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Abstract

Automation technologies, such as Artificial Intelligence (Al), robotics, loT and remote sensing, are transforming viticulture by addressing
labour shortages, climate resilience challenges and resource optimization. Al-driven machine learning models process data from
multispectral drones and 10T sensors to monitor soil health, water stress and canopy dynamics, enabling precision agriculture practices
like targeted irrigation and nutrient delivery. Autonomous robotic systems perform tasks such as selective harvesting, pruning and pest
management, enhancing operational efficiency while reducing manual labour. 10T networks provide real-time insights into microclimatic
conditions, empowering growers to adopt climate-smart strategies that minimize chemical inputs and improve yield stability. Despite
progress, key barriers persist: Al models require terroir-specific adaptation, fragmented datasets hinder interoperability and field
validation of autonomous systems under diverse conditions remains limited. Future research must prioritize accessible solutions: low-
cost sensor networks for smallholders, adaptive Al frameworks for climate volatility (e.g., drought or flood prediction) and edge
computing for real-time analytics. Ethical concerns data privacy, algorithmic bias and technology access disparities demand inclusive
governance. Additionally, user-friendly interfaces are essential for broad adoption. Addressing these gaps will unlock automation’s full
potential in advancing sustainable viticulture: optimizing water/energy use, reducing agrochemical reliance, enhancing biodiversity and
ensuring economic resilience for growers. Ultimately, integrated automation promises a balance between ecological stewardship,
resource efficiency and sector-wide viability in a climate-constrained future.
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Introduction Neural Networks (CNNs) analysing drone-captured imagery for
early pest detection, thereby reducing pesticide reliance (4).
There are advancements in robotics, such as LiDAR equipped
systems for canopy management and loT-enabled
autonomous vehicles that optimize soil moisture and nutrient
delivery through variable rate applications (5). Together, these
technologies create a feedback loop of resilience. Al and robotics
not only counter climate and labour pressures but also meet eco-
friendly consumer expectations. However, their success hinges
on seamless integration sensor networks must inform robotic
actions and predictive models require real time environmental
data. By unifying these tools, viticulture can achieve precision
agriculture at scale with balancing productivity with ecological
sustainability. Widespread automation adoption in viticulture
remains hindered by high costs, limited grower expertise and
compatibility issues between proprietary systems (6).

The rising global temperatures and erratic rainfall are
disrupting phenological cycles, increasing disease risks and
disrupting traditional vineyard practices, compelling the
adoption of Al, robotics and sensor networks. These
technologies address climate driven challenges while aligning
with consumer demands for sustainability and efficiency (1).
Labor shortages, aggravated by aged workforces and seasonal
labour dependencies, further accelerate automation. Robotic
harvesters and pruners now perform tasks with human level
precision using computer vision and machine learning,
mitigating workforce gaps (2). The vineyards are adopting data
driven platforms to reduce chemical use and carbon footprints
(3). Real time monitoring of soil health, microclimates and vine
vigour enables precise irrigation and resource management. Al-

driven innovations are central to this shift, with Convolutional
Regulatory frameworks, especially in regions with strict
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agricultural policies, struggle to keep pace with technological
advances, creating gaps between innovation and governance.
Concurrently, concerns over data privacy and algorithmic bias
reduce trust in Al tools, further slowing adoption (7). Hybrid
human Al systems combining machine learning with growers’
expertise could improve adaptability across diverse vineyards
(8). Advances in edge computing and 5G may decentralize data
processing, enabling real time responses to environmental
shifts, while blockchain could enhance supply chain
transparency (9). CRISPR-based biomarkers integrated with Al
might revolutionize vine breeding, tailoring crops for climate
resilience and merging genomics with precision agriculture
(10). Yet it needs scalable sustainability demands and systemic
change. Interdisciplinary collaboration, policy updates and
subsidies are vital to democratize access to automation,
preventing small-scale producers from being sidelined in
viticulture’s digital transformation (11). Without reasonable
solutions, the sector risks deepening differences even as it
follows innovation. The historical timeline of automation in
viticulture is conceptualized in Fig. 1.

Al and machine learning

Al and machine learning are revolutionizing vineyard
management by addressing critical challenges in disease
detection and yield optimization. The biotic stressors like
powdery mildew and pest infestations which causes the loss of
10 billion dollars annually in wine industry, which drives
demand for Al solutions (12). Hyperspectral imaging, which
enables non-destructive vine health monitoring by capturing
spectral images linked to chlorophyll loss, cellular damage and
pest activity across visible, NIR and thermal wavelengths (13).
The CNNs trained on multispectral data now identify mildew
outbreaks 7-10 days before symptoms appear with >90 %
accuracy, enabling targeted fungicide use that reduces
chemical applications by 25 % (14). Integrating drone-collected
hyperspectral imagery with loT microclimate sensors (e.g., soil
moisture monitors) strengthens disease prediction by
correlating risks with environmental factors like leaf wetness
duration (15). Privacy concerns are being addressed through
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collaborative Al training across vineyards, which enhances
predictive accuracy without sharing sensitive data, while Al-
trained systems have also advanced vyield forecasting
(16). Vision Transformers (ViTs) a breakthrough in deep
learning which outperform CNNs by using self-attention
mechanisms to analyse spatial relationships between grape
clusters and canopy structures, achieving <5 % error in yield
predictions (17). For example, as detailed in a 2023 study which
uses VIiT systems trained on drone captured RGB and NIR
images to predict Cabernet Sauvignon yields with 93 %
accuracy by assessing berry size, colour consistency and
occlusion patterns (18). Additionally, Reinforcement Learning
(RL) algorithms are used to simulate vineyard responses to
pruning and climatic conditions, enabling dynamic
adjustments to yield forecasts as conditions change (19).
Together, these innovations go with Al's transformative
potential by merging hyperspectral imaging, loT networks and
advanced algorithms, viticulture can achieve precision
agriculture that balances economic viability —with
environmental sustainability. Table 1 depicts the comparison
of Al models for disease detection.

Al driven irrigation and fertilization systems now reduce
water and chemical use by 20-30 % while maintaining grape
quality, balancing sustainability and cost-efficiency (27). Machine
learning models like random forests which integrate soil
moisture sensors, weather forecasts and evapotranspiration
rates to create real time irrigation schedules that prevent over
watering and nutrient loss (28). For example, in Napa Valley, Al
powered drip systems reduce water use by 28 % during droughts
by aligning irrigation with vine growth stages and soil conditions.
Al guided fertilization systems use electromagnetic soil maps and
sap flow sensors to deliver precise nutrient doses, reducing
nitrogen use by 22 % without any reduction in yields (29). Edge
computing enables on device Al processing, overcoming latency
and bandwidth issues in remote vineyards (30). Robotic
platforms are also addressing labour shortages with well-
equipped knowledge in it. Autonomous harvesters equipped
with LiDAR and stereo vision navigate vines with centimetre
precision, while soft grippers minimize berry damage (31).
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Fig.1. Historical timeline of automation in viticulture.
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Table 1. Comparison of Al models for disease detection

Model Accuracy Deployment Scalability Key Features Disease Detected References

; . . Residual blocks prevent overfitting; ~ Black Rot, Powdery
ResNet-50 98.2% High (cloud/edge hybrid) integrates with vineyard loT sensors. Mildew (20)

Real-time detection (25 sec/ha);
YOLOv4 97.5% High (drone-based) processes RGB + thermal imagery for Downy Mildew, Esca (21)
canopy analysis.
Lightweight design for field use; depth- :
MobileNet-V2 95.8 % High (smartphone/edge) wise convolutions reduce compute Powl_cle%rfysl\gg?clew, (22)
needs.
Vision Transformer Self-attention detects subtle symptoms; Early-stage Powdery
(VIT) 96.7% Low (GPU-dependent) requires high-res imagery (>10MP). Mildew (23)
Region Proposal Network (RPN) for  Black Rot, Botrytis
- 0, -

Faster R-CNN 94.3 % Moderate (server-based) precise lesion localization. Bunch Rot (24)
Federated Learning : : y Decentralized training across vineyards; -
(ResNet-34) I1.1% High (privacy-focused) preserves grower data confidentiality. Downy Mildew (25)
Agrinet (Hybrid o : Combines multispectral imaging + CNN;  Esca, Pierce’s
CNN) 99.0% Moderate (oT-enabled) detects asymptomatic infections. Disease (26)

Pruning robots, such as the EU funded Vine Robot, mimic
expert decision-making through deep RL, achieving 85 %
accuracy in identifying optimal pruning sites (32).

Emerging approaches like swarm robotics, deploy fleets
of small robots with CNN-based weed detection to apply micro
doses of herbicides (33). Wireless Sensor Networks (WSNs) and
loT platforms support these advances (34). Low-power
networks such as LoRaWAN transmit data from soil probes to
enable real-time difference detection, while blockchain
platforms ensure data integrity for certifications, including
organic labelling (35). The high costs (€20000-50000 per hectare
for sensor-robot systems) and technical complexity limit small-
scale adoption (36). Interoperability gaps between proprietary
Al platforms and legacy equipment complicate integration (37).
Neuromorphic computing could democratize automation by
enabling energy efficient Al models for edge devices, while
these innovations promise transformative efficiency, equitable
adoption hinges on lowering costs and simplifying systems for
diverse vineyard operations (38). Fig. 2 shows the integrated
architecture of advancement in automation for sustainable
viticulture.

Robotics and autonomous systems

Autonomous tractors like John Deere’s 8R series are
revolutionizing vineyard operations. Equipped with six stereo
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camera pairs and Al driven neural networks, these machines
detect obstacles in 360° and operate with precision within one
inch, enabling fully automated tillage and soil management
(39). The system’s neural network processes visualize the data
in under 100 milli second which distinguish terrain from
hazards like rocks or workers (40). Farmers manage these
tractors through the John Deere Operations Centre, where
preloaded tillage plans and real-time adjustments maximize
efficiency during critical weather conditions (41). Deer’s
autonomy 2.0 system helps in precision spraying of chemicals
to the orchard and it is monitored with the help of stereoscopic
cameras for spray depth perception and it also increases the
speed of application by 40 % (42). The robotic harvesters are
overcoming precision challenges (43).

Jiangsu University’s dual arm robot achieves an 83 %
success rate using depth-sensing cameras and a "sequential
mirroring method" to map grape clusters spatially, harvesting
bunches in just 9 sec. A prototype developed by Extend
Robotics and Queen Mary University that uses Al sensors and
pressure-sensitive grippers to assess grape ripeness via sugar
levels, enabling 24/7 harvesting through remote VR operators
(44). These innovations address labour shortages in regions like
Napa Valley and Essex, where manual harvesting costs exceed
$6480 per tonne for premium grapes. Steep slope vineyards,
comprising 30 % of Europe’s wine growing land, require
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Fig. 2. Integrated system architecture for viticulture.

Plant Science Today, ISSN 2348-1900 (online)



MOGANAPATHI ET AL

specialized automation. Projects like HEKTOR’s LAAR combine
aerial and ground robots with LiDAR and multispectral sensors
to navigate slopes over 30°, performing precision spraying
while reducing soil compaction which is critical for preserving
terroir (45). For example, Westside equipment’s VMECH Chariot
pruner adapts to complex trellis systems, covering 3 acres/hr
with Al vision that cuts pruning costs by $600 per acre. Such
systems are vital in regions like Germany’s Mosel Valley, where
steep terrain makes manual labour extraordinarily expensive.
These advancements illustrate automation’s transformative
role, merging Al, robotics and real time data to address labour,
terrain and efficiency challenges. However, scalability hinges
on cost reduction and adaptability to diverse vineyard
architectures.

Postharvest automation is transforming winemaking
through enhanced uniformity and efficiency. Recent studies
demonstrate that Al controlled fermenters use loT sensors to
monitor temperature, pH and sugar levels in real time,
dynamically optimizing fermentation to replicate ideal
microbial conditions (1). For example, Prospero equipment’s
UNICA Electro Pneumatic filling valve, deployed in GAI
Monoblock bottling systems, maintains volumetric precision of
+ 0.5 % under pressures ranging from 0 - 6 BAR. This allows
wineries to package both still and sparkling wines on a single
line while minimizing oxidation risks. Blockchain integration
further boosts transparency, as shown by platforms enabling
consumers to scan QR codes for verified organic certification
and carbon footprint data a feature increasingly prioritized by
eco-conscious markets (46). Despite these innovations,
adoption barriers also persist. Autonomous systems such as
the 8R tractor require investments of $20000-50000 per
hectare, excluding retrofitting costs, which strains small-scale
growers who lack the technical expertise to merge Al platforms
with older machinery (47). Regulatory frameworks also lag
behind technological progress; EU policies, for instance, lack
clear guidelines for Al liability and data privacy (48). The shift
toward Al, robotics and precision tools are redefining
viticulture as a sustainable, data centric industry. While costs
and technical complexity remain challenges, interdisciplinary
collaboration and updated policies are critical to democratize
access and strengthen ecological resilience. As climate
pressures escalate, these advancements promise not only to

Table 2. Regional adoption trends for viticulture

safeguard wine production but also to model sustainable
practices for broader agriculture.

loT and sensor networks in viticulture

loT networks equipped with soil moisture, temperature and
humidity sensors provide real-time data essential for precision
irrigation and disease prevention. As demonstrated in recent
studies, Time-Domain Reflectometry (TDR) and capacitance-
based sensors are widely adopted for soil moisture monitoring
due to their accuracy and durability (49). For example, IoT -
guided irrigation reduce water use by 20-30 % in Cabernet
Sauvignon vineyards without affecting yield (50). WSNs further
enhance microclimate monitoring by tracking canopy-level
humidity and temperature, which are critical for predicting
fungal outbreaks like powdery mildew. A study in Tuscany
revealed that hyperlocal humidity data from IoT nodes
improved disease prediction accuracy by 40 % compared to
regional weather stations (51). To address power limitations in
rural vineyards, Low Power Wide-Area Network (LPWAN)
protocols such as LoRaWAN and NB loT enable energy efficient,
long range data transmission (52). Sensor fusion combines
data from ground sensors, drones and satellites to create
comprehensive vineyard health models. Ground based loT
nodes deliver frequent updates, while drones equipped with
multispectral cameras capture spatial variability in chlorophyll
content (e.g., NDVI) at resolutions up to 5 cm/pixel (53). Satellite
platforms like Sentinel-2 complement these datasets with
thermal and spectral imagery, enabling water stress detection
across large estates (54). Machine learning algorithms, such as
CNNs, integrate these inputs to generate 3D health maps. A
hybrid model combining soil moisture data, drone derived
NDVI and satellite thermal imagery achieved 92 % accuracy in
predicting grapevine water stress during a Napa Valley trial
(55). Kalman screens Bayesian networks further refine data
reliability by reconciling discrepancies between sensor types
(56). Emerging solutions like solar powered loT nodes and
energy harvesting sensors are extending deployment longevity
(57), while standardized data formats (e.g., ISO 11783 for
agricultural machinery) ensure system scalability (58). Modular,
open-source hardware, such as Raspberry Pi based sensors,
could democratize access for small scale growers, bridging the
gap between advanced technology and practical
implementation. Table 2 indicates the regional adoption trends

Key Driver (Policy/

Region Leading Technology Adoption Rate Climate) Sustainability Priority References
Napa Valley, USA Al-driven harvest robots 85 % large estates Labor shortages Water conservation (59)
Bordeaux, France Satellite NDVI monitoring 70 % cooperatives EU subsidy programs Carbon neutrality (60)
Mendoza, Argentina UAV-based disease detection 50 % mid-sized Drought resilience Soil health (61)
23;?rs,§ﬁaValley, Autonomous pruning systems 65 % Heatwave adaptation Energy efficiency (62)
gf%fg,sgﬁrﬁe, 'v3iTnSe?5Li??f;ggn’f%?}ﬁ?ﬁﬁﬁ T 40% Solarss % Stotesubsidies,wine  Water conservationand

Karnataka (Nandi GPS-guided harvesters, blockchain

Blockchain: 25 %

Carbon footprint

Hills, Bengaluru e - ; (premium wineries); Progressive excise policies . -
Rural) traceability, Al-driven analytics Al: Pilot stage tracking
Low (<10 %); S
: . . : Y Government grants for Biodiversity
Himachal Pradesh Drone-based NDVI imaging, exvpﬁg;;?ggal "sparkling wine hub," conservation -

Telangana/Andhra
Pradesh

Satellite yield monitoring, drought-
resistant rootstocks

Very low (<15 %);
state-supported
pilots

State subsidies, corporate Rainwater harvesting,
expansions soil health management
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for grape growing.
Remote sensing and imaging

Recent advancements in remote sensing which have
transformed vineyard sustainability by enabling precise, data
driven management. Hyperspectral Imaging (HSI), a non-
destructive tool which analyses grape quality by capturing
spectral data across 350-2500 nm wavelengths which detect
biochemical variations linked to maturity. As shown in recent
studies Partial Least Squares-Discriminant Analysis (PLS-DA)
models effectively process these datasets, achieving over 90 %
accuracy in predicting Total Soluble Solids content (TSS) for
cultivars like Cabernet Sauvignon (63). For instance, HSI-
trained PLS-DA models non-destructively predict SSC with a
Root Mean Square Error (RMSE) of 0.8°Brix which outperform
traditional destructive methods. This approach also quantifies
anthocyanins and pH levels and offers growers appropriate
idea about grape quality. By analysing hundreds of spectral
bands, HSI identifies suitable biochemical shifts which enables
targeted harvesting and reduction of waste. Such innovations
highlight the spectral technologies are replacing labour
intensive practices, advancing both precision viticulture and
ecological sustainability. Fig. 3 depicts the Al driven decision
makings systems in viticulture.

Precision technologies enable growers to optimize
harvest timing, reduce waste and improve resource efficiency.
Building on ground-based methods, Unmanned Aerial Vehicles
(UAVs) equipped with LiDAR and multispectral cameras offer
scalable vineyard monitoring. Studies highlight LiDAR’s role in
canopy management: its high resolution 3D mapping
quantifies Leaf Area Index (LAI) and identifies areas require
pruning or leaf removal, improving sunlight penetration and air
circulation which is a critical strategy for mitigating fungal
diseases like powdery mildew (64). Meanwhile, multispectral
cameras detect early pest and environmental stresses using
vegetation indices such as the Normalized Difference
Vegetation Index (NDVI), which measures plant health and the
Photochemical Reflectance Index (PRI), which tracks
photosynthetic activity. For example, a previous study used

UAV-derived NDVI to map vine vigour variability, linking it to
Botrytis cinerea susceptibility and reducing fungicide use by 30 %
through targeted spraying (65). Integrating LiDAR and
multispectral data further enhances precision. Recent trials in
Bordeaux vineyards demonstrated that machine learning
algorithms combining these data sets and predict yield
variability with less than 5 % error (66). By combining
hyperspectral, LIDAR and multispectral insights, growers gain a
multi-layered understanding of vineyard health, enabling
interventions that minimize chemical inputs and conserve water.
These advancements not only refine agricultural practices but
also strengthen ecological resilience for sustainable viticulture.

Data-driven decision support systems

The integration of digital twins and blockchain technology is
revolutionizing sustainable viticulture by enhancing precision,
transparency and climate resilience. Digital twins’ dynamic
virtual models of vineyards leverage real-time data from loT
sensors, weather stations and remote sensing to simulate
vineyard responses to environmental and management
variables. For example, a Napa Valley case study demonstrated
that digital twins integrating soil moisture, microclimate and
canopy data predicted irrigation needs and disease risks
(e.g., Plasmopara viticola) with 92 % accuracy, reducing water
use by 25 % and fungicide applications by 18 %. These systems
employ machine learning algorithms, such as Recurrent Neural
Networks (RNNs), to forecast yield variability and nutrient
deficiencies weeks in advance, enabling proactive
interventions (67). Concurrently, blockchain technology
ensures supply chain transparency by immutably recording
data from grape maturity to distribution. Smart contracts
automate compliance with sustainability certifications (e.g.,
ISO 14001) by validating practices like organic pest control or
carbon-neutral harvesting. A 2023 Bordeaux pilot study
illustrated blockchain’s potential: tracking grape quality
metrics (e.g., sugar content, pH) and pesticide residues allowed
consumers to verify authenticity via QR codes, cutting wine
fraud by 40 %. Furthermore, blockchain data combined with
digital twins enhances predictive analytics. For instance, a

0 Inputs Spdr
g B

L \
Historical Yield

@m‘“‘m&’%ﬁ o
\_

-, Soil Moisture Data 9 =
e

= k4

Weather Forecasts

Al- Driven Decision Making

ML models
I@‘-

rem.
A "@’Auionablu
'0{ Insights
y\ n;ﬂ:ﬁm‘um o Outputs :ﬁ-’
schoduling & O
Die o) ﬁ_r“f Spray AN
52 ALl T '*.:::."".:.'T"l,n"""’"h.g
S ﬁ
Systematic
fertigation
Scheduling
|

Fig. 3. Al-Driven decision making in viticulture.

Plant Science Today, ISSN 2348-1900 (online)



MOGANAPATHI ET AL

hybrid model linking historical blockchain records (e.g., harvest
dates, fermentation conditions) with real-time sensor inputs
improved vintage forecasts and predicted terroir-driven flavour
profiles with 89 % accuracy compared to some earlier
assessments (68). This synergy minimizes resource waste while
increasing market accountability. Digital twins optimize
irrigation and disease management, directly supporting water
conservation and chemical reduction. Blockchain’s traceability
re-assures consumers about sustainable practices, from organic
farming to carbon-neutral logistics. Together, these technologies
create auditable, climate-resilient supply chains, aligning
viticulture with global sustainability goals. By merging predictive
analytics with immutable records, stakeholders gain actionable
insights while fostering trust a critical advantage in an industry
increasingly pressured by ecological and regulatory demands.

Sustainability and resource efficiency

The convergence of automation and precision technologies is
reshaping viticulture’s ecological footprint by advancing water
conservation, carbon neutrality and circular resource systems.
Precision irrigation systems, for instance, combine loT soil
moisture sensors with Al-driven predictive models to reduce
water use by 15-25 % in arid regions like California and Spain. A
recent study demonstrated this in Tempranillo vineyards, where
Variable-Rate Irrigation (VRI) systems using real time
evapotranspiration data and HSI reduce water consumption by
22 % without compromising yield and grape quality (69). These
systems dynamically adjust irrigation schedules using machine
learning, responding to microclimatic shifts detected by in canopy
sensors (70). Meanwhile, solar-powered robotics are reducing
carbon emissions by replacing fossil fuel-dependent equipment.
Autonomous platforms like the Vinbot, powered by photovoltaic
energy, perform tasks such as weeding and pruning.

Trials in Bordeaux vineyards showed such robots
reduce CO, emissions by 1.2 tonnes per hectare annually (71).
Regenerative practices further enhance sustainability with Al
guided cover cropping and no till farming, tested in Tuscany,
which increased soil organic carbon by 30 % over five years by
using drones to seed nitrogen fixing legumes between vine
rows (72). Circular economy principles are also gaining traction
through Al driven waste reduction. Computer vision equipped
robotic harvesters, for example, limit grape spillage to less than
3 % far below the 15 % typical of manual harvesting. In Napa
Valley, Al algorithms repurpose pruning waste into biochar or
compost, diverting 90 % of organic waste from landfills (73).
Deep learning models like CNNs analyse drone imagery to

Table 3. Cost-benefit analysis of robotic systems in Indian vineyards

identify underutilized biomass for conversion into biofertilizers,
reducing synthetic fertilizer use by 40 % (74). Together, these
innovations precision irrigation, decarbonized robotics and Al-
driven circularity show how automation can align viticulture
with planetary boundaries. By optimizing water use, cutting
emissions and stopping resource loops, the sector achieves
resource efficiency without sacrificing productivity. This
integration of technology not only addresses immediate
environmental challenges but also builds a framework for long
term ecological resilience, proving that sustainability and
productivity can coexist in modern agriculture. Table 3 describes
the cost benefit analysis of robotic systemsin Indian viticulture.

Challenges and limitations

Despite the transformative potential of automation in
viticulture, its widespread adoption faces significant barriers
rooted in cost, technical complexity and cultural resistance.
Cost barriers remain a critical hurdle, particularly for small and
medium sized vineyards. For instance, Al driven robotic
systems, such as autonomous harvesters with advanced
computer vision, can exceed $150000 per unit, while precision
irrigation systems integrating loT sensors and machine
learning models require high investments in hardware and
software infrastructure (83). While long term savings in labour,
water and pesticide use are well documented, the initial capital
outlay often strains budgets, especially in regions with
fragmented land ownership or limited access to financing.
Even solar powered solutions, though reducing operational
costs by 40-70 % over time, demand significant upfront
expenditures, with payback periods of 5-7 years posing risks for
cash - flow - sensitive operations.

Technical complexity further complicates implementation,
as integrating heterogeneous data streams from HSI, LiDAR and
loT sensors into unified Al models requires robust and alternate
standards and scalable cloud architectures. For example, deep
learning models for yield prediction must harmonize real time
drone imagery with historical climate data and soil health metrics,
yet inconsistencies in data formats and sampling frequencies
often degrade model accuracy (84). Additionally, scaling Al
solutions across diverse terroirs remains challenging; neural
networks trained on Tempranillo vineyards in Spain may fail to
generalize to Pinot Noir crops in Oregon due to variations in
canopy structure and microclimates. Adoption hesitancy, driven
by the tension between tradition and innovation, further hinders
the progress. Many small scale winemakers view automation as
a threat to artisanal practices and the concept of terroir, with

Factor Large Vineyards Small Vineyards References
nialinvestment 1135 L8 1o et 9Bt (Tgh pfiontcost TI5 01akh per obof esepgiaredownestip 7
Labor Cost Reduction Savreesp?lg-c%r?glzlfg/sﬁeaas;%earl tf)c?riggs by Saves %1.5-3 lakh/year; ll'gggasr.assist but rarely replace (76)
Scalability High: Modutl:Srkssyztcerr;wsss(seé%;I;gglgf)t) manage Limited by terrain; sggl_laecrrreosl%ttss.(e.g., Krishibot) suit (77)
precison s Vietd impact  A-11S1 TE20n booseyild by 15,20% Moderateild gans (-1010) KOl bges e g
Environmental Benefits 30-50 %;ée;gi;cligvigfggicltcig&(;:(\:/teiz:.2—4 lakh/ 20-30% water;g\égno%s_vliésl?gk—rg]y;ggs.systems (saves (79)
Maintenance & Traning  LIUOKeEp SS5 20 10 180001 Troming chalenges S S akvearupieen g
Regulatory Chatlenges  COPRACe NI Satedoncfoutonomous | Feweregulations but mitedsubsdies o, oy
ROI Timeline 3-5 years (labour + yield savings offset costs). 7-10 years (dependent on subsidies or shared leasing). (82)
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surveys indicating that 60 % of family owned European vineyards
prioritize manual methods to preserve heritage (85). This cultural
resistance is compounded by workforce with reduced skills in
operators often lack training in Al analytics or robotics
maintenance, leading to underutilization of advanced systems
(86). However, hybrid approaches such as Italy’s Antinori vineyard,
which combines robotic harvesters with manual quality checks
demonstrate that tradition and technology can coexist. Similarly,
phased implementation strategies, as seen in North Carolina solar
adoption programs, allow gradual integration of automation while
preserving legacy workflows. Addressing these challenges
demands collaborative frameworks, which incentivizing research
and development tax credits, standardizing data protocols and
fostering partnerships between tech developers and viticultural
communities to ensure solutions align with ecological and cultural
priorities (87). Table 4 explains the Al enabled institutes in globe
and in India for viticulture.

Conclusion

Automation is transforming viticulture by combining precision,
efficiency and environmental conditions which sets a new
standard for sustainable farming. Technologies like advanced
imaging, Al powered irrigation and solar robots have already
shown impressive results which reduce water use by 15-25 %,
lower carbon emissions by 1.2 tonnes per hectare and reuse 90
% of vineyard waste. However, success depends on experts
from different fields like agronomy, technology and
engineering working together to solve challenges like
incompatible sensors or overly complex Al models. For
example, Al tools designed for vineyards must be adjusted by
local growers to match unique soil and climate conditions.
Moving forward, efforts should focus on making these
technologies affordable for small farms and ensuring they are
used ethically, protecting both workers and ecosystems.
Programs like the EU’s ClimateViti, which encourages sharing
data openly, show how fair innovation can thrive. The future of
viticulture lies in combining smart robots, climate-ready digital
tools and supportive policies like grants for eco-friendly
technology. By implementing innovation and accepting tradition
and nature, the wine industry can meet global sustainability

Table 4. Al enabled institutes in globe and in India for viticulture

goals and keep its rich heritage alive in a greener world.
Future directions

The integration of Al, robotics and precision technologies in
viticulture is poised to accelerate, driven by evolving climate
challenges, technological democratization and collaborative
innovation. The democratization of Al is essential to empower
small and medium sized vineyards, which constitute over 70 %
of global wine production. Recent advancements focus on
reducing cost and complexity through tools like Microsoft’s
FarmVibes.Al enable growers to build custom models without
coding expertise, using drag-and-drop interfaces to predict
yield or disease risks. Cornell’s PhytoPatholoBot (PPB) now offers
a subscription model at $50 per month, providing small vineyards
with hyperspectral disease alerts via SMS, cutting fungicide costs
by 40 % (92). Next generation robotics will leverage decentralized
coordination to enhance efficiency. ltaly’s VitiSwarm project uses
50+ drones with YOLOV7 vision to map 100 hectare vineyards in <2
hours, sharing data via mesh networks to optimize pruning routes
(93). California’s VineCoord system pairs ground robots for soil
sampling with aerial drones for NDVI mapping, synchronized via
federated learning. Trials in Napa achieved 95 % yield
prediction accuracy (94). Bordeaux’s WineChain platform
automates payment to robot fleets using smart contracts,
validated by loT data on task completion (e.g., canopy density
<0.8 LAI) (95). Latency in multi-robot communication remains a
bottleneck. Recent advances in 6G based Digital Twin
networks, however, cut latency to <5 ms, enabling real-time
replanning during harvest (92). The EU’s GreenViti program
offers €15000 per hectare grants for solar-powered robots,
contingent on achieving 30 % pesticide reduction. Similarly,
California’s SAFE Viticulture initiative funds 50 % of Al tool costs
for organic-certified vineyards (96).
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S.No Institution Technology Application References
Al-driven disease prediction - . .
. . ‘ . Implements computer vision for early disease detection
1. University of Cadiz (Spain) mﬁgf\l/se?t?gga:;;r:;tsed and robotic harvesters with real-time quality grading. (88)
2 University of Melbourne IoT sensor networks + ML~ Monitors vine water status using hyperspectral drones and (89)
* (Australia) algorithms detects smoke taint via e-noses.
3. INRAE & VINITECH (France) Big data analytics integrated Processes multi-year agronomic data for disease (90)

with vineyard DSS

4, Wine Tech Israel Autonomous vineyard robots

ICAR-National Research
Centre for Grapes (Pune)

Image-based Al disease
detection

6 Tamil Nadu Agricultural

University (Coimbatore) Satellite remote sensing + Al

7. VIT Vellore & IIT Bombay ML-based irrigation models

forecasting (e.g., powdery mildew) and resource allocation

Deploys Al-guided robots for precision pruning and

targeted spraying, cutting chemical usage by 35 % (91)
Mobile systems diagnosing powdery mildew/pests with (91)
89 % accuracy, reducing yield losses by 22 %.
Analyzes Sentinel-2 imagery for vigor mapping and yield (61)
prediction in Tamil Nadu vineyards.
Predictive algorithms using soil moisture/temperature (90)

sensors to optimize water use in Nashik vineyards.
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