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Abstract

For decades, pest control has primarily relied on the use of synthetic chemicals. Although effective, this method has led to serious issues such
as environmental pollution, prompting resistance in pests and posing health risks to beneficial organisms and even humans. Traditional
methods used to extract plant-based compounds, such as maceration, Soxhlet extraction and hydrodistillation, are often outdated and
inefficient, requiring large volumes of solvents and subjecting sensitive compounds to damaging heat. These ongoing challenges underscore
the urgent need to seek safer, more sustainable solutions not only for managing pests but also for obtaining natural bioactive compounds.
These methods are associated with high solvent consumption, poor selectivity, thermal degradation of heat-sensitive compounds and low
recovery rates of active constituents, which limit the full potential of plant-derived bioactive compounds in pest management. Advanced
extraction technologies are increasingly being adopted to overcome these challenges. Techniques such as ultrasound-assisted extraction,
microwave-assisted extraction, supercritical fluid extraction and pressurized liquid extraction employ innovative physical principles that
enhance mass transfer, protect thermally sensitive bioactives and significantly improve extraction yields. These methods preserve the
structural integrity and bioactivity of the compounds, making them highly suitable for further development. Additionally, modern analytical
tools, such as high-performance liquid chromatography, mass spectrometry and metabolomic profiling, provide precise chemical
characterization and quantification of the phytochemicals. The combination of advanced extraction techniques with chemical and
metabolomic profiling ensures the high purity, efficacy and safety of phytomolecule-based insect-control agents. This review presents a novel
extract-to-characterize framework integrating green extraction and metabolomic profiling to enhance phytochemical recovery and scalability
of plant-based biopesticides.

Keywords: advanced extraction technologies; biopesticide formulations; eco-friendly pest control; metabolomic and chemical profiling;
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Introduction conventional pest control approaches and have fostered
interest in eco-friendly alternatives, aligning with Integrated
Pest Management (IPM) principles (5, 6). Among these
alternatives, plant-based biopesticides have garnered
significant attention. Derived from naturally occurring
phytochemicals, they are recognized for their biodegradability,
specificity to target pests and minimal ecological disruption
(Table 2). Active compounds such as alkaloids, terpenoids,
flavonoids, saponins and phenolics exert pesticidal effects
through diverse mechanisms, including antifeedant, repellent,
growth regulation and toxicity against insect pests,
phytopathogens and nematodes (7). Importantly, the
multifaceted composition of plant extracts reduces the
likelihood of resistance development in pests, ensuring their
prolonged efficacy. Globally, biopesticide production exceeds
3,000 tons annually, with market forecasts projecting a

Increasing concerns regarding the adverse effects of synthetic
pesticides on human health and the environment have
prompted a global shift toward sustainable pest management
strategies. The global pesticide market, valued at $117.5 billion
in 2024, is projected to reach $190 billion by 2029, with annual
usage estimated to be between 2.0 and 3.5 million metric tons.
Major consumers include China, the USA, Brazil and India.
However, this rising use brings severe consequences,
pesticides harm non-target species, disrupt ecosystems and
pose serious health risks (Table 1). Chemicals are linked to
cancer and neurological disorders, while persistent residues
contaminate soil, water and the food chain. Alarmingly,
pesticide exposure poisons 3 million people and causes
200,000 deaths each year, mostly in developing countries (1-4).
These challenges have necessitated a reassessment of
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Table 1. Common chemical pesticides usage and their side effect (3, 4)

Pesticides/ class

Common usage

Side effects

Organophosphates

(e.g., Malathion, Parathion, Acephate, Insecticides for crops, public

Chlorpyrifos)
Carbamates

(e.g., Aldicarb, Carbaryl, Methomyl)

Organochlorines

(e.g., DDT, Endosulfan, Lindane)

Pyrethroid (e.g., Cypermethrin,
Deltamethrin, Fenvalerate)

Glyphosate

Paraquat
Soil Fumigants

(e.g., 1,3-dichloropropene, Metam

sodium, Chloropicrin)
Fungicides

(e.g., Azoxystrobin, Mancozeb, Captan) crops
Rodenticides (e.g., Warfarin,
Bromadiolone, Zinc phosphide)

health and livestock

Acute neurotoxicity (headaches, nausea, vomiting, muscle
twitching, seizures); chronic neurodegeneration (Alzheimer’s,

Parkinson’s); reproductive toxicity; cancer risk

Insecticides, nematicides

Inhibit acetylcholinesterase; muscle weakness, dizziness, sweating,
headache, nausea, nervous system depression, reproductive

disorders, possible genotoxicity

Insecticides (some banned/
restricted)

Endocrine disruption, neurodevelopmental effects, cancer,
reproductive toxicity, lipid metabolism disorders, persistent

environmental contamination
Household and agricultural ~ Neurotoxicity (tremors, headaches, fatigue), skin irritation, genetic

insecticides
Broad-spectrum herbicide
(e.g., Roundup)

Non-selective herbicide

damage, reproductive harm and possible cardiovascular effects
Skin, eye and respiratory irritation; suspected carcinogenicity;
disrupts the shikimic acid pathway in plants and microbes
Severe oral and dermal toxicity, lung fibrosis, neurodegeneration

(Parkinson’s), multi-organ failure, skin ulceration

Soil sterilization against
nematodes, fungi, insects

Skin, eye and lung irritation; carcinogenicity; reproductive harm;
increased premature birth rates in high-use areas

Control of fungal diseases in ~ Skin, eye and respiratory irritation; some (e.g., Mancozeb) linked to

Rodent control

thyroid and reproductive disorders
Disrupt blood clotting (internal bleeding), nervous system effects,
can be fatal to non-target species

Table 2. List of plant species exhibiting pesticidal properties along with their common name, family and utilized plant parts (14, 15)

Common name Botanical name Family Utilized part(s)
Alexandrian Laurel Calophyllum inophyllum Clusiaceae Seed oil
Apple of Sodom Calotropis procera Apocynaceae Leaf paste
Bellyache Bush Jatropha gossypifolia Euphorbiaceae Seed extract
Bergamot Mint Mentha citrate Lamiaceae Essential oil
Bitter Lupin Lupinus termis Leguminosae Seed extract
Black Pepper Piper nigrum Piperaceae Qil, extract
Camphor Basil Ocimum kilimandscharicum Lamiaceae Oil extract
Caraway Carum carvi Apiaceae Fruit extract
Ceylon Oak Schleichera trijuga Sapindaceae Seed oil
Chinaberry Tree Melia azedarach Meliaceae Qil, extract
Cinnamon Cinnamomum aromaticum Lauraceae Bark tissue
Clove Syzygium aromaticum Myrtaceae Essential oil
Coconut Cocos nucifera Arecaceae Coconut oil
Conyza Conyza dioscoridis Asteraceae Flower extract
Coriander Coriandrum sativum Apiaceae Seed oil, extract
Custard Apple Annona squamosa Annonaceae Leaf tissue
Eastern Red Cedar Juniperus virginiana Cupressaceae Essential oil
Eucalyptus Eucalyptus globulus Myrtaceae Leaf paste, vapor
False Black Pepper Embelia ribes Myrsinaceae Fruit extract, oil
Fennel Foeniculum vulgare Apiaceae Fruit extract
Fenugreek Trigonella foenum-graecum Fabaceae Seed extract

Field Bindweed

Convolvulus arvensis

Convolvulaceae Leaf extract
Fish-Poison Tree Lonchocarpus spp. Leguminosae Seed oil
Five-Leaved Chaste Tree Vitex negundo Lamiaceae Leaf tissue
Garlic Allium sativum Alliaceae Powdered clove
Guava Psidium guajava Myrtaceae Leaf, leaf paste
Hiba Arborvitae Thujopsis dolabrata Cupressaceae Extract
Hoary Basil Ocimum canum Lamiaceae Leaf paste
Jimsonweed Datura alba Solanaceae Leaf paste
Lemon/Orange Citrus spp. Rutaceae Peel oil
Mahua Bassia longifolia Sapotaceae Plant extract
Marigold Tagetes erecta Asteraceae Root and stem
Mexican Tea Chenopodium ambrosioides Amaranthaceae Fruit extract, oil
Mule Fat Baccharis salicifolia Asteraceae Volatile oil
Mustard Brassica spp. Cruciferae Leaf, flower extract
Neem Azadirachta indica Meliaceae Oil, seed powder, leaf paste
Oil Palm Elaeis guineensis Arecaceae / Palmaceae oil
Pigeon Pea Cajanus cajan Fabaceae Fixed oil
Pongam Tree Pongamia glabra Fabaceae Oil, extract
Pyrethrum Daisy Tanacetum cinerariaefolium Asteraceae Qil, powder
Rohitaka Tree Aphanamixis polystachya Meliaceae Stem cortex, seed extract
Ryania Ryania speciosa Flacourtiaceae Stem extract
Sesame Sesamum orientale Pedaliaceae oil
Sesame Sesamum indicum Pedaliaceae oil
Smartweed Polygonum hydropiper Polygonaceae Leaf tissue
Soap Nut Sapindus trifoliatus Sapindaceae Seed powder
Soybean Glycine max Fabaceae Oil from seeds
Swallow Root Decalepis hamiltonii Asclepiadaceae Root powder
Sweet Flag Acorus calamus Acoraceae Oil, rhizome
Tobacco Nicotiana tabacum Solanaceae Plant extract
Turmeric Curcuma longa Zingiberaceae Powdered rhizome
Water Hyacinth Eichhornia crassipes Pontederiaceae Leaf extract
White Lupin Lupinus albus Fabaceae Seed extract
Wild Sage Lantana camara Verbenaceae Whole plant extract
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valuation of over $10 billion by 2027 (8, 9). Biopesticides
account for only 4.2 % of pesticide use in India due to slow
approvals, quality issues and limited farmer trust. Their frequent
application and handling challenges make chemical pesticides a
preferred choice under high pest pressure. Their adoption is
increasing at an annual rate of approximately 10 %, driven by
rising awareness and supportive regulatory frameworks despite
ongoing regional limitations. However, the success of plant-
based biopesticides largely depends on the efficiency of
extraction, purification and formulation techniques. Traditional
methods, such as maceration and Soxhlet extraction, are often
hampered by low yields, long durations and degradation of heat-
sensitive compounds. In contrast, modern extraction
technologies provide substantial advantages, including improved
yield, enhanced solvent efficiency and better preservation of
bioactive integrity (10). Equally critical is the standardization of
biopesticide formulations, as variations in plant metabolite
profiles due to geographical, seasonal and methodological
differences can compromise their field performance and
reproducibility. Analytical techniques such as high-performance
liquid chromatography (HPLC), mass spectrometry (MS) and
metabolomic profiling are instrumental in quantifying and
characterizing active constituents, thereby ensuring the quality,
stability and consistency of the final products (11, 12). Synthetic
pesticides pose risks to humans, animals, beneficial insects and
ecosystems. In contrast, botanical biopesticides offer eco-friendly
manufacturing, are biodegradable, cost-effective and safe for
humans and the planet. Easily washed-off produce leaves
minimal residue. With the rising demand for sustainable farming,
their role in pest control is more vital than ever (13). This review
critically examines the increasing importance of plant-based
biopesticides as environmentally sustainable alternatives to
synthetic chemicals. This underscores the need for innovation in
extraction technologies, analytical methods and standardization
protocols to enhance their practical applicability and contribution
to sustainable agriculture.

Botanical biopesticides: An overview

Botanical biopesticides are naturally derived plant compounds
used to manage various agricultural pests, including insects,
fungi and nematodes. Plant-based pesticides are classified into
insecticides, fungicides, nematicides and herbicides based on
their targets and modes of action. Insecticides are effective
against pests, such as defoliators and sap-sucking insects, which
threaten crop productivity (5, 7). The use of botanical
biopesticides dates back to ancient agricultural systems, where
traditional knowledge enabled the application of plant extracts
for pest control in these systems. Plants such as neem, tobacco
and pyrethrum are commonly employed for their natural
pesticidal properties. These practices reflect early forms of
sustainable and ecologically responsible pest management. The
resurgence of interest in botanical pesticides stems from their
favourable safety profiles for non-target organisms, including
humans and their reduced environmental persistence compared
to synthetic pesticides (14-17)). Several botanicals have gained
commercial relevance owing to their efficacy and environmental
compatibility. Neem (Azadirachta indica) is particularly notable
for its broad-spectrum activity against numerous insect pests,
primarily because of the presence of azadirachtin, which acts as
a feeding deterrent, growth regulator and reproductive inhibitor

3

(18). Botanical biopesticides like terpinen-4-ol, neem and
rotenone offer targeted pest control by disrupting mitochondrial
function or acting as nerve toxins, unlike broad-spectrum
synthetics. They effectively manage pests such as Lipaphis erysimi
while sparing beneficial insects like Coccinellidae and
Trichogramma. Compounds like D-limonene and rotenone also
show strong activity against insect larvae and nematodes, making
them eco-friendly alternatives (14-16, 19, 20). When applied
correctly, botanical biopesticides provide a safer, biodegradable
and environmentally benign alternative to synthetic chemicals,
aligning well with integrated and sustainable pest-management
strategies.

Active phytochemicals and their mode of action

Phytochemicals derived from plants exhibit multifaceted effects
on insect physiology and behaviour, positioning them as effective
agents for eco-friendly pest management (15). These bioactive
compounds are primarily classified into five major groups
(alkaloids, terpenoids, flavonoids, phenolics and essential oils),
each with distinct chemical structures, yet sharing the ability to
disrupt critical insect and pathogen processes through
insecticidal, antifungal, antifeedant and repellent activities (21).
Alkaloids (e.g., nicotine and quinine) are nitrogen-containing
bases that interfere with the insect nervous system by binding to
acetylcholine receptors or inhibiting acetylcholinesterase. This
leads to neuronal hyperexcitation, convulsions and ultimately
paralysis, manifesting as strong insecticidal effects (22).
Additionally, alkaloids exhibit antifungal properties by disrupting
fungal membrane integrity and inhibiting ergosterol biosynthesis
(23). Terpenoids, including monoterpenes (e.g., limonene and
menthol) and sesquiterpenes (e.g., azadirachtin), act on insect
membranes and ion channels, altering their fluidity and
permeability (24). Azadirachtin interferes with ecdysteroid
signaling, thereby impairing the molting and metamorphosis
processes. Monoterpenes act on octopaminergic receptors,
leading to repellent and antifeedant responses (25, 26). Moreover,
terpenoids can exhibit synergistic antifungal activity by increasing
membrane permeability, thereby enhancing the absorption of
other bioactive agents (27). Flavonoids, a group of polyphenolic
compounds, inhibit insect digestive enzymes, such as a-amylase
and proteases, thereby reducing nutrient assimilation and
stunting growth. Additionally, their UV-absorbing chromophores
can generate reactive oxygen species upon light exposure,
causing oxidative damage to both insect pests and fungal
pathogens. As antifeedants, flavonoid glycosides impart
bitterness, deterring herbivory even at sublethal concentrations
(28, 29). Phenolics, including tannins and phenolic acids, form
stable complexes with proteins in the insect gut, reducing
enzymatic activity and nutrient bioavailability (30). Tannins also
chelate metal ions, disrupting the microbial symbionts essential
for digestion. Their antifungal activity stems from the inhibition
of cell wall-degrading enzymes and suppression of spore
germination (31). Essential oils, which are complex blends of
volatile terpenoids and phenolics (e.g., thymol and carvacrol),
function as fumigants and contact toxins. They penetrate the
insect cuticle, disrupt membrane integrity and inhibit
mitochondrial respiration in insects. Their volatility also confers
strong repellent properties, effectively reducing host-seeking
and oviposition behaviour (32, 33). Crucially, synergistic
interactions among phytochemicals enhance their efficacy as
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pesticides. For instance, combinations of flavonoids and
terpenoids can potentiate the inhibition of acetylcholinesterase,
whereas phenolics may increase the uptake of alkaloids across
insect membranes. Such synergism not only amplifies bioactivity
but also mitigates the development of pest resistance by
simultaneously targeting multiple physiological pathways.

Need for advanced extraction techniques

Conventional extraction methods, such as maceration, Soxhlet
extraction and hydrodistillation, have several limitations in the
efficient recovery of bioactive compounds from plant materials.
These techniques often result in low yields, extended processing
durations and simultaneous extraction of unwanted impurities.
Moreover, many bioactive phytochemicals, including flavonoids,
alkaloids and essential oils, are highly sensitive to high
temperatures. Prolonged heat exposure during traditional
methods can lead to thermal degradation, which compromises
the chemical structure and biological activity of these molecules,
ultimately reducing their effectiveness in practical applications.
In addition to thermal sensitivity, conventional methods often
lack precision and reproducibility. Variability in solvent polarity,
plant matrix interactions and manual procedures contribute to
inconsistent extraction outcomes. This inconsistency hinders the
standardization of phytochemical compositions and poses a
major obstacle to their commercial scalability for use in
sustainable crop protection strategies (10-12, 34, 35) (Fig. 1).
Therefore, the development and integration of advanced
extraction technologies are essential for enhancing the recovery,
stability and functional quality of plant-derived biopesticides.

Advanced extraction methods

Traditional extraction methods are time-consuming and costly,
whereas advanced techniques like microwave-assisted and
supercritical fluid extraction offer faster, higher-yield results
with greater purity and less solvent use. Their scalability and
eco-friendly nature make them more practical and cost-
effective for commercial applications. Each method includes
the principle, procedure, merits and applications.

Supercritical Fluid Extraction (SFE)

Supercritical fluid extraction is an advanced technique that
uses fluids above their critical temperature and pressure to
selectively isolate bioactive compounds. Carbon dioxide (CO,)
is the most widely used supercritical fluid owing to its non-toxic
nature, moderate critical parameters (31.1 °C and 73.8 bar) and
environmental compatibility (36). In this process, CO, exhibits
gas-like diffusivity combined with a liquid-like solvating
capacity, allowing efficient penetration into plant matrices and
enhanced recovery of target molecules without causing
thermal degradation. The method begins with loading plant
biomass into an extraction chamber, after which pressurized
CO, is introduced. By precisely controlling the pressure and
temperature, the solvating power of CO, can be tuned to
optimize the extraction of specific compounds (Fig. 2). This is
particularly beneficial for isolating non-polar bioactives, such
as terpenoids, alkaloids and other lipophilic secondary
metabolites (37, 38). Supercritical fluid extraction offers
multiple advantages, including solvent-free extracts, minimal
downstream processing, precise selectivity and effective
preservation of heat-sensitive compounds. Furthermore, the
recyclable nature of CO, contributes to the environmental
sustainability of this technique (39). Importantly, the selective
extraction of nonpolar compounds without residual solvent
contamination represents a significant improvement over the
conventional solvent-based method (40).

Microwave-Assisted Extraction (MAE)

Microwave-assisted extraction is an advanced technique that
employs microwave energy to heat solvents in direct contact
with plant matrices, facilitating the efficient recovery of bioactive
compounds. The underlying mechanism is based on dipole
rotation and ionic conduction, in which microwave radiation
induces rapid molecular movement. This results in effective cell
wall disruption and accelerated mass transfer of the target
molecules into the solvent phase (41, 42). In a typical MAE
procedure, plant material is suspended in a suitable solvent and
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Fig. 1. Comparison of advanced and conventional techniques for phyto molecules extraction.
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Polyphenols from Camellia sinensis (green tea),
alkaloids from Rauvolfia serpentina (snakeroot),
and saponins from Panax ginseng.

o5

Fig. 2. Workflow of supercritical fluid and microwave-assisted extraction techniques.

subjected to controlled microwave irradiation (43). Key process
variables, such as microwave power, irradiation time, extraction
temperature and solvent polarity, are carefully optimized to
maximize the yield while preserving the integrity of thermally
sensitive compounds (37, 40, 44) (Fig. 2). Microwave-assisted
extraction offers several advantages for biopesticide production.
It significantly shortens the extraction time compared to
traditional techniques, reduces the volume of solvent required
and enhances the efficiency of extracting thermosensitive
phytochemicals by enabling rapid heating under mild conditions
(45). The selective heating effect also limits thermal degradation,
thereby maintaining the biological activity of compounds that
are crucial for pesticidal applications.

Ultrasound-Assisted Extraction (UAE)

Ultrasound-assisted extraction is an advanced technique that
employs high-frequency sound waves (20-100 kHz) to enhance
the extraction of bioactive compounds from plant materials. The
fundamental mechanism is based on acoustic cavitation, in
which the rapid formation and collapse of microbubbles
generate localized high temperatures and pressures. This
mechanical effect disrupts plant cell walls, significantly
improving solvent penetration and accelerating mass transfer
(46, 47). The process involves immersing plant material in an
appropriate solvent, followed by ultrasonic irradiation under
controlled temperature and time conditions (Fig. 3). Critical
parameters, such as ultrasound power, frequency, solvent type,
solid-to-solvent ratio and extraction time, are optimized to
maximize yield while ensuring the preservation of bioactivity (48,
49). Ultrasound-assisted extraction offers several advantages,
including reduced extraction time, lower solvent consumption
and enhanced recovery of thermolabile compounds owing to its
ability to operate at lower temperatures. This technique is
considered eco-friendly and economically viable for large-scale
applications (47, 50). Most importantly, the UAE helps maintain
the integrity of bioactive molecules, ensuring the continued
efficacy of the extracted pesticides.

Pressurized Liquid Extraction (PLE)/Accelerated Solvent
Extraction (ASE)

Pressurized Liquid Extraction (PLE), also known as Accelerated
Solvent Extraction (ASE), is an advanced technique that utilizes
elevated temperatures (typically 50-200 °C) and high pressure
(10-15 MPa) to enhance the extraction efficiency of bioactive
compounds from plant matrices (51). This technique offers
significant advantages by disrupting cell walls and improving
solvent penetration, thereby rapidly and effectively releasing
intracellular secondary metabolites from the plant matrix. The
process involves placing the sample into an extraction cell,
filling it with an appropriate solvent, applying controlled
pressure and temperature and collecting the extract. The
choice of solvent and operational parameters is optimized
based on the thermal stability and polarity of the target
bioactive compounds (52) (Fig. 3). PLE/ASE offers several
benefits, including reduced solvent consumption, shortened
extraction times and compatibility with automation, making it
ideal for the large-scale screening of plant-derived pesticides
(53). The closed-system design minimizes solvent loss and
environmental contamination, making this technique more
consistent with green chemistry principles. The applications of
PLE/ASE in biopesticide research are vast, especially in the
isolation of thermally stable alkaloids, flavonoids, terpenoids
and phenolic compounds with insecticidal or antifungal
properties. However, optimization is essential to prevent the
degradation of thermolabile compounds (7, 54). Critically, PLE
provides a scalable and reproducible method with high
extraction vyields, which are crucial for the consistent
formulation of biopesticide products.

Enzyme-Assisted Extraction (EAE)

Enzyme-Assisted Extraction (EAE) is a biotechnological method
that utilizes specific cell wall-degrading enzymes, such as
cellulases, hemicellulases and pectinases, to facilitate the release
of intracellular bioactive compounds from plant matrices. The
principle behind EAE lies in the targeted hydrolysis of complex
polysaccharides in the cell wall, enhancing the bioavailability,
extraction efficiency and specificity of the desired
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Fig. 3. Stepwise process of ultrasound-assisted and pressurized liquid extraction methods.

phytochemicals crucial for biopesticide formulations (55-57). The
procedure involves pre-treating finely ground plant material with
a defined concentration of enzymes under controlled pH,
temperature and time conditions. Enzymatic action disrupts cell
wall integrity, enabling the mild recovery of active secondary
metabolites without causing chemical degradation (Fig. 4). The
optimization of enzyme type, dose and reaction conditions is
critical to maximize yield while maintaining the bioactivity of the
extracted compounds (58, 59). EAE offers several benefits,
including higher extraction efficiency, reduced solvent usage,
preservation of thermolabile compounds and enhanced
sustainability. Additionally, it allows for selective extraction,
minimizing unwanted components that could interfere with
biopesticidal activity (39, 40).

lonic Liquid (ILs) and Deep Eutectic Solvent (DES)-based
Extraction

lonic liquids (ILs) and deep eutectic solvents (DESs) have
emerged as green alternatives to conventional toxic organic
solvents for extracting bio pesticidal compounds. These
solvents are characterized by their tunable physicochemical
properties, such as polarity, viscosity and hydrogen bond
donation/acceptance, which allow for the selective dissolution
and extraction of targeted bioactive molecules from plant
matrices. ILs and DESs enhance the solubilization of
structurally diverse secondary metabolites by disrupting plant
cell walls via strong ionic interactions and hydrogen bonding,.
The general procedure involves preparing ILs or DESs from
biocompatible components, followed by the direct extraction
of plant materials under controlled temperature and agitation.
Post extraction, simple techniques such as centrifugation and
filtration are used to recover the active constituents (60-63)
(Fig. 5). The key advantages of IL- and DES-based extraction
include high extraction efficiency, thermal stability, non-
volatility and reduced environmental impact compared to

volatile organic solvents. Additionally, these solvent systems
can be tailored by adjusting their constituents to enhance the
selectivity for desired bio pesticidal compounds, thereby
minimizing the co-extraction of unwanted impurities (63-65).

Subcritical Water Extraction (SWE)

Subcritical Water Extraction (SWE) is an eco-friendly extraction
method that utilizes water at temperatures between 100 and 374°
C under sufficient pressure to maintain its liquid state. Under
these subcritical conditions, the dielectric constant of water
decreases significantly, enhancing its solvating power for
moderately polar and polar bioactive compounds. This alteration
in the physicochemical properties of water allows for the efficient
extraction of thermolabile and polar phytochemicals, which are
essential for bio pesticidal formulations (66-67). The SWE
procedure involves loading plant material into an extraction
vessel, followed by the controlled introduction of water under
elevated temperature and pressure. After the desired extraction
period, the aqueous extract was collected, cooled and purified if
necessary. Parameters such as temperature, pressure, flow rate
and extraction time are optimized to maximize the yield and
preserve the bioactivity of the target compounds (68-71) (Fig. 5).
The key advantages of SWE include the elimination of toxic
organic solvents, enhanced extraction efficiency, reduced
processing time and minimal environmental impact (72, 73).
Moreover, SWE preserves the structural integrity of sensitive
bioactive molecules, which is critical for maintaining biopesticide
efficacy.

Importance of stable pure bioactive components in
biopesticide formulation

The stability of pure bioactive compounds, especially those
isolated through advanced methods like supercritical fluid
extraction, is crucial for formulating effective and consistent
biopesticides. These techniques offer high selectivity and eco-
friendly scalability, making them commercially viable despite
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Fig. 4. Stepwise process of enzyme-assisted extraction method.
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Fig. 5. Stepwise workflow of IL/DES-based and subcritical water extractio
initial costs. These methods produce highly pure and stable
compounds that are less prone to degradation during storage
and handling, thereby significantly extending their shelf lives.
Stable bioactive components preserve their biochemical
integrity and biological activity, ensuring consistent and reliable
pest-control performance. In addition, their stability enhances
compatibility with carriers and adjuvants, facilitates controlled
release, reduces variability, improves quality control and ensures
regulatory compliance. Moreover, stable bioactive compounds
degrade predictably, minimizing harmful by-products and
reinforcing the eco-friendly nature of biopesticides (37, 74-76).

Modern analytical techniques

Modern analytical techniques, such as HPLC, MS and
Metabolomic  Profiling, have revolutionized biopesticide
development by enabling the precise chemical characterization

n (SWE) techniques.

and quantification of phytochemicals. These methods are crucial
for identifying and optimizing bioactive compounds in plant
extracts that exhibit insecticidal properties (77-79). HPLC plays a
key role in separating complex plant mixtures, isolating specific
compounds of interest and quantifying them with high sensitivity
and accuracy. This capability allows researchers to identify the
exact bioactive molecules responsible for insecticidal activity,
ensuring consistent formulation and potency of biopesticide
products (80-82). MS complements HPLC by providing detailed
molecular data, allowing researchers to confirm the identity of
compounds based on their mass-to-charge ratio and
fragmentation patterns. MS not only facilitates the identification
of novel bioactive molecules but also provides insights into their
chemical structures, helping elucidate their mechanisms of action
against pests (80, 83, 84). Furthermore, MS enables the detection
of trace compounds, ensuring that even low concentrations of
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insecticidal agents are monitored accurately. Metabolomic
Profiling extends this analysis by examining the full spectrum of
plant metabolites, including primary and secondary metabolites
(85). Chemical fingerprinting of biopesticides is vital for isolating
and quantifying the specific phytochemicals responsible for
insecticidal activity. Identifying these compounds allows for the
standardization and optimization of plant-based biopesticides,
thereby enhancing their efficacy and safety. Moreover,
fingerprinting ensures reproducibility, which is essential for
regulatory approvals and quality control. This method also
facilitates the assessment of variability in insecticidal compounds
across different plant populations or environmental conditions,
helping to identify the most potent sources for sustainable pest
management strategies.

Market size and trend

The biopesticide market is experiencing rapid growth, driven by
an increasing shift toward organic and eco-friendly farming
practices (Fig. 6). Both farmers and consumers are becoming
more aware of the detrimental effects associated with chemical
pesticides, fostering a shift toward safer, natural alternatives.
This increasing awareness has significantly contributed to
market expansion. In 2023, the global biopesticides industry was
valued at USD 7.3 billion and is projected to reach USD 23.74
billion by 2032, reflecting a robust compound annual growth rate
(CAGR) of 14 % from 2024. A similar trend is emerging in India,
where the demand for sustainable agricultural inputs is
increasing. The Indian biopesticide market was estimated at USD
82.2 million in 2024 and is expected to grow to USD 204.1 million
by 2033, with a CAGR of 9.23 %. This growth is fuelled by
heightened public awareness of environmental safety and food
quality, as well as government initiatives promoting biopesticides
and restricting the use of synthetic chemicals in agriculture.
Additionally, subsidies and incentives provided by the
government are encouraging farmers to adopt these eco-friendly
alternatives (11, 86-90).

Regulatory perspectives

The regulation of biopesticides varies globally, reflecting both
their environmental benefits and the need for rigorous oversight
to ensure their safety and efficacy. In the United States,
biopesticides are regulated by the Environmental Protection
Agency (EPA) under the Federal Insecticide, Fungicide and
Rodenticide Act (FIFRA). The Biopesticides and Pollution
Prevention Division (BPPD) handles the registration process.
Biopesticides are typically classified as reduced-risk pesticides,
which require less data for registration than conventional
pesticides, often resulting in approval within a year. However,
genetically modified microbial pesticides are subject to
additional regulatory scrutiny (91). In the European Union,
biopesticides are governed by Regulation (EC) No. 1107/2009,
which classifies them as plant protection products (PPPs). The
approval process is a two-tier system, beginning with EU
approval of the active substance, followed by individual member
state approvals. Recent amendments have streamlined the
approval process for microbial pesticides, reflecting an evolving
regulatory approach (92). In India, the regulation of biopesticides
is overseen by the Insecticides Act of 1968 and the Insecticides
Rules of 1971, enforced by the Central Insecticides Board and the
Registration ~Committee  (CIBRC).  Biopesticides receive
provisional registration under Section 9(3B), with the option of
extension for data generation before achieving permanent
registration (11, 93). China regulates biopesticides under the
"Regulations on the Administration of Pesticides," which ensures
quality, efficacy and safety through specific registration
procedures (94). In Japan, the Agricultural Chemical Regulation
Law mandates a detailed registration process for biopesticides,
including required studies overseen by the Ministry of
Agriculture, Forestry and Fisheries (MAFF) (95). In Australia, the
Australian Pesticides and Veterinary Medicines Authority
(APVMA) ensures the safety and effectiveness of biopesticides
through assessments based on the Agvet Code (96).

Regional utilization of biopesticides and
market size (%)

@ NORTIIAMIRICA - 44%

@ FURQPE 20%

® Asla-13%

@ oceawnia-11%

@ LATIN &MCRICA - 9%

@ AFRICA 3%

Fig. 6. Regional utilization of biopesticides and market size (%).
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Barriers to commercialization and scalability

In India, commercialization of botanical extraction faces hurdles
due to regulatory barriers, limited R&D and the high cost of
advanced techniques like Supercritical Fluid Extraction,
restricing  small-scale  producers  (15).  Addressing
commercialization challenges in India’s botanical extraction
sector requires regulatory alignment, affordable technologies and
farmer-focused innovations. Initiatives like NMITLI, blockchain
traceability and climate-smart farming can enhance quality and
global market access, transforming India’s biodiversity into green
export opportunities (11, 14). Labelling issues and regulatory
ambiguity undermine user confidence and market perceptions of
biopesticides, particularly in regions with limited knowledge of
biological products. Startups are crucial for biopesticide
innovation, focusing on new microbial strains and delivery
systems; however, high research and regulatory costs limit
scalability. Collaboration with larger companies and public bodies
is essential to overcome these barriers. For biopesticides to
effectively support sustainable agriculture and reduce reliance on
conventional pesticides, harmonized regulations, standardized
technical guidelines and innovation-friendly policies are
necessary (11, 75,97-100).

Challenges and future outlook

The advancement of green precision techniques for botanical
extraction in sustainable biopesticide development holds
substantial promise; however, several critical barriers hinder
their widespread application in modern crop protection. One of
the foremost challenges is scaling laboratory-optimized
extraction methods to commercial production levels. The
variability in raw plant materials, the complexity of multi-
component phytochemical profiles and the sensitivity of active
compounds to temperature, light and solvents result in
inconsistencies in both yield and bioactivity. Techniques such as
supercritical fluid extraction, microwave-assisted extraction and
ultrasound-based methods, although efficient in laboratory
settings, require high energy input, expensive instrumentation
and finely tuned process conditions, making them less
economically viable at scale. The lack of robust downstream
purification and standardization protocols further compounds
this issue, often resulting in formulations with reduced efficacy
and shelf stability. Another pressing concern is the limited
selectivity and environmental safety of several plant-derived
biopesticides. Despite being perceived as eco-friendly, several
botanical compounds exert non-specific toxicity, potentially
harming beneficial arthropods, pollinators and soil microflora.
The absence of a precise mechanism of action in many cases
limits the ability to predict the ecological impact. Addressing this
requires deeper molecular insights into plant-insect interactions,
supported by omics-based tools such as metabolomics,
transcriptomics and bioinformatics-guided structure-activity
relationship studies. These approaches can aid in the
identification of bio actives with high pest specificity and minimal
off-target effects in the future. Further, microbial agents play a
crucial role in insect control by targeting specific pests through
pathogenic mechanisms. Combining microbial and botanical
pesticides with nanoencapsulation enhances insecticidal
synergy, stability and targeted delivery, offering a sustainable
alternative to synthetic chemicals.

The incorporation of Artificial Intelligence (Al) and
machine learning into biopesticide research has introduced a
paradigm shift in process optimization and formulation design.
Predictive modelling enables the rapid screening and
optimization of extraction parameters, significantly reducing trial
-and-error experimentation. When integrated with smart delivery
systems, they respond to environmental triggers such as pH,
enzymatic activity, or humidity. Al can facilitate real-time
decision-making in the field, ensuring precise application and
minimal waste of active ingredients. However, these
technologies remain underutilized in agriculture because of their
high developmental costs and the need for specialized technical
expertise. Nanotechnology has emerged as a pivotal enabler in
overcoming key formulation challenges. Encapsulating volatile
and thermolabile phytochemicals within nanocarriers, such as
chitosan nanoparticles, solid lipid nanoparticles, or mesoporous
silica matrices, can significantly enhance their stability,
bioavailability and controlled release. These nanostructures
protect the active ingredients from degradation caused by UV
radiation and microbial activity while enhancing foliar adhesion,
systemic movement and bio efficacy under field conditions.
Despite these technological strides, the full potential of
biopesticides is curtailed by market, regulatory and socio-
economic constraints. Higher production costs, limited
availability and a lack of farmer awareness restrict their
adoption, particularly among smallholder growers. Technical
barriers related to storage; formulation uniformity and
inconsistent field performance diminish farmers confidence.
Additionally, the absence of standardized regulatory frameworks
and international harmonization in biopesticide approval
processes contributes to market fragmentation and delays in
product commercialization in Brazil. Overcoming these systemic
issues requires interdisciplinary collaboration, inclusive policy
reform, public-private partnerships and capacity-building
initiatives focused on farmer education and infrastructure
development. Only through such integrated efforts can botanical
biopesticides transition from niche innovations to mainstream
tools in global crop protection.

Conclusion

The increasing demand for safer and more sustainable
alternatives in agricultural insect control underscores the need for
biopesticides. Phytomolecules derived from botanicals offer
potent insecticidal properties and have minimal environmental
impact. However, conventional extraction methods often fall
short because of issues such as low efficiency, degradation of
active compounds and lack of selectivity. In contrast, advanced
extraction techniques provide significant improvements in the
recovery, stability and preservation of bioactive compounds by
utilizing controlled physical parameters. These innovations
enable the development of precise, high-quality formulations that
meet the practical demands of modern crop-protection systems.
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