae Oil, powder 
Rohitaka Tree Aphanamixis polystachya Meliaceae Stem cortex, seed extract 

Ryania Ryania speciosa Flacourtiaceae Stem extract 
Sesame Sesamum orientale Pedaliaceae Oil 
Sesame Sesamum indicum Pedaliaceae Oil 

Smartweed Polygonum hydropiper Polygonaceae Leaf tissue 
Soap Nut Sapindus trifoliatus Sapindaceae Seed powder 
Soybean Glycine max Fabaceae Oil from seeds 

Swallow Root Decalepis hamiltonii Asclepiadaceae Root powder 
Sweet Flag Acorus calamus Acoraceae Oil, rhizome 

Tobacco Nicotiana tabacum Solanaceae Plant extract 
Turmeric Curcuma longa Zingiberaceae Powdered rhizome 

Water Hyacinth Eichhornia crassipes Pontederiaceae Leaf extract 
White Lupin Lupinus albus Fabaceae Seed extract 

Wild Sage Lantana camara Verbenaceae Whole plant extract 
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valuation of over $10 billion by 2027 (8, 9). Biopesticides 

account for only 4.2 % of pesticide use in India due to slow 

approvals, quality issues and limited farmer trust. Their frequent 

application and handling challenges make chemical pesticides a 

preferred choice under high pest pressure. Their adoption is 

increasing at an annual rate of approximately 10 %, driven by 

rising awareness and supportive regulatory frameworks despite 

ongoing regional limitations. However, the success of plant-

based biopesticides largely depends on the efficiency of 

extraction, purification and formulation techniques. Traditional 

methods, such as maceration and Soxhlet extraction, are often 

hampered by low yields, long durations and degradation of heat-

sensitive compounds. In contrast, modern extraction 

technologies provide substantial advantages, including improved 

yield, enhanced solvent efficiency and better preservation of 

bioactive integrity (10). Equally critical is the standardization of 

biopesticide formulations, as variations in plant metabolite 

profiles due to geographical, seasonal and methodological 

differences can compromise their field performance and 

reproducibility. Analytical techniques such as high-performance 

liquid chromatography (HPLC), mass spectrometry (MS) and 

metabolomic profiling are instrumental in quantifying and 

characterizing active constituents, thereby ensuring the quality, 

stability and consistency of the final products (11, 12). Synthetic 

pesticides pose risks to humans, animals, beneficial insects and 

ecosystems. In contrast, botanical biopesticides offer eco-friendly 

manufacturing, are biodegradable, cost-effective and safe for 

humans and the planet. Easily washed-off produce leaves 

minimal residue. With the rising demand for sustainable farming, 

their role in pest control is more vital than ever (13). This review 

critically examines the increasing importance of plant-based 

biopesticides as environmentally sustainable alternatives to 

synthetic chemicals. This underscores the need for innovation in 

extraction technologies, analytical methods and standardization 

protocols to enhance their practical applicability and contribution 

to sustainable agriculture. 

Botanical biopesticides: An overview 

Botanical biopesticides are naturally derived plant compounds 

used to manage various agricultural pests, including insects, 

fungi and nematodes. Plant-based pesticides are classified into 

insecticides, fungicides, nematicides and herbicides based on 

their targets and modes of action. Insecticides are effective 

against pests, such as defoliators and sap-sucking insects, which 

threaten crop productivity (5, 7). The use of botanical 

biopesticides dates back to ancient agricultural systems, where 

traditional knowledge enabled the application of plant extracts 

for pest control in these systems. Plants such as neem, tobacco 

and pyrethrum are commonly employed for their natural 

pesticidal properties. These practices reflect early forms of 

sustainable and ecologically responsible pest management. The 

resurgence of interest in botanical pesticides stems from their 

favourable safety profiles for non-target organisms, including 

humans and their reduced environmental persistence compared 

to synthetic pesticides (14-17)). Several botanicals have gained 

commercial relevance owing to their efficacy and environmental 

compatibility. Neem (Azadirachta indica) is particularly notable 

for its broad-spectrum activity against numerous insect pests, 

primarily because of the presence of azadirachtin, which acts as 

a feeding deterrent, growth regulator and reproductive inhibitor 

(18). Botanical biopesticides like terpinen-4-ol, neem and 

rotenone offer targeted pest control by disrupting mitochondrial 

function or acting as nerve toxins, unlike broad-spectrum 

synthetics. They effectively manage pests such as Lipaphis erysimi 

while sparing beneficial insects like Coccinellidae and 

Trichogramma. Compounds like D-limonene and rotenone also 

show strong activity against insect larvae and nematodes, making 

them eco-friendly alternatives (14-16, 19, 20). When applied 

correctly, botanical biopesticides provide a safer, biodegradable 

and environmentally benign alternative to synthetic chemicals, 

aligning well with integrated and sustainable pest-management 

strategies. 

Active phytochemicals and their mode of action 

Phytochemicals derived from plants exhibit multifaceted effects 

on insect physiology and behaviour, positioning them as effective 

agents for eco-friendly pest management (15). These bioactive 

compounds are primarily classified into five major groups 

(alkaloids, terpenoids, flavonoids, phenolics and essential oils), 

each with distinct chemical structures, yet sharing the ability to 

disrupt critical insect and pathogen processes through 

insecticidal, antifungal, antifeedant and repellent activities (21). 

Alkaloids (e.g., nicotine and quinine) are nitrogen-containing 

bases that interfere with the insect nervous system by binding to 

acetylcholine receptors or inhibiting acetylcholinesterase. This 

leads to neuronal hyperexcitation, convulsions and ultimately 

paralysis, manifesting as strong insecticidal effects (22). 

Additionally, alkaloids exhibit antifungal properties by disrupting 

fungal membrane integrity and inhibiting ergosterol biosynthesis 

(23). Terpenoids, including monoterpenes (e.g., limonene and 

menthol) and sesquiterpenes (e.g., azadirachtin), act on insect 

membranes and ion channels, altering their fluidity and 

permeability (24). Azadirachtin interferes with ecdysteroid 

signaling, thereby impairing the molting and metamorphosis 

processes. Monoterpenes act on octopaminergic receptors, 

leading to repellent and antifeedant responses (25, 26). Moreover, 

terpenoids can exhibit synergistic antifungal activity by increasing 

membrane permeability, thereby enhancing the absorption of 

other bioactive agents (27). Flavonoids, a group of polyphenolic 

compounds, inhibit insect digestive enzymes, such as α-amylase 

and proteases, thereby reducing nutrient assimilation and 

stunting growth. Additionally, their UV-absorbing chromophores 

can generate reactive oxygen species upon light exposure, 

causing oxidative damage to both insect pests and fungal 

pathogens. As antifeedants, flavonoid glycosides impart 

bitterness, deterring herbivory even at sublethal concentrations 

(28, 29). Phenolics, including tannins and phenolic acids, form 

stable complexes with proteins in the insect gut, reducing 

enzymatic activity and nutrient bioavailability (30). Tannins also 

chelate metal ions, disrupting the microbial symbionts essential 

for digestion. Their antifungal activity stems from the inhibition 

of cell wall-degrading enzymes and suppression of spore 

germination (31). Essential oils, which are complex blends of 

volatile terpenoids and phenolics (e.g., thymol and carvacrol), 

function as fumigants and contact toxins. They penetrate the 

insect cuticle, disrupt membrane integrity and inhibit 

mitochondrial respiration in insects. Their volatility also confers 

strong repellent properties, effectively reducing host-seeking 

and oviposition behaviour (32, 33). Crucially, synergistic 

interactions among phytochemicals enhance their efficacy as 
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pesticides. For instance, combinations of flavonoids and 

terpenoids can potentiate the inhibition of acetylcholinesterase, 

whereas phenolics may increase the uptake of alkaloids across 

insect membranes. Such synergism not only amplifies bioactivity 

but also mitigates the development of pest resistance by 

simultaneously targeting multiple physiological pathways. 

Need for advanced extraction techniques 

Conventional extraction methods, such as maceration, Soxhlet 

extraction and hydrodistillation, have several limitations in the 

efficient recovery of bioactive compounds from plant materials. 

These techniques often result in low yields, extended processing 

durations and simultaneous extraction of unwanted impurities. 

Moreover, many bioactive phytochemicals, including flavonoids, 

alkaloids and essential oils, are highly sensitive to high 

temperatures. Prolonged heat exposure during traditional 

methods can lead to thermal degradation, which compromises 

the chemical structure and biological activity of these molecules, 

ultimately reducing their effectiveness in practical applications. 

In addition to thermal sensitivity, conventional methods often 

lack precision and reproducibility. Variability in solvent polarity, 

plant matrix interactions and manual procedures contribute to 

inconsistent extraction outcomes. This inconsistency hinders the 

standardization of phytochemical compositions and poses a 

major obstacle to their commercial scalability for use in 

sustainable crop protection strategies (10-12, 34, 35) (Fig. 1). 

Therefore, the development and integration of advanced 

extraction technologies are essential for enhancing the recovery, 

stability and functional quality of plant-derived biopesticides. 

Advanced extraction methods  

Traditional extraction methods are time-consuming and costly, 

whereas advanced techniques like microwave-assisted and 

supercritical fluid extraction offer faster, higher-yield results 

with greater purity and less solvent use. Their scalability and 

eco-friendly nature make them more practical and cost-

effective for commercial applications. Each method includes 

the principle, procedure, merits and applications. 

Supercritical Fluid Extraction (SFE) 

Supercritical fluid extraction is an advanced technique that 

uses fluids above their critical temperature and pressure to 

selectively isolate bioactive compounds. Carbon dioxide (CO₂) 

is the most widely used supercritical fluid owing to its non-toxic 

nature, moderate critical parameters (31.1 °C and 73.8 bar) and 

environmental compatibility (36). In this process, CO₂ exhibits 

gas-like diffusivity combined with a liquid-like solvating 

capacity, allowing efficient penetration into plant matrices and 

enhanced recovery of target molecules without causing 

thermal degradation. The method begins with loading plant 

biomass into an extraction chamber, after which pressurized 

CO₂ is introduced. By precisely controlling the pressure and 

temperature, the solvating power of CO₂ can be tuned to 

optimize the extraction of specific compounds (Fig. 2). This is 

particularly beneficial for isolating non-polar bioactives, such 

as terpenoids, alkaloids and other lipophilic secondary 

metabolites (37, 38). Supercritical fluid extraction offers 

multiple advantages, including solvent-free extracts, minimal 

downstream processing, precise selectivity and effective 

preservation of heat-sensitive compounds. Furthermore, the 

recyclable nature of CO₂ contributes to the environmental 

sustainability of this technique (39). Importantly, the selective 

extraction of nonpolar compounds without residual solvent 

contamination represents a significant improvement over the 

conventional solvent-based method (40). 

Microwave-Assisted Extraction (MAE) 

Microwave-assisted extraction is an advanced technique that 

employs microwave energy to heat solvents in direct contact 

with plant matrices, facilitating the efficient recovery of bioactive 

compounds. The underlying mechanism is based on dipole 

rotation and ionic conduction, in which microwave radiation 

induces rapid molecular movement. This results in effective cell 

wall disruption and accelerated mass transfer of the target 

molecules into the solvent phase (41, 42). In a typical MAE 

procedure, plant material is suspended in a suitable solvent and 

Fig. 1. Comparison of advanced and conventional techniques for phyto molecules extraction. 
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subjected to controlled microwave irradiation (43). Key process 

variables, such as microwave power, irradiation time, extraction 

temperature and solvent polarity, are carefully optimized to 

maximize the yield while preserving the integrity of thermally 

sensitive compounds (37, 40, 44) (Fig. 2). Microwave-assisted 

extraction offers several advantages for biopesticide production. 

It significantly shortens the extraction time compared to 

traditional techniques, reduces the volume of solvent required 

and enhances the efficiency of extracting thermosensitive 

phytochemicals by enabling rapid heating under mild conditions 

(45). The selective heating effect also limits thermal degradation, 

thereby maintaining the biological activity of compounds that 

are crucial for pesticidal applications. 

Ultrasound-Assisted Extraction (UAE) 

Ultrasound-assisted extraction is an advanced technique that 

employs high-frequency sound waves (20-100 kHz) to enhance 

the extraction of bioactive compounds from plant materials. The 

fundamental mechanism is based on acoustic cavitation, in 

which the rapid formation and collapse of microbubbles 

generate localized high temperatures and pressures. This 

mechanical effect disrupts plant cell walls, significantly 

improving solvent penetration and accelerating mass transfer 

(46, 47). The process involves immersing plant material in an 

appropriate solvent, followed by ultrasonic irradiation under 

controlled temperature and time conditions (Fig. 3). Critical 

parameters, such as ultrasound power, frequency, solvent type, 

solid-to-solvent ratio and extraction time, are optimized to 

maximize yield while ensuring the preservation of bioactivity (48, 

49). Ultrasound-assisted extraction offers several advantages, 

including reduced extraction time, lower solvent consumption 

and enhanced recovery of thermolabile compounds owing to its 

ability to operate at lower temperatures. This technique is 

considered eco-friendly and economically viable for large-scale 

applications (47, 50). Most importantly, the UAE helps maintain 

the integrity of bioactive molecules, ensuring the continued 

efficacy of the extracted pesticides. 

 

 

Pressurized Liquid Extraction (PLE)/Accelerated Solvent 

Extraction (ASE) 

Pressurized Liquid Extraction (PLE), also known as Accelerated 

Solvent Extraction (ASE), is an advanced technique that utilizes 

elevated temperatures (typically 50-200 °C) and high pressure 

(10-15 MPa) to enhance the extraction efficiency of bioactive 

compounds from plant matrices (51). This technique offers 

significant advantages by disrupting cell walls and improving 

solvent penetration, thereby rapidly and effectively releasing 

intracellular secondary metabolites from the plant matrix. The 

process involves placing the sample into an extraction cell, 

filling it with an appropriate solvent, applying controlled 

pressure and temperature and collecting the extract. The 

choice of solvent and operational parameters is optimized 

based on the thermal stability and polarity of the target 

bioactive compounds (52) (Fig. 3). PLE/ASE offers several 

benefits, including reduced solvent consumption, shortened 

extraction times and compatibility with automation, making it 

ideal for the large-scale screening of plant-derived pesticides 

(53). The closed-system design minimizes solvent loss and 

environmental contamination, making this technique more 

consistent with green chemistry principles. The applications of 

PLE/ASE in biopesticide research are vast, especially in the 

isolation of thermally stable alkaloids, flavonoids, terpenoids 

and phenolic compounds with insecticidal or antifungal 

properties. However, optimization is essential to prevent the 

degradation of thermolabile compounds (7, 54). Critically, PLE 

provides a scalable and reproducible method with high 

extraction yields, which are crucial for the consistent 

formulation of biopesticide products. 

Enzyme-Assisted Extraction (EAE) 

Enzyme-Assisted Extraction (EAE) is a biotechnological method 

that utilizes specific cell wall-degrading enzymes, such as 

cellulases, hemicellulases and pectinases, to facilitate the release 

of intracellular bioactive compounds from plant matrices. The 

principle behind EAE lies in the targeted hydrolysis of complex 

polysaccharides in the cell wall, enhancing the bioavailability, 

extraction efficiency and specificity of the desired 

Fig. 2. Workflow of supercritical fluid and microwave-assisted extraction techniques. 
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phytochemicals crucial for biopesticide formulations (55-57). The 

procedure involves pre-treating finely ground plant material with 

a defined concentration of enzymes under controlled pH, 

temperature and time conditions. Enzymatic action disrupts cell 

wall integrity, enabling the mild recovery of active secondary 

metabolites without causing chemical degradation (Fig. 4). The 

optimization of enzyme type, dose and reaction conditions is 

critical to maximize yield while maintaining the bioactivity of the 

extracted compounds (58, 59). EAE offers several benefits, 

including higher extraction efficiency, reduced solvent usage, 

preservation of thermolabile compounds and enhanced 

sustainability. Additionally, it allows for selective extraction, 

minimizing unwanted components that could interfere with 

biopesticidal activity (39, 40). 

Ionic Liquid (ILs) and Deep Eutectic Solvent (DES)-based 

Extraction 

Ionic liquids (ILs) and deep eutectic solvents (DESs) have 

emerged as green alternatives to conventional toxic organic 

solvents for extracting bio pesticidal compounds. These 

solvents are characterized by their tunable physicochemical 

properties, such as polarity, viscosity and hydrogen bond 

donation/acceptance, which allow for the selective dissolution 

and extraction of targeted bioactive molecules from plant 

matrices. ILs and DESs enhance the solubilization of 

structurally diverse secondary metabolites by disrupting plant 

cell walls via strong ionic interactions and hydrogen bonding. 

The general procedure involves preparing ILs or DESs from 

biocompatible components, followed by the direct extraction 

of plant materials under controlled temperature and agitation. 

Post extraction, simple techniques such as centrifugation and 

filtration are used to recover the active constituents (60-63) 

(Fig. 5). The key advantages of IL- and DES-based extraction 

include high extraction efficiency, thermal stability, non-

volatility and reduced environmental impact compared to 

volatile organic solvents. Additionally, these solvent systems 

can be tailored by adjusting their constituents to enhance the 

selectivity for desired bio pesticidal compounds, thereby 

minimizing the co-extraction of unwanted impurities (63-65). 

Subcritical Water Extraction (SWE) 

Subcritical Water Extraction (SWE) is an eco-friendly extraction 

method that utilizes water at temperatures between 100 and 374°

C under sufficient pressure to maintain its liquid state. Under 

these subcritical conditions, the dielectric constant of water 

decreases significantly, enhancing its solvating power for 

moderately polar and polar bioactive compounds. This alteration 

in the physicochemical properties of water allows for the efficient 

extraction of thermolabile and polar phytochemicals, which are 

essential for bio pesticidal formulations (66-67). The SWE 

procedure involves loading plant material into an extraction 

vessel, followed by the controlled introduction of water under 

elevated temperature and pressure. After the desired extraction 

period, the aqueous extract was collected, cooled and purified if 

necessary. Parameters such as temperature, pressure, flow rate 

and extraction time are optimized to maximize the yield and 

preserve the bioactivity of the target compounds (68-71) (Fig. 5). 

The key advantages of SWE include the elimination of toxic 

organic solvents, enhanced extraction efficiency, reduced 

processing time and minimal environmental impact (72, 73). 

Moreover, SWE preserves the structural integrity of sensitive 

bioactive molecules, which is critical for maintaining biopesticide 

efficacy. 

Importance of stable pure bioactive components in 

biopesticide formulation 

The stability of pure bioactive compounds, especially those 
isolated through advanced methods like supercritical fluid 

extraction, is crucial for formulating effective and consistent 

biopesticides. These techniques offer high selectivity and eco-

friendly scalability, making them commercially viable despite 

Fig. 3. Stepwise process of ultrasound-assisted and pressurized liquid extraction methods. 
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initial costs. These methods produce highly pure and stable 

compounds that are less prone to degradation during storage 

and handling, thereby significantly extending their shelf lives. 

Stable bioactive components preserve their biochemical 

integrity and biological activity, ensuring consistent and reliable 

pest-control performance. In addition, their stability enhances 

compatibility with carriers and adjuvants, facilitates controlled 

release, reduces variability, improves quality control and ensures 

regulatory compliance. Moreover, stable bioactive compounds 

degrade predictably, minimizing harmful by-products and 

reinforcing the eco-friendly nature of biopesticides (37, 74-76). 

Modern analytical techniques  

Modern analytical techniques, such as HPLC, MS and 

Metabolomic Profiling, have revolutionized biopesticide 

development by enabling the precise chemical characterization 

and quantification of phytochemicals. These methods are crucial 

for identifying and optimizing bioactive compounds in plant 

extracts that exhibit insecticidal properties (77-79). HPLC plays a 

key role in separating complex plant mixtures, isolating specific 

compounds of interest and quantifying them with high sensitivity 

and accuracy. This capability allows researchers to identify the 

exact bioactive molecules responsible for insecticidal activity, 

ensuring consistent formulation and potency of biopesticide 

products (80-82). MS complements HPLC by providing detailed 

molecular data, allowing researchers to confirm the identity of 

compounds based on their mass-to-charge ratio and 

fragmentation patterns. MS not only facilitates the identification 

of novel bioactive molecules but also provides insights into their 

chemical structures, helping elucidate their mechanisms of action 

against pests (80, 83, 84). Furthermore, MS enables the detection 

of trace compounds, ensuring that even low concentrations of 

Fig. 4. Stepwise process of enzyme-assisted extraction method. 

Fig. 5. Stepwise workflow of IL/DES-based and subcritical water extraction (SWE) techniques. 
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insecticidal agents are monitored accurately. Metabolomic 

Profiling extends this analysis by examining the full spectrum of 

plant metabolites, including primary and secondary metabolites 

(85). Chemical fingerprinting of biopesticides is vital for isolating 

and quantifying the specific phytochemicals responsible for 

insecticidal activity. Identifying these compounds allows for the 

standardization and optimization of plant-based biopesticides, 

thereby enhancing their efficacy and safety. Moreover, 

fingerprinting ensures reproducibility, which is essential for 

regulatory approvals and quality control. This method also 

facilitates the assessment of variability in insecticidal compounds 

across different plant populations or environmental conditions, 

helping to identify the most potent sources for sustainable pest 

management strategies. 

Market size and trend 

The biopesticide market is experiencing rapid growth, driven by 

an increasing shift toward organic and eco-friendly farming 

practices (Fig. 6). Both farmers and consumers are becoming 

more aware of the detrimental effects associated with chemical 

pesticides, fostering a shift toward safer, natural alternatives. 

This increasing awareness has significantly contributed to 

market expansion. In 2023, the global biopesticides industry was 

valued at USD 7.3 billion and is projected to reach USD 23.74 

billion by 2032, reflecting a robust compound annual growth rate 

(CAGR) of 14 % from 2024. A similar trend is emerging in India, 

where the demand for sustainable agricultural inputs is 

increasing. The Indian biopesticide market was estimated at USD 

82.2 million in 2024 and is expected to grow to USD 204.1 million 

by 2033, with a CAGR of 9.23 %. This growth is fuelled by 

heightened public awareness of environmental safety and food 

quality, as well as government initiatives promoting biopesticides 

and restricting the use of synthetic chemicals in agriculture. 

Additionally, subsidies and incentives provided by the 

government are encouraging farmers to adopt these eco-friendly 

alternatives (11, 86-90). 

Regulatory perspectives  

The regulation of biopesticides varies globally, reflecting both 

their environmental benefits and the need for rigorous oversight 

to ensure their safety and efficacy. In the United States, 

biopesticides are regulated by the Environmental Protection 

Agency (EPA) under the Federal Insecticide, Fungicide and 

Rodenticide Act (FIFRA). The Biopesticides and Pollution 

Prevention Division (BPPD) handles the registration process. 

Biopesticides are typically classified as reduced-risk pesticides, 

which require less data for registration than conventional 

pesticides, often resulting in approval within a year. However, 

genetically modified microbial pesticides are subject to 

additional regulatory scrutiny (91). In the European Union, 

biopesticides are governed by Regulation (EC) No. 1107/2009, 

which classifies them as plant protection products (PPPs). The 

approval process is a two-tier system, beginning with EU 

approval of the active substance, followed by individual member 

state approvals. Recent amendments have streamlined the 

approval process for microbial pesticides, reflecting an evolving 

regulatory approach (92). In India, the regulation of biopesticides 

is overseen by the Insecticides Act of 1968 and the Insecticides 

Rules of 1971, enforced by the Central Insecticides Board and the 

Registration Committee (CIBRC). Biopesticides receive 

provisional registration under Section 9(3B), with the option of 

extension for data generation before achieving permanent 

registration (11, 93). China regulates biopesticides under the 

"Regulations on the Administration of Pesticides," which ensures 

quality, efficacy and safety through specific registration 

procedures (94). In Japan, the Agricultural Chemical Regulation 

Law mandates a detailed registration process for biopesticides, 

including required studies overseen by the Ministry of 

Agriculture, Forestry and Fisheries (MAFF) (95). In Australia, the 

Australian Pesticides and Veterinary Medicines Authority 

(APVMA) ensures the safety and effectiveness of biopesticides 

through assessments based on the Agvet Code (96). 

Fig. 6.  Regional utilization of biopesticides and market size (%). 

https://plantsciencetoday.online


9 

Plant Science Today, ISSN 2348-1900 (online) 

Barriers to commercialization and scalability 

In India, commercialization of botanical extraction faces hurdles 

due to regulatory barriers, limited R&D and the high cost of 

advanced techniques like Supercritical Fluid Extraction, 

restricting small-scale producers (15). Addressing 

commercialization challenges in India’s botanical extraction 

sector requires regulatory alignment, affordable technologies and 

farmer-focused innovations. Initiatives like NMITLI, blockchain 

traceability and climate-smart farming can enhance quality and 

global market access, transforming India’s biodiversity into green 

export opportunities (11, 14). Labelling issues and regulatory 

ambiguity undermine user confidence and market perceptions of 

biopesticides, particularly in regions with limited knowledge of 

biological products. Startups are crucial for biopesticide 

innovation, focusing on new microbial strains and delivery 

systems; however, high research and regulatory costs limit 

scalability. Collaboration with larger companies and public bodies 

is essential to overcome these barriers. For biopesticides to 

effectively support sustainable agriculture and reduce reliance on 

conventional pesticides, harmonized regulations, standardized 

technical guidelines and innovation-friendly policies are 

necessary (11, 75, 97-100).  

Challenges and future outlook 

The advancement of green precision techniques for botanical 

extraction in sustainable biopesticide development holds 

substantial promise; however, several critical barriers hinder 

their widespread application in modern crop protection. One of 

the foremost challenges is scaling laboratory-optimized 

extraction methods to commercial production levels. The 

variability in raw plant materials, the complexity of multi-

component phytochemical profiles and the sensitivity of active 

compounds to temperature, light and solvents result in 

inconsistencies in both yield and bioactivity. Techniques such as 

supercritical fluid extraction, microwave-assisted extraction and 

ultrasound-based methods, although efficient in laboratory 

settings, require high energy input, expensive instrumentation 

and finely tuned process conditions, making them less 

economically viable at scale. The lack of robust downstream 

purification and standardization protocols further compounds 

this issue, often resulting in formulations with reduced efficacy 

and shelf stability. Another pressing concern is the limited 

selectivity and environmental safety of several plant-derived 

biopesticides. Despite being perceived as eco-friendly, several 

botanical compounds exert non-specific toxicity, potentially 

harming beneficial arthropods, pollinators and soil microflora. 

The absence of a precise mechanism of action in many cases 

limits the ability to predict the ecological impact. Addressing this 

requires deeper molecular insights into plant-insect interactions, 

supported by omics-based tools such as metabolomics, 

transcriptomics and bioinformatics-guided structure–activity 

relationship studies. These approaches can aid in the 

identification of bio actives with high pest specificity and minimal 

off-target effects in the future. Further, microbial agents play a 

crucial role in insect control by targeting specific pests through 

pathogenic mechanisms. Combining microbial and botanical 

pesticides with nanoencapsulation enhances insecticidal 

synergy, stability and targeted delivery, offering a sustainable 

alternative to synthetic chemicals. 

 The incorporation of Artificial Intelligence (AI) and 

machine learning into biopesticide research has introduced a 

paradigm shift in process optimization and formulation design. 

Predictive modelling enables the rapid screening and 

optimization of extraction parameters, significantly reducing trial

-and-error experimentation. When integrated with smart delivery 

systems, they respond to environmental triggers such as pH, 

enzymatic activity, or humidity. AI can facilitate real-time 

decision-making in the field, ensuring precise application and 

minimal waste of active ingredients. However, these 

technologies remain underutilized in agriculture because of their 

high developmental costs and the need for specialized technical 

expertise. Nanotechnology has emerged as a pivotal enabler in 

overcoming key formulation challenges. Encapsulating volatile 

and thermolabile phytochemicals within nanocarriers, such as 

chitosan nanoparticles, solid lipid nanoparticles, or mesoporous 

silica matrices, can significantly enhance their stability, 

bioavailability and controlled release. These nanostructures 

protect the active ingredients from degradation caused by UV 

radiation and microbial activity while enhancing foliar adhesion, 

systemic movement and bio efficacy under field conditions. 

Despite these technological strides, the full potential of 

biopesticides is curtailed by market, regulatory and socio-

economic constraints. Higher production costs, limited 

availability and a lack of farmer awareness restrict their 

adoption, particularly among smallholder growers. Technical 

barriers related to storage; formulation uniformity and 

inconsistent field performance diminish farmers confidence. 

Additionally, the absence of standardized regulatory frameworks 

and international harmonization in biopesticide approval 

processes contributes to market fragmentation and delays in 

product commercialization in Brazil. Overcoming these systemic 

issues requires interdisciplinary collaboration, inclusive policy 

reform, public-private partnerships and capacity-building 

initiatives focused on farmer education and infrastructure 

development. Only through such integrated efforts can botanical 

biopesticides transition from niche innovations to mainstream 

tools in global crop protection.  

 

Conclusion  

The increasing demand for safer and more sustainable 

alternatives in agricultural insect control underscores the need for 

biopesticides. Phytomolecules derived from botanicals offer 

potent insecticidal properties and have minimal environmental 

impact. However, conventional extraction methods often fall 

short because of issues such as low efficiency, degradation of 

active compounds and lack of selectivity. In contrast, advanced 

extraction techniques provide significant improvements in the 

recovery, stability and preservation of bioactive compounds by 

utilizing controlled physical parameters. These innovations 

enable the development of precise, high-quality formulations that 

meet the practical demands of modern crop-protection systems. 
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