

RESEARCH ARTICLE

Haplo-pheno analysis of the *Rc* gene reveals association with yield parameters in pigmented rice

Kajal Kiran^{1,2}, Sabarinathan Selvaraj^{3,4}, Gyanisha Nayak², Parameswaran C^{2*}, Ashok Mishra¹, Simanta Mohanty³, Sanghamitra Samantaray² & Devraj Lenka⁵

¹Department of Agricultural Biotechnology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar 751 003, Odisha, India

²Crop Improvement Division, ICAR-Central Rice Research Institute, Cuttack 753 006, Odisha, India

³Department of Seed Science and Technology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar 751 003, Odisha, India

⁴Department of Genetics and Plant Breeding, M.S Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi 761211, Odisha, India

⁵Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar 751 003, Odisha, India

*Correspondence email - agriparames07@gmail.com

Received: 28 May 2025; Accepted: 14 August 2025; Available online: Version 1.0: 04 February 2026

Cite this article: Kajal K, Sabarinathan S, Gyanisha N, Parameswaran C, Ashok M, Simanta M, Sanghamitra S, Devraj L. Haplo-pheno analysis of the *Rc* gene reveals association with yield parameters in pigmented rice. Plant Science Today (Early Access). <https://doi.org/10.14719/pst.9675>

Abstract

Traditional rice genotypes often have pigmented pericarps such as green, red, brown and black, while widely cultivated varieties typically exhibit white pericarps. Although white polished rice is generally preferred for consumption, pigmented rice offers notable health benefits due to its antioxidant properties. However, pigmented rice varieties typically have lower yield potential compared to white rice varieties. To address this limitation, we employed haplotype analysis to explore associations between pericarp pigmentation and yield traits. Since the *Rc* gene is a major regulator of pericarp colour in rice, the haplotypes of the *Rc* gene were characterized using 231 accessions from the 3K rice panel, categorizing them by three distinct pericarp colour scores (scores 0, 1 and 9). The score 0 consists of accessions with green, brown, red, light red, dark red and black pericarp colours. Score 1 includes non-pigmented rice accessions having white and off-white pericarp colours. Score 9 is a subset of score 0 and it includes accessions depicting various shades of red in the pericarp colour. The major haplotype H2, associated with score 0, was significantly enhanced (*p* value <0.05) in the number of panicles and tillers per plant. For pericarp colour score 1, the haplotype H2 was identified as superior, exhibiting significantly (*p* value <0.05) earlier flowering, reduced chaffy grains and increased tillers per plant. These findings suggest that haplotype-based breeding of pigmented rice varieties targeting superior haplotypes associated with increased yield traits offers a promising strategy to enhance the yield potential of coloured rice.

Keywords: diversity; haplotype analysis; pericarp colour; SNP variants

Introduction

White rice has long been the predominant type of rice grown and consumed globally. The majority of rice cultivars have white pericarps, while others have coloured pericarps that are red, brown, green, black or purple (1). Whole grain rice, mainly pigmented rice, is becoming more and more popular for its high nutritional value, unlike the milled or polished rice, which have significantly fewer health benefits (2, 3). Regular consumption of black rice offers several health benefits, including better heart health, improved longevity and reduced risks of atherosclerosis, hypertension, stroke and chronic diseases like diabetes, cancer and Alzheimer's. It also supports digestion, detoxification and has anti-inflammatory and anti-allergic properties (4, 5). The pigmentation in rice pericarps, such as black and red, is primarily attributed to anthocyanins and proanthocyanidins, respectively (6, 7). These compounds are known for their significant health benefits and are synthesized within the flavonoid biosynthesis pathway (8). Research into these biosynthetic

pathways has identified two main categories of genes: structural and regulatory genes (9). Among these, the *Rc* gene plays a crucial role as a regulator of pericarp colour (10). The loss-of-function allele, *rc*, characterized by a 14-bp deletion in *Rc* resulting in a frameshift mutation and premature stop codon, causes pericarp pigmentation to change from red to white (11, 12). Conversely, restoration of the gene's reading frame by a G base deletion combined with the 14-bp deletion restores pericarp pigmentation to red (11, 12). Additionally, a one-base transversion also leads to premature termination of the *Rc* protein, resulting in white rice (13).

Given the health benefits associated with pigmented rice, there is a growing interest in developing functional foods with enhanced anthocyanin content (1). Even though the demand for black rice has increased, the yield potential of coloured rice is less than that of white or hybrid rice (1, 14). An ideal plant variety should fulfil the grain quantity and quality parameters, besides providing the necessary nutraceutical benefits for human health. Such dual-

purpose rice varieties would not only meet the global demand for food security but also address rising health concerns through diet-based interventions. With the use of haplotype-based breeding, it is possible to combine superior alleles from multiple genes to develop high-yielding rice varieties that are better equipped to meet future food security and nutritional demands. A comprehensive study conducted on the 3K rice genome panel analysed 120 functionally characterized genes, including 87 genes related to grain yield and 33 genes associated with grain quality (15). The results uncovered significant genetic variation and identified superior haplotypes associated with key agronomic traits. These included improvements in early flowering, medium-duration flowering and bold grain size, highlighting the potential of haplotype-based strategies to accelerate genetic gain (15).

Although pigmented rice is rich in bioactive compounds such as anthocyanins, its lower yield compared to the widely cultivated white rice remains a significant limitation. This poses a challenge for breeders attempting to integrate desirable quality traits, like high anthocyanin content, with high yield potential in a single cultivar. Haplotype-based breeding is a promising strategy that allows for the creation of designer crop varieties by using and investigating haplotypes or superior alleles among target genes to produce novel traits in breeding programs. Therefore, it can be used as a tool to overcome the yield barriers in coloured rice. In this study, we conducted a haplotype analysis of the *Rc* gene, focusing on its association with agro-morphological and yield-related traits in rice. By identifying superior haplotypes, this research aims to support the development of parental lines for breeding high-yielding, pigmented rice varieties with improved nutritional profiles.

Materials and Methods

Plant materials

A total of 231 globally diverse rice (*Oryza sativa* L.) accessions were taken from the SNP-Seek Database (16). This panel comprised 12 groups of subpopulations, which include ind3 (63 accessions), indx (58 accessions), ind2 (36 accessions), ind1A (17 accessions), ind1B (15 accessions), aus (13 accessions), trop (11 accessions), admix (7 accessions), aro (6 accessions), japx (3 accessions), subtrop (1 accession) and temp (1 accession). Sowing of approximately 100 seeds of each accession was conducted in the nursery during the kharif season 2022, followed by transplanting in an augmented randomized complete block design and harvesting in December 2022 in the research field located at ICAR - Central Rice Research Institute, Cuttack.

Pericarp colour scoring

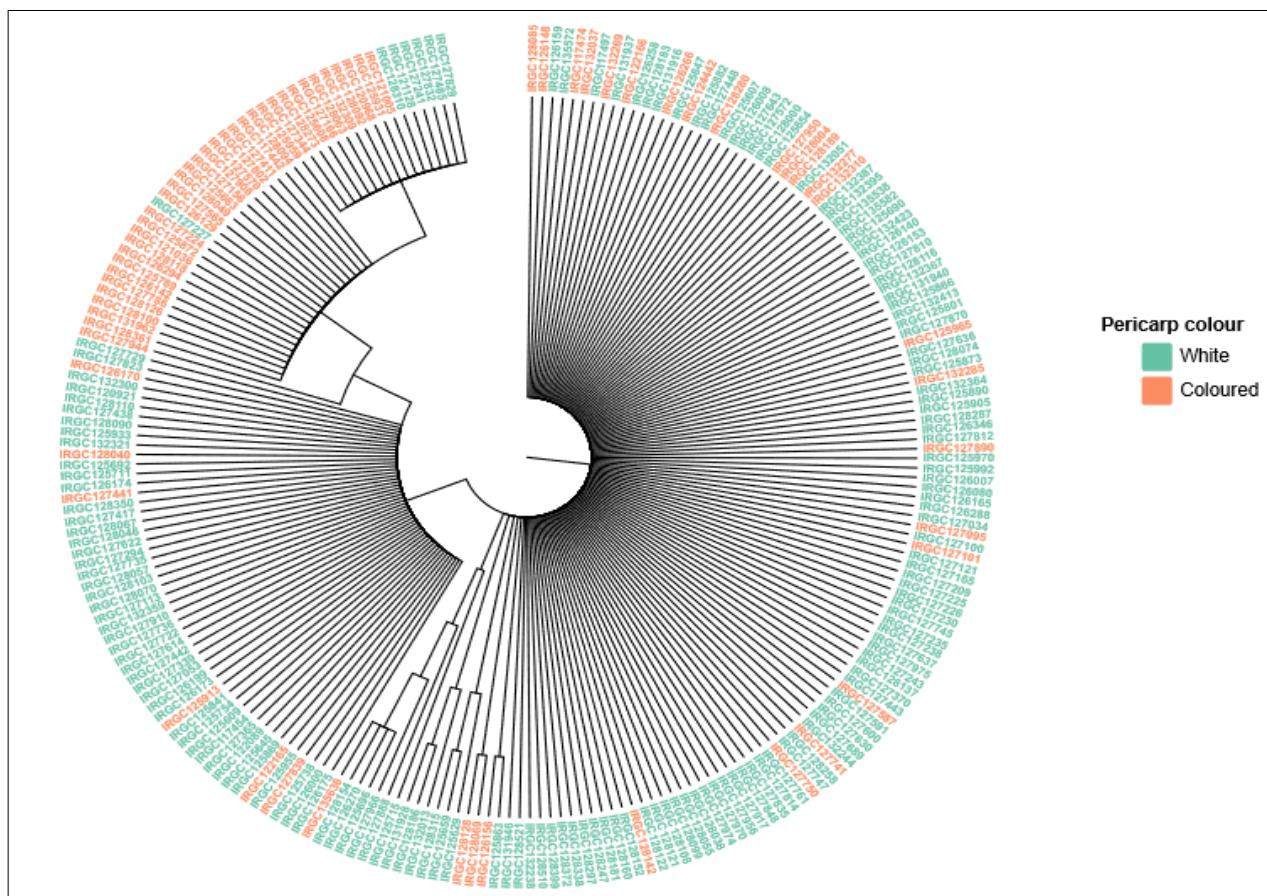
Ten seeds of each accession were randomly selected and manually dehusked. The colour of the pericarp of individual accession was visually ascertained and scored using three different scoring systems: 0, 1 and 9 as reported earlier (17). The accessions with pigmented pericarp like green, brown, red, light red, dark red and black were scored as 0 (68 accessions), provided in Supplementary Table 1. Accessions with white and off-white colours were scored as 1 (163 accessions). Considering the lesser number of accessions having green or black pericarp, a subset of the pericarp colour score 0, score 9 consisting of accessions with light red, red, dark red and brown pigmented pericarp (49 accessions), was considered after eliminating rice accessions with green or black pericarp.

Measurement of morphological parameters

The data were observed for three replications, which included plant height (cm), flag leaf length (cm) and flag leaf width (cm), total number of panicles per plant, panicle length (cm), number of spikelets, number of filled grains, number of chaffy grains, above ground biomass (g), harvest index (%) and single plant yield (g). The days to flowering and maturity were noted from the days after sowing (DAS). Parameters like plant height, flag leaf length, flag leaf width and panicle length were measured using a measuring scale. A tagging technique was used to identify the flowering dates. Parameters such as the number of spikelets, filled grains and chaffy grains were counted manually. Single plant yield and above-ground biomass were measured using a weighing balance. All the agro-morphological parameters were reported previously (18).

Genotypic data retrieval and phylogenetic tree analysis

Genotypic data for the *Rc* gene (Os07g0211500) and its 2kb promoter region were retrieved from the SNP-Seek Database. To enhance the statistical power, SNPs with > 20 % of missing alleles and heterozygous alleles were removed manually. After filtering, 55 SNPs were used for all the analyses. A phylogenetic tree was created using MEGA11 involving the neighbour-joining algorithm with 1000 bootstrap replicates (19). The principal component analysis for the genotypes was conducted using the GAPIT software (20). Tajima's D value was calculated using the TASSEL software (21).


Haplotype analysis

Further, the input file was manually prepared in table format according to the GeneHapR package manual (22). For annotation, the Nipponbare reference genome in gff3 file format was retrieved from the RAP database. The haplotype grouping was performed in the GeneHapR package. Minor haplotypes with less than five percent frequency were removed before further analysis. Major haplotype variants were mapped onto the *Rc* gene structure. The evolutionary relationships among the major haplotypes were studied and visualised in a haplotype network. Linkage disequilibrium (LD) between SNPs present in major haplotypes was calculated and visualised in LD blocks. Rare haplotypes and outliers were eliminated in order to identify superior haplotypes with highly significant phenotypic differences. For identifying significant *p*-values, t-tests between haplotypes were performed. The haplotype network, LD and t-tests were analyzed using the GeneHapR package in R software (22).

Results

Evolutionary relationship of the *Rc* gene

The evolutionary relationship of the *Rc* gene was analysed using phylogenetic tree analysis, revealing two main clusters (Cluster I and II) (Fig. 1). Cluster I is further subdivided into Cluster IA and Cluster IB. Notably, the majority of coloured (brown, black and red-shaded) rice accessions were grouped within Cluster IB, while Cluster II primarily consisted of white pericarp rice accessions. This clustering pattern suggests that the accessions have a common ancestral allele of the *Rc* gene associated with pericarp colour. The principal component analysis of the accessions revealed three major groups, PCI, PCII and PCIII, showing 60.18 %, 21.43 % and 8.45 % variation, respectively (Fig. S1). The Tajima's D value was found to be 1.815 (moderately high), indicating the presence of more intermediate-frequency alleles in the population.

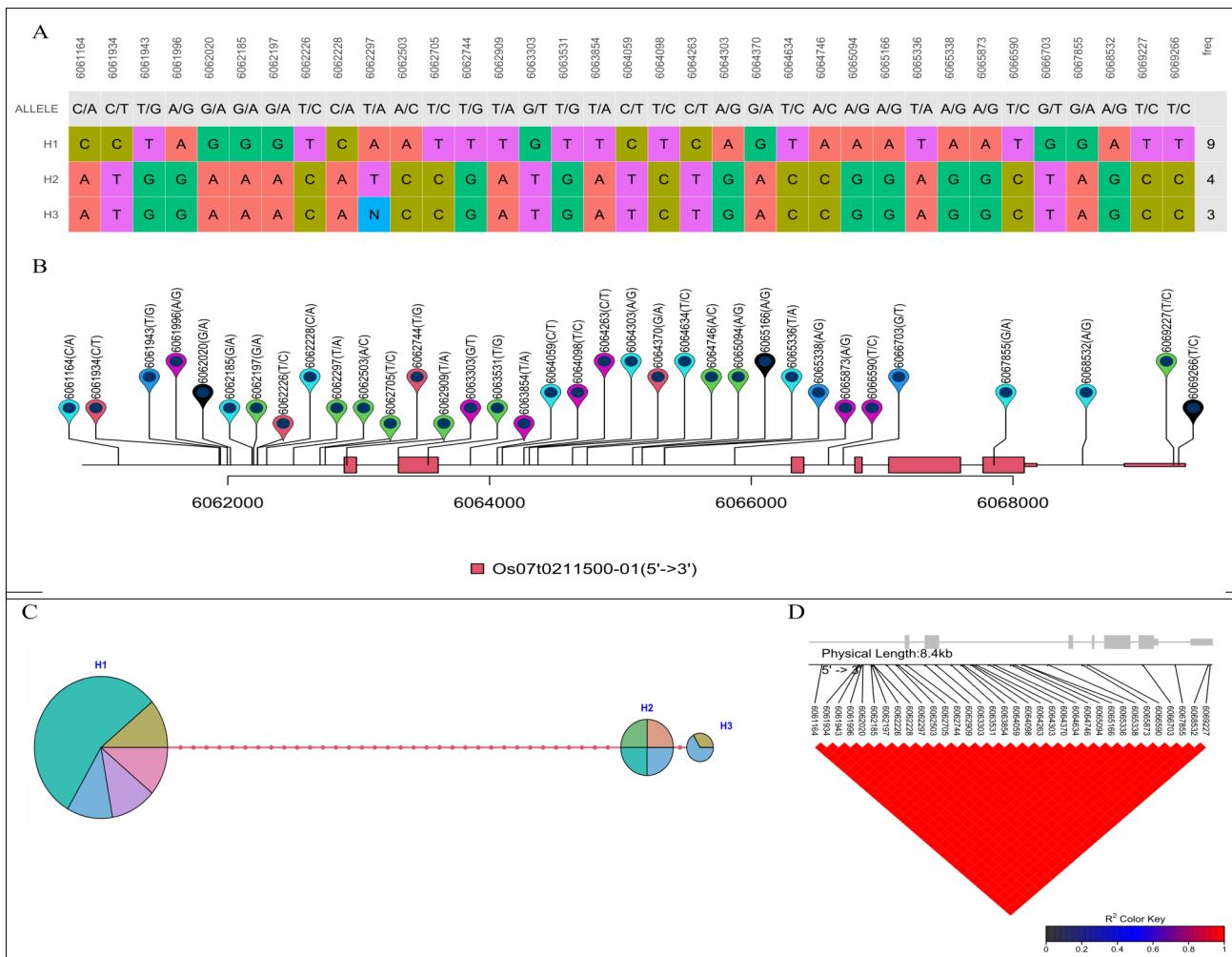
Fig. 1. Phylogenetic tree of the *Rc* gene. Different colours represent different pericarp colour scores (light orange colour for 0 coloured accessions and light green for 1 white accessions).

Haplotype-phenotype associations in pigmented pericarp (Score 0)

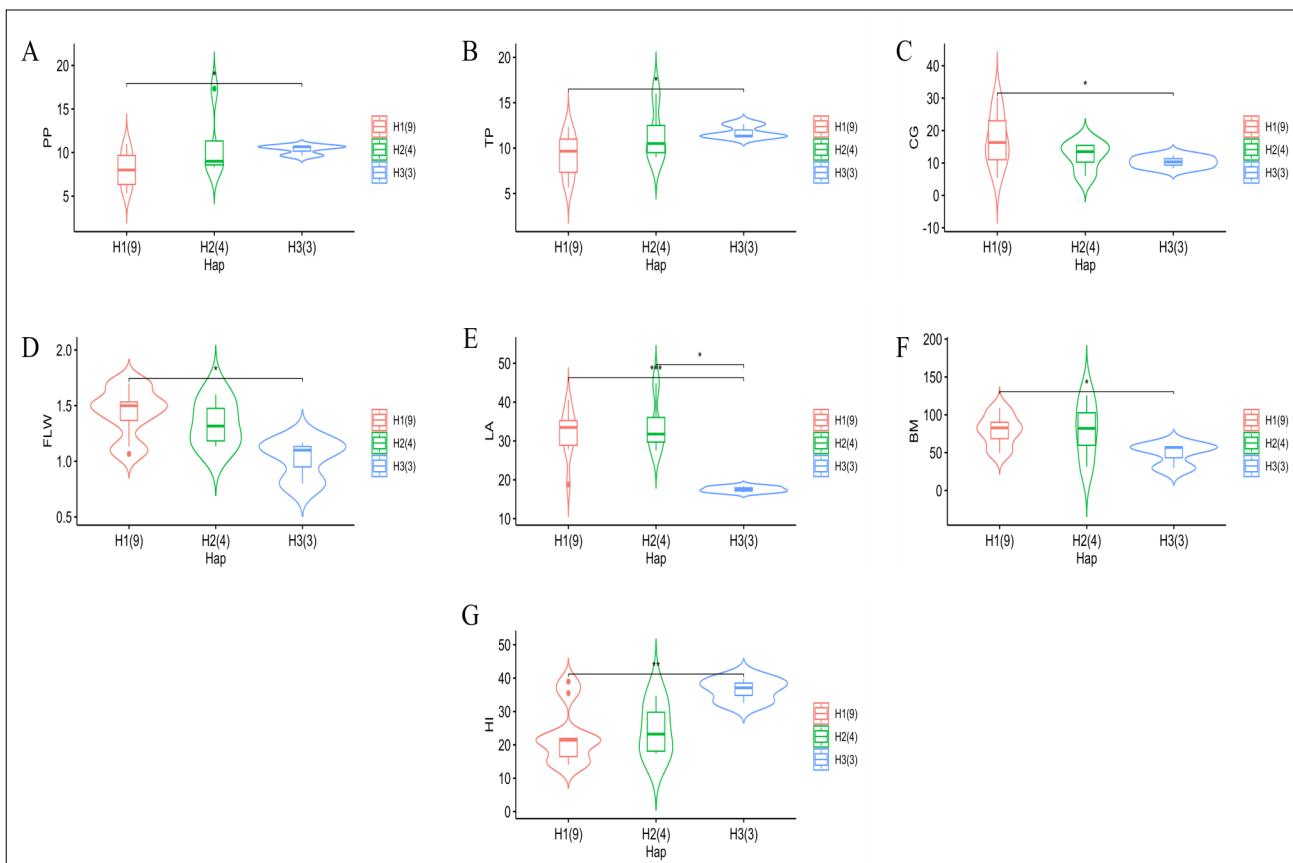
A total of 55 genetic variants were identified within the *Rc* gene with the colour score 0 (pigmented pericarps such as green, brown, red, light red, dark red and black). The haplo-pheno analysis showed 35 haplotypes (H1 to H35), among which three haplotypes (H1 to H3) were major (more than 5 % frequency). The haplotype H1 consists of 9 accessions, followed by H2 with 4 accessions and H3 with 3 accessions. The Nipponbare reference allele and alternate allele of each SNP were mentioned in the first column of the matrix (Fig. 2A). Each SNP position and variation was mapped onto the *Rc* gene structure (Fig. 2B). A haplotype network was constructed on major haplotypes to visualise the relationships among them (Fig. 2C). Only one SNP variation was found between H2 and H3. The LD heatmap represents the strong LD along the *Rc* gene, suggesting that the SNPs are inherited together (Fig. 2D). Among the 16 traits, seven traits were significantly different between major haplotypes and are visualized in combined violin and box plots (Fig. 3). Significant differences ($p \leq 0.05$) between haplotypes H1 and H3 were observed for seven traits (panicles per plant, tillers per plant, chaffy grains, flag leaf width, leaf area, above ground biomass and harvest index). Similarly, a significant difference ($p \leq 0.05$) between haplotypes H2 and H3 were observed for the flag leaf area. The mean value of H2 was found to be higher than H1 and H3 for seven traits including plant height, panicle length, panicles per plant, flag leaf length, leaf area, biomass and single plant yield (Table 1). These identified genomic variants and their linked regions can be used to select the aforementioned phenotypic traits.

Distribution of functional haplotypes for non-pigmented pericarp (Score 1)

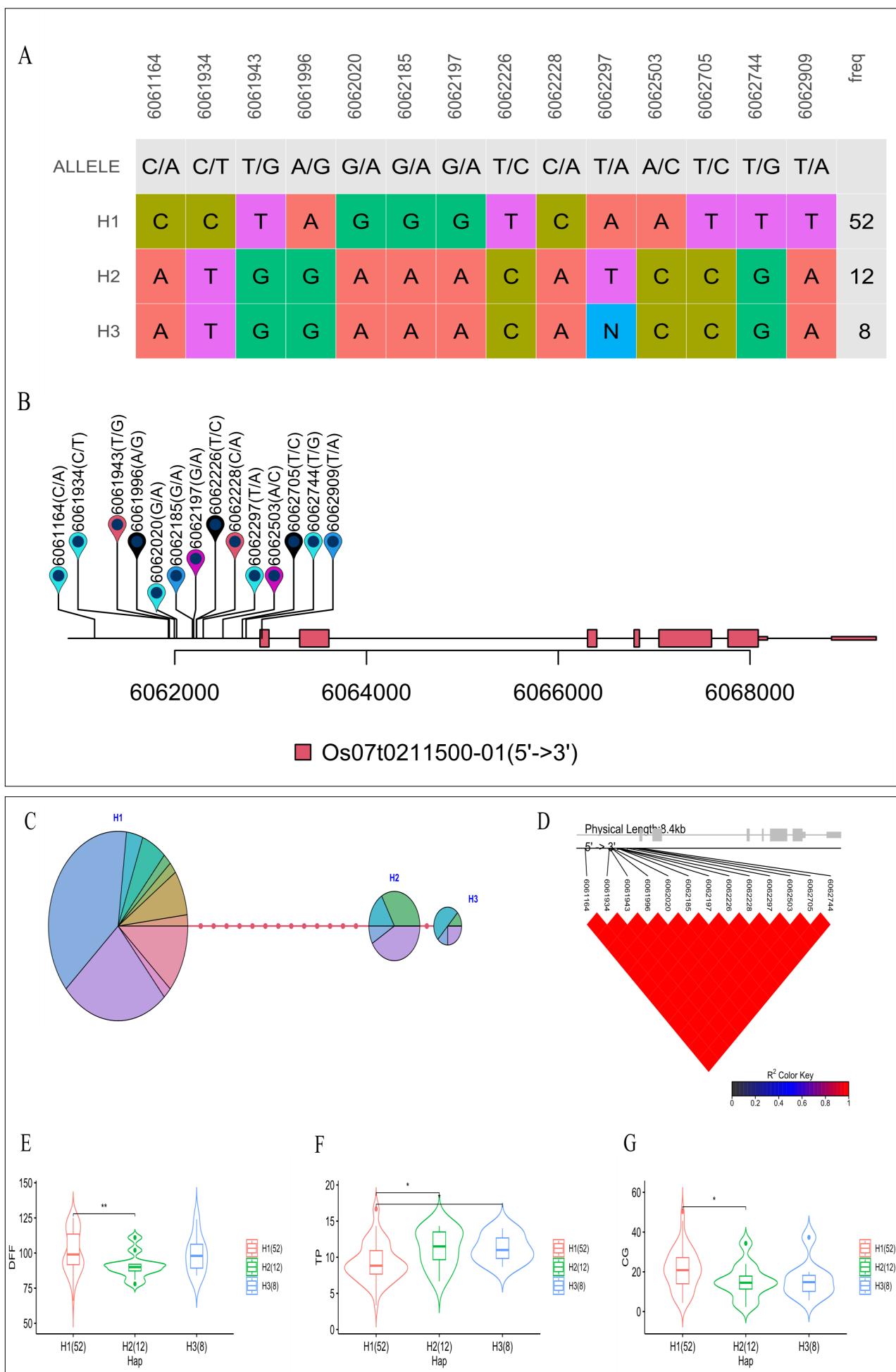
The haplo-pheno analysis showed 59 haplotypes with the colour score 1 (consisting of accessions with white and off-white pericarp), among which three are major haplotypes (H1 to H3) with more than 5 % frequency. The haplotype H1 consists of 52 accessions, H2 consists of 12 accessions and H3 consists of 8 accessions (Fig. 4A). Each SNP position and variation was mapped onto the *Rc* gene model (Fig. 4B). A haplotype network was constructed on major haplotypes to visualise the relationships among them (Fig. 4C). Only one SNP variation was found between H2 and H3. The strong LD along the *Rc* gene indicates the combined inheritance of the SNPs (Fig. 4D). The combined violin and box plots illustrate the phenotypic distributions of significant traits among the major haplotypes (H1 to H3) (Fig. 4E-G). Significant differences ($p \leq 0.05$) between haplotypes H1 and H2 were observed for days after flowering, tillers per plant and chaffy grains. Additionally, a significant difference was also observed between haplotype H1 and H3 for the tillers per plant. The mean value of H2 was observed to be higher compared to H1 and H3 for eight agronomic traits, including days for flowering, plant height, panicles per plant, tillers per plant, chaffy grains, spikelet fertility, single plant yield and harvest index (Table 1).


Haplotype effects of pigmented pericarp (Score 9)

The haplo-pheno analysis showed 29 haplotypes with the colour score 9 (consisting of rice accessions with red shaded pericarp), of which three are major haplotypes—H1, H2 and H3, consisting of 4, 3 and 3 accessions respectively (Fig. 5A). The SNP positions and variations were mapped onto the *Rc* gene model (Fig. 5B). A major haplotype network represented the haplotype H1 with a larger circle showing the four constituent sub-populations (Fig. 5C).


Table 1. Trait-wise mean differences of superior haplotypes across three different colour scores

Traits	Colour score 0			Colour score 1			Colour score 9		
	H1	H2	H3	H1	H2	H3	H1	H2	H3
Days for flowering (DFF)	105.67 ± 6.37	102.50 ± 6.24	74.67 ± 10.10	101.29 ± 2.10	90.75 ± 2.55	99.00 ± 4.74	102.50 ± 6.24	74.67 ± 10.11	95.33 ± 14.77
Plant height (PH)	123.43 ± 6.09	114.49 ± 8.59	116.97 ± 8.32	117.29 ± 2.37	110.94 ± 6.07	121.48 ± 7.75	114.49 ± 8.59	116.97 ± 8.32	122.48 ± 12.62
Panicle length (PL)	22.18 ± 1.07	23.23 ± 2.21	20.99 ± 1.50	22.65 ± 0.39	22.91 ± 0.64	23.68 ± 1.03	23.23 ± 2.21	20.99 ± 1.50	22.26 ± 2.52
Panicles per plant (PP)	8.11 ± 0.66	10.92 ± 2.15	10.33 ± 0.33	8.15 ± 0.32	9.58 ± 0.70	9.42 ± 0.68	10.92 ± 2.15	10.33 ± 0.33	7.56 ± 1.75
Flag leaf length (FLL)	31.26 ± 1.40	35.85 ± 3.15	24.97 ± 3.68	28.55 ± 0.69	28.44 ± 1.45	31.38 ± 1.23	35.85 ± 3.15	24.97 ± 3.68	30.06 ± 2.80
Flag leaf width (FLW)	1.44 ± 0.07	1.34 ± 0.11	1.02 ± 0.11	1.38 ± 0.03	1.28 ± 0.06	1.32 ± 0.05	1.34 ± 0.11	1.02 ± 0.11	1.38 ± 0.16
Leaf area (LA)	31.99 ± 2.10	33.98 ± 3.81	17.54 ± 0.47	28.12 ± 1.05	26.02 ± 1.98	29.42 ± 1.93	33.98 ± 3.81	17.54 ± 0.47	29.98 ± 5.69
Tillers per plant (TP)	9.15 ± 0.75	11.50 ± 1.58	11.78 ± 0.44	9.33 ± 0.37	11.31 ± 0.76	11.25 ± 0.69	11.50 ± 1.58	11.78 ± 0.44	8.44 ± 2.00
Filled grains (FG)	84.56 ± 7.49	65.42 ± 8.53	75.89 ± 4.55	83.83 ± 3.92	78.64 ± 7.02	70.29 ± 8.13	65.42 ± 8.53	75.89 ± 4.55	84.67 ± 15.18
Chaffy grains (CG)	17.04 ± 2.66	12.17 ± 2.25	10.33 ± 1.15	21.19 ± 1.42	15.17 ± 2.50	16.29 ± 3.45	12.17 ± 2.25	10.33 ± 1.15	11.00 ± 3.27
Total number of grains (TG)	101.59 ± 8.02	77.58 ± 7.77	86.22 ± 4.45	105.02 ± 4.44	93.81 ± 7.87	86.58 ± 7.78	77.58 ± 7.77	86.22 ± 4.45	95.67 ± 16.00
Spikelet fertility (SF)	83.05 ± 2.48	83.52 ± 3.96	87.95 ± 1.41	79.53 ± 1.24	83.99 ± 2.34	80.61 ± 3.96	83.52 ± 3.96	87.95 ± 1.41	88.43 ± 3.46
Biomass (BM)	79.37 ± 6.87	80.27 ± 20.01	48.06 ± 9.21	72.25 ± 4.03	65.30 ± 8.07	82.56 ± 11.44	80.27 ± 20.01	48.06 ± 9.21	80.98 ± 17.20
Single plant yield (SPY)	16.90 ± 1.22	18.17 ± 3.95	17.25 ± 2.83	15.97 ± 1.03	17.69 ± 1.75	16.57 ± 2.29	18.17 ± 3.95	17.25 ± 2.83	19.71 ± 1.72
Harvest index (HI)	22.84 ± 2.93	24.66 ± 4.14	36.53 ± 2.14	23.61 ± 1.35	28.79 ± 2.37	21.45 ± 2.67	24.66 ± 4.14	36.53 ± 2.14	26.17 ± 4.68
Hundred seed weight (HSW)	2.20 ± 0.11	2.17 ± 0.46	2.16 ± 0.29	2.29 ± 0.06	2.26 ± 0.16	2.14 ± 0.19	2.17 ± 0.46	2.16 ± 0.29	2.22 ± 0.11


Values represent Mean ± Standard error.

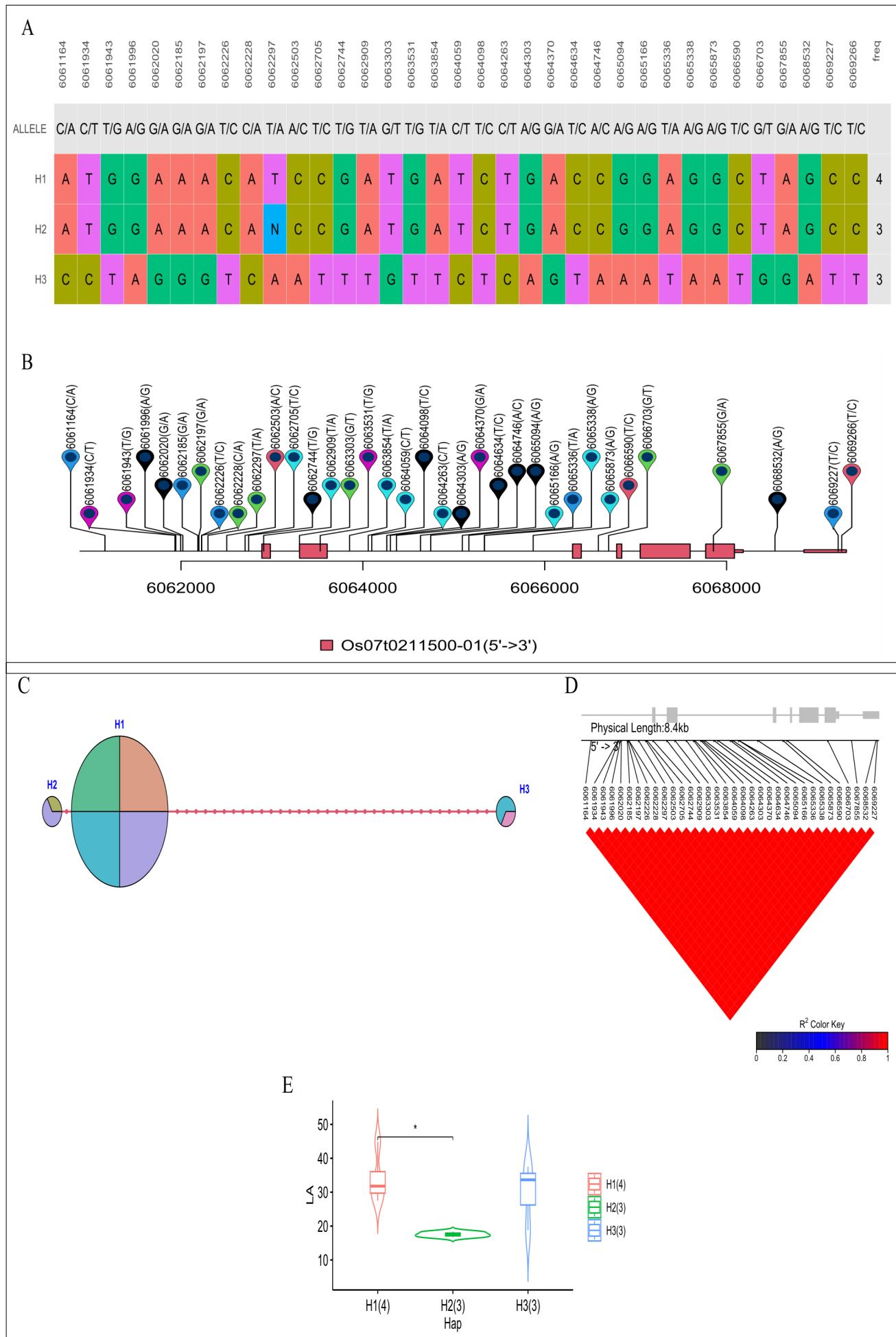

Fig. 2. Haplotype analysis of the *Rc* gene based on pericarp colour score 0. **A.** Major haplotype chart, **B.** SNP variations located in the *Rc* gene, **C.** haplotype network and **D.** Linkage disequilibrium blocks.

Fig. 3. Combined violin and box plots representing significant differences between major haplotypes for the pericarp colour score 0. **A.** panicles per plant, **B.** tillers per plant, **C.** chaffy grains, **D.** flag leaf width, **E.** leaf area, **F.** biomass and **G.** harvest index.

Fig. 4. Haplotype analysis of the *Rc* gene based on pericarp colour score 1. **A.** Major haplotype chart, **B.** SNP variations located in the *Rc* gene, **C.** haplotype network, **D.** Linkage disequilibrium blocks, **E.** Functional haplotypes of days for flowering, **F.** tillers per plant and **G.** chaffy grains.

Fig. 5. Haplotype analysis of the *Rc* gene based on pericarp colour score 9. **A.** Major haplotype chart, **B.** SNP variations located in the *Rc* gene, **C.** haplotype network, **D.** Linkage disequilibrium blocks and **E.** Superior haplotypes for leaf area.

Only one SNP variation was found between H1 and H2. The strong LD along the *Rc* gene indicates that the SNPs are inherited together (Fig. 5D). The combined violin and box plots illustrate the phenotypic distributions of leaf area across the three haplotypes, with a significant difference ($p \leq 0.05$) observed between haplotypes H1 and H2 (Fig. 5E). The mean value of H3 was found to be higher than H1 and H2 for seven key yield related traits, including flag leaf width, filled grains, total number of grains, spikelet fertility, biomass, single plant yield and hundred seed weight (Table 1).

Discussion

Traditional rice accessions exhibit pigmented pericarps, including green, yellow, red, purple, brown and black (10). Pigmented pericarps have antioxidant properties that provide various health benefits by preventing cellular oxidation (10). Haplotype analysis of the *Rc* gene has revealed a characteristic 14-bp deletion present in 97.9 % of cultivated rice accessions with white pericarps (13). In contrast, this deletion is absent in wild or cultivated rice accessions with red pericarps (6, 23). Previously, haplotype network analysis of the *Rc* gene conducted on 179 accessions showed four haplotypes (Rc-H1, Rc-H2, Rc-H3 and Rc-H4) with a haplotype diversity of 0.7076 (24). The Rc-H3 comprised wild rice accessions with red pericarps and was proposed as the ancestral haplotype, while the other three haplotypes likely evolved from it. Notably, Rc-H2 included genotypes with green, red and white pericarps. The presence of a common *Rc* haplotype in both Japonica and Indica groups supports the hypothesis of a monophyletic origin of cultivated rice (13). Furthermore, a second mutation in the *Rc* gene, known as the Rc-S allele, has been identified as responsible for white pericarp in the Aus subpopulation. Despite the widespread cultivation of white pericarp varieties, functional *Rc* haplotypes associated with red pericarps are still found in wild rice populations cultivated in parts of India (24). In another study, 32 rice accessions were evaluated for pericarp colour and antioxidant properties (10). Haplotype analysis was performed based on three critical sites regulating the functionality of the *bHLH* protein, which is involved in pericarp pigmentation. This analysis identified three haplotypes: H1, H2 and H3. Among them, H1, comprising red pericarp accessions, showed significantly higher levels of total flavonoids, total phenolic content, radical scavenging activity and proanthocyanidins compared to H2 and H3, which were primarily associated with white pericarps.

Purple pericarp rice is generally reported to have lower yield compared to white pericarp rice, primarily due to its reduced sink size (25). Historically, pigmented rice varieties have not been widely cultivated, resulting in limited breeding efforts directed toward their improvement. To overcome the yield barriers associated with pigmented rice, haplotype-based breeding offers a promising strategy. The application of haplotype-based approaches in rice breeding holds significant potential for improving crop productivity, enabling plants to withstand stresses while maintaining stable and high yields across diverse environments (26). By identifying and utilizing superior haplotypes associated with key yield-related traits, it is possible to develop pigmented rice varieties that combine high nutritional value with improved agronomic performance. In haplotype-based selection, the superior haplotype is determined by trait-specific criteria (27, 28). For traits such as panicles per plant, tillers per plant, flag leaf length, flag leaf width, leaf area, biomass and harvest index, haplotypes with higher mean values are considered

superior. Conversely, for traits like chaffy grains and days to flowering, haplotypes with lower mean values are considered superior.

In the present study, haplotype analysis of the *Rc* gene was performed based on pericarp colour scores. For accessions with a pericarp colour score of 0, haplotype H3 was identified as the superior haplotype for traits such as panicles per plant, tillers per plant and harvest index. For pericarp colour score 1 (indicative of non-pigmented pericarp), haplotype H2 emerged as the superior haplotype for days to flowering, tillers per plant and number of chaffy grains. In accessions with a pericarp colour score of 9 (typically indicating intense pigmentation), haplotype H3 was found to be superior for the leaf area trait. Crossing accessions carrying these superior haplotypes across different pericarp colour scores may facilitate the development of high-yielding pigmented rice varieties. This approach has the potential to simultaneously enhance pericarp pigmentation and yield, contributing to both nutritional improvement and agricultural productivity.

Conclusion

Our findings reveal that specific *Rc* gene haplotypes are associated with favourable agronomic traits across different pericarp colour categories. Notably, for accessions with pericarp colour score 0 (pigmented accessions), haplotype H3 emerged as superior with a significantly increased number of tillers, panicles per plant and harvest index that are critical for improving yield potential. Similarly, pericarp colour score 1 (white/off-white) haplotype H2 was identified as superior, exhibited significantly earlier flowering, reduced chaffy grains and improved tillering capacity. These superior haplotypes could serve as valuable genetic resources for breeding high-yielding rice varieties with desirable pericarp pigmentation and agronomic traits.

Acknowledgements

The first author acknowledges the receipt of financial assistance from DST-INSPIRE (DST/ INSPIRE Fellowship/2021/IF210258), Department of Science and Technology (DST), Govt. of India.

Authors' contributions

KK wrote the original draft. SS¹ did the formal analysis. GN did the phenotyping. PC prepared the methodology. AM reviewed and edited the manuscript. SS² provided the resources. SM supervised the work. DL conceptualized the manuscript. All authors read and approved the manuscript [SS¹ - Sabarinathan Selvaraj and SS² - Sanghamitra Samantaray].

Compliance with ethical standards

Conflict of interest: Authors do not have any conflict of interest to declare.

Ethical issues: None

References

024-09371-3

- Rahman MM, Lee KE, Kang SG. Allelic gene interaction and anthocyanin biosynthesis of purple pericarp trait for yield improvement in black rice. *J Life Sci.* 2016;26(6):727-36. <https://doi.org/10.5352/JLS.2016.26.6.727>
- Mbanjo EG, Kretzschmar T, Jones H, Ereful N, Blanchard C, Boyd LA, et al. The genetic basis and nutritional benefits of pigmented rice grain. *Front Genet.* 2020;11:229. <https://doi.org/10.3389/fgene.2020.00229>
- Brotman Y, Llorente-Wiegand C, Oyong G, Badoni S, Misra G, Anacleto R, et al. The genetics underlying metabolic signatures in a brown rice diversity panel and their vital role in human nutrition. *Plant J.* 2021;106(2):507-25. <https://doi.org/10.1111/tpj.15182>
- Wang C, Shu Q. Fine mapping and candidate gene analysis of purple pericarp gene Pb in rice (*Oryza sativa* L.). *Chin Sci Bull.* 2007;52:3097-104. <https://doi.org/10.1007/s11434-007-0472-x>
- Hui C, Bin Y, Xiaoping Y, Long Y, Chunye C, Mantian M, Wenhua L. Anticancer activities of an anthocyanin-rich extract from black rice against breast cancer cells *in vitro* and *in vivo*. *Nutr Cancer.* 2010;62(8):1128-36. <https://doi.org/10.1080/01635581.2010.494821>
- Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, et al. The *Rc* and *Rd* genes are involved in proanthocyanidin synthesis in rice pericarp. *Plant J.* 2007;49(1):91-102. <https://doi.org/10.1111/j.1365-313X.2006.02958.x>
- Yang X, Xia X, Zhang Z, Nong B, Zeng Y, Wu Y, et al. Identification of anthocyanin biosynthesis genes in rice pericarp using PCAMP. *Plant Biotechnol J.* 2019;17(9):1700. <https://doi.org/10.1111/pbi.13133>
- Saigo T, Wang T, Watanabe M, Tohge T. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. *Curr Opin Plant Biol.* 2020;55:93-9. <https://doi.org/10.1016/j.pbi.2020.04.001>
- Xia D, Zhou H, Wang Y, Li P, Fu P, Wu B, et al. How rice organs are colored: The genetic basis of anthocyanin biosynthesis in rice. *Crop J.* 2021;9(3):598-608. <https://doi.org/10.1016/j.cj.2021.03.013>
- Rebeira S, Jayatilake D, Prasantha R, Kariyawasam T, Suriyagoda L. Assessment of antioxidant properties in selected pigmented and non-pigmented rice (*Oryza sativa* L.) germplasm and determination of its association with *Rc* gene haplotypes. *BMC Plant Biol.* 2024;24(1):884. <https://doi.org/10.1186/s12870-024-05623-2>
- Brooks SA, Yan W, Jackson AK, Deren CW. A natural mutation in *rc* reverts white-rice-pericarp to red and results in a new, dominant, wild-type allele: *Rc-g*. *Theor Appl Genet.* 2008;117(4):575-80. <https://doi.org/10.1007/s00122-008-0801-8>
- Lee D, Lupotto E, Powell W. G-string slippage turns white rice red. *Genome.* 2009;52(5):490-3. <https://doi.org/10.1139/G09-025>
- Sweeney MT, Thomson MJ, Pfeil BE, McCouch S. Caught red-handed: *Rc* encodes a basic helix-loop-helix protein conditioning red pericarp in rice. *Plant Cell.* 2006;18(2):283-94. <https://doi.org/10.1105/tpc.105.038430>
- Peng ZM, Zhang MW, Tu JM, Yu SB, Xu CG. Breeding and nutrient evaluation on three-lines and their combination of indica black glutinous rice hybrid. *Zuo Wu Xue Bao.* 2004;30(4):342-7.
- Abbai R, Singh VK, Nachimuthu W, Sinha P, Selvaraj R, Vipparla AK, et al. Haplotype analysis of key genes governing grain yield and quality traits across 3K RG panel reveals scope for the development of tailor-made rice with enhanced genetic gains. *Plant Biotechnol J.* 2019;17:1612-22. <https://doi.org/10.1111/pbi.13087>
- Mansueto L, Fuentes RR, Borja FN, Detras J, Abriol-Santos JM, Chebotarov D, et al. Rice SNP-seek database update: new SNPs, indels and queries. *Nucleic Acids Res.* 2017;45(D1):D1075-81. <https://doi.org/10.1093/nar/gkw1135>
- Kiran K, Selvaraj S, Parameswaran C, Balasubramaniasai C, Katara JL, Devanna BN, et al. Genome-wide association analysis and candidate genes identification for pericarp color in rice (*Oryza sativa* L.). *Trop Plant Biol.* 2025;18(1):8. <https://doi.org/10.1007/s12042-025-00008-0>
- Nayak G, Parameswaran C, Vaidya N, Parida M, Verma RL, Chaudhari P, et al. Marker-trait association of the major pyruvate pathway genes regulating yield related traits in rice (*Oryza sativa* L.). *Indian J Genet Plant Breed.* 2024;84(03):329-35. <https://doi.org/10.31742/ISGPB.84.3.3>
- Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. *Mol Biol Evol.* 2021;38(7):3022-7. <https://doi.org/10.1093/molbev/msab120>
- Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: genome association and prediction integrated tool. *Bioinformatics.* 2012;28(18):2397-9. <https://doi.org/10.1093/bioinformatics/bts444>
- Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. *Bioinformatics.* 2007;23(19):2633-5. <https://doi.org/10.1093/bioinformatics/btm308>
- Zhang R, Jia G, Diao X. geneHapR: an R package for gene haplotypic statistics and visualization. *BMC Bioinformatics.* 2023;24(1):199. <https://doi.org/10.1186/s12859-023-05318-9>
- Cui Y, Song BK, Li LF, Li YL, Huang Z, Caicedo AL, et al. Little white lies: pericarp color provides insights into the origins and evolution of Southeast Asian weedy rice. *G3 Genes Genomes Genet.* 2016;6(12):4105-14. <https://doi.org/10.1534/g3.116.035881>
- Singh N, Singh B, Rai V, Sidhu S, Singh AK, Singh NK. Evolutionary insights based on SNP haplotypes of red pericarp, grain size and starch synthase genes in wild and cultivated rice. *Front Plant Sci.* 2017;8:972. <https://doi.org/10.3389/fpls.2017.00972>
- Ji ZJ, Wang XG, Zeng YX, Ma LY, Li XM, Liu BX, et al. Comparison of physiological and yield traits between purple-and white-pericarp rice using SLs. *Breed Sci.* 2012;62(1):71-7. <https://doi.org/10.1270/jsbbs.62.71>
- Singh AK, Dwivedi DK, Kumar D, Singh A, Dixit S, Khan NA, et al. Genetic variability, character association and path coefficient analysis in rice (*Oryza sativa*) genotypes of semi-arid region of India. *Indian J Agric Sci.* 2023;93(8):844-9. <https://doi.org/10.56093/ijas.v93i8.137199>
- Meena VK, Thribhuvan R, Dinkar V, Bhatt A, Pandey S, Abhinav, et al. Haplotype breeding: fast-track the crop improvements. *Planta.* 2025;261(3):51. <https://doi.org/10.1007/s00425-025-04622-3>
- Nayak G, Parameswaran C, Vaidya N, Parida M, Sabarinathan S, Chaudhari P, et al. Genome-wide association analysis in identification of superior haplotypes for vegetative stage drought stress tolerance in rice. *Physiol Mol Bio. Plants.* 2025;31(3):435-52. <https://doi.org/10.1007/s12298-025-01573-7>

Additional information

Peer review: Publisher thanks Sectional Editor and the other anonymous reviewers for their contribution to the peer review of this work.

Reprints & permissions information is available at https://horizonpublishing.com/journals/index.php/PST/open_access_policy

Publisher's Note: Horizon e-Publishing Group remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Indexing: Plant Science Today, published by Horizon e-Publishing Group, is covered by Scopus, Web of Science, BIOSIS Previews, Clarivate Analytics, NAAS, UGC Care, etc
See https://horizonpublishing.com/journals/index.php/PST/indexing_abstracting

Copyright: © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited (<https://creativecommons.org/licenses/by/4.0/>)

Publisher information: Plant Science Today is published by HORIZON e-Publishing Group with support from Empirion Publishers Private Limited, Thiruvananthapuram, India.