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Introduction 

Plants play a fundamental role in human life and development, 

providing humans with basic and essential needs (1). In this context, 

agriculture is a key component of global food sustainability. However, 

the increasing demand for food, combined with the impacts of climate 

change, has resulted in insufficient irrigation, negatively affecting plant 

and crop ecosystems. Extreme environmental conditions, such as 

drought, temperature, salinity and excess or deficit of water, cause 

abiotic stress in plants, significantly reducing their productivity (2).  

 Currently, agriculture consumes approximately 70 % of global 
freshwater and uses nearly 30 % of fertilizers, making it the largest 

water-consuming sector worldwide (3, 4). It is estimated that more 

than 60 % of agricultural areas experience water-stress, resulting in 

inefficient water use. Projections indicate that by 2025, water demand 

in agricultural fields will increase by approximately 60 %, leading to 

water shortages, reduced crop yields and agricultural losses (5). This 

challenge is characterized by declining soil moisture and limited water 

retention capacity is considered a major obstacle for modern 

agriculture. To mitigate these constraints, farmers have increasingly 

relied on fertilizers to boost crop productivity; however, excessive 

fertilizer use has generated serious environmental impacts (6).  

 

 A biostimulant is defined as a substance that improves 

nutrient absorption, assimilation and use efficiency, while also 

enhancing plant tolerance to abiotic stress and promoting higher crop 

yields from germination through fruiting (7, 8). The use of these 

biostimulants enhances plant performance and quality, including 

sugars, color and firmness, while reducing environmental impacts (9).  

Among these, hydrogels stand out as a promising alternative 

biostimulant technology, offering self-irrigation capability, high 

efficiency and slow release of water and nutrients, particularly in arid 

and semi-arid regions.  

 Hydrogels are biodegradable, crosslinked polymers networks 

capable of retaining large amounts of water and nutrients, gradually 

releasing them into the root zone based on plant uptake (10-12). This 

capacity helps reduce water stress and can significantly decrease 

irrigation requirements, making hydrogels a valuable tool for 

agriculture, forestry and horticulture (13, 14). Previous studies have 

shown that hydrogels prolong plant survival and improve 

morphological and physiological traits under drought conditions (13, 

15).  

 The global use of hydrogels in agriculture has shown sustained 

growth. According to Global Growth Insights, approximately 15 % of 

the hydrogel market is devoted to agricultural applications, with 
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a comprehensive, critical and objective overview of the use of hydrogels in sustainable agriculture as an innovative solution to climate change, 
soil degradation and water scarcity. It also highlights the benefits of hydrogels in water retention, nutrient release, plant and crop 

performance and hydraulic stress mitigation, adopting an ecological perspective. Furthermore, it summarizes the most recent advances 

research reported in the Elsevier and Google Scholar databases, emphasizing the most relevant findings related to the application of 

hydrogels in sustainable agriculture. 

Keywords: agronomy; biostimulants; hydrogel applications; sustainable agriculture; water retention 

http://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://crossmark.crossref.org/dialog/?doi=10.14719/pst.9812&domain=horizonepublishing.com
https://doi.org/10.14719/pst.9812
mailto:rinarro@uadec.edu.mx
https://doi.org/10.14719/pst.9812


ANA ET AL  2     

https://plantsciencetoday.online 

reported increase of up to 50 % in irrigation efficiency and more than 

40 % in soil moisture retention (16). The hydrogel market is projected 

to reach USD 4641.5 million in 2024, with an annual growth rate of 

approximately 6.9 % for the period 2025-2030 (17). Although the 

benefits are promising, the implementation of hydrogels faces 

challenges related to performance variability, initial costs and 

environmental concerns, prompting the development of 

biodegradable hydrogels formulations to optimize their use in 

sustainable agriculture (18). 

Objectives and methodology 

This work focused on an exhaustive literature search and analysis, 
highlighting the use of hydrogels and the advantages of their 

application in agriculture, with the goal of improving soil quality and 

promoting crop growth. The most recent advances in hydrogel 

research reported in the Elsevier and Google Scholar databases were 

summarized, highlighting the most relevant findings related to 

sustainable agricultural applications. 

Characteristics of hydrogels   

Hydrogels are three-dimensional polymeric networks capable of 
absorbing large quantities of water or biological fluids without losing 

their original structure, allowing them to swell until they reach 

equilibrium (19). The three-dimensional network of hydrogels is 

composed of homopolymers or copolymers, cross-linked 

physicochemically, which makes them insoluble in water yet highly 

hydrophilic (Fig. 1). Owing to this composition, hydrogels have 

remarkable properties: they can easily adapt to different shapes and 

sizes depending on the environmental conditions; they are 

biocompatible, biodegradable, flexible, easy to modify and respond 

to pH changes (20). In addition, they are capable of releasing active 

ingredients in a controlled and timely manner. Hydrogels may be of 

natural or synthetic origin (21, 22).  

 Depending on their origin, hydrogels can be classified into 

two main groups, natural hydrogels, derived from polysaccharides 

such as alginates, agarose and chitin and synthetic hydrogels, 

produced from polymers such as polyacrylate or polyacrylamide, 

which offer greater stability and durability under demanding 

conditions (22). This versatility in origin and functionality greatly 

expands their potential uses in agriculture and other sectors (23).  

 Hydrogels designed for controlled release, function based on 

the rate of water migration rate into the hydrogel (hydration and 

relaxation) (Fig. 2). This mechanism allows the hydrogel to swell 

progressively, facilitating the dissolution of the active ingredient 

contained within its matrix and its subsequent diffusion to the 

outside (24). This property is especially useful in agricultural and 

biomedical applications where a prolonged or localized delivery of 

active compounds is required.  

 The versatility of hydrogels is essential in the agricultural 

sector, positioning them as an innovative solution for optimizing 

resources and improving crop yield. In this context, hydrogels have 

been used as an effective strategy to act as a water supply for plants 

and growing media, especially in regions with water scarcity, 

constituting one of the most important advances in modern 

agriculture (14). Agricultural hydrogels have proven effective in seed 

germination, root development, increased crop yield and reduced 

nutrient leaching, with high potential as a valuable tool in 

sustainable agricultural management. For these reasons, their use 

has increased not only as soil amendments but also as components 

of efficient irrigation systems (25).  

 In addition to soil application, hydrogels can be used directly 
on seeds to promote germination, either as seed coatings, root dips 

or immobilization matrices for delivering growth regulators or crop 

protection agents (Fig. 3) (26). The use of hydrogels has also been 

improve various soil properties, such as permeability, density, 

structure, texture, evaporation rates and water infiltration through 

the soil, while reducing erosion and water runoff by enhancing soil 

aeration and microbial activity (14).  

Water efficiency of hydrogels  

Hydrogels used in agriculture represent are an innovative tool with 

high potential for improving soil quality, promoting root 

development, conserving water and increasing plant resistance to 

water stress. These polymeric matrices maintain optimal moisture 

conditions in the rhizosphere, significantly reducing nutrient loss 

through leaching.  

Fig. 1. Components of hydrogels.  

Fig. 2. Release of the active ingredient from the hydrogel. 

Fig. 3. Use of hydrogels in the germination process.  
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 The use of hydrogels in agricultural fields represents a high 

initial investment (approximately $160 USD), which varies 

depending on the application rate (2–5 kg/ha). However, this 

investments to prove economically beneficial in the medium and 

long term by, improving water and nutrient retention in the soil and 

significantly reducing irrigation requirements, thus significantly 

contributing to crop growth and yield (27, 28). 

 This ability not only favors plant growth but also promotes 

the proliferation of beneficial microorganisms in the soil, which are 

essential for plant health and productivity (Fig. 4). Proper use of 

hydrogels can significantly reduce irrigation requirements, 

improving water use efficiency even under conditions of severe 

water stress. Furthermore, their properties make them a sustainable 

and environmentally friendly alternative, positioning hydrogels as an 

ecological solution to the challenges of climate change and water 

resource scarcity (29). Among the main properties and benefits of 

hydrogels applied in the agricultural sector are:  

Water absorption and retention: Maintains optimal water levels, 

promoting soil moisture and mitigating water scarcity (30).  

Nutrient absorption and release: Improves nutrient absorption 

and promotes crop growth and yield (30, 31). 

Irrigation reduction: By retaining water, hydrogels make irrigation 

more efficient and reduce water use (31).  

Drought resistance: Hydrogels help plants to tolerate prolonged 

drought conditions (30). 

Improves soil structure: Enhances aeration, reduces compaction 

and supports better root development (30). 

Extends the crop cycle: Maintains favorable growing conditions for 

longer periods, allowing for multiple harvests (31).  

Environmentally friendly: Retains water and nutrients, contributing 

to environmental conservation (32, 33).  

Compatibility with fertilizers and agrochemicals: Some types, such 

as potassium polyacrylate, integrate well into various management 

schemes (34).  

Reduction in soil erosion: Decreases surface runoff and improves 

water infiltration (32).  

Biocompatible and biodegradable: Many hydrogels are made with 

biodegradable materials, reducing environmental impact (33).  

Cost-effectiveness: By improving crop yields and reducing water use, 

hydrogels offer an economically viable option for farmers (32, 30).  

 The absorbent properties of hydrogels not only maintain soil 

moisture but also enable them to serve as carriers for minerals, 

biostimulants, fertilizers and other active ingredients (35, 36). Their 

application in planting media improves the integrity of the cell 

membrane and the water content of leaf tissues, reducing xylem and 

phloem obstruction during translocation, prolonging water 

availability in plants and increasing and increasing resilience to 

adverse environmental conditions.  

Mechanism of action of hydrogels 

Currently, the agronomic approach has incorporated the use of 

biostimulants, biofertilizers and bioactive products, whose purpose is 

to reduce the incidence of diseases and improve crop yield (37). A 

biostimulant is a substance or group of microorganisms that is applied 

to plants and enhances the efficiency of nutrient absorption and 

assimilation, improving and optimizing plant tolerance to biotic and 

abiotic stress and enhancing the agronomic properties of the soil. The 

positive impact of biostimulants extends from germination to fruiting 

(38, 39).  

 Within the category of biostimulants, hydrogels stand out as a 

promising alternative, as they help mitigate negative environmental 

effects by significantly reducing fertilizer and pesticide leaching, while 

simultaneously optimizing water use. Their application has been 

shown to improve key indicators of crop quality, including sugar 

content, firmness, coloration and nutrient bioavailability (6). Hydrogels 

also play a crucial role in reducing surface runoff and preventing soil 

erosion (40).  

 The mechanism of action of hydrogels is based on their ability 

to absorb large quantities of water through swelling, during which they 

increase volume and retain water within their three-dimensional 

structure. This stored water is gradually released according to the plant 

needs. By improving soil porosity and oxygenation, hydrogels 

stimulate root growth and reduce irrigation frequency. In this way, 

water is conserved and losses through evaporation or runoff is 

minimized (25).  

 The ability of hydrogels to retain and slowly release water 

promotes the development of more vigorous plants with greater leaf 

and root density, ultimately increasing yield and productivity. 

Hydrogels enable plants to tolerate prolonged drought and high 

salinity, while improving the soil's water absorption capacity (41, 42). 

This capacity helps delay wilting in arid environments, reducing the 

costs associated with crop losses. Hydrogels are widely used in 

agriculture due to their durability and contribution to soil stability 

without causing environmental harm, consolidating them as an 

innovative solution for reducing agrochemical use and promoting 

more sustainable agricultural production (43).   

 Furthermore, hydrogels protect and enhance the 

development of plants and seeds without compromising soil fertility. 

For these reasons, hydrogels are highly promising for the controlled 

Fig. 4. Mechanism of action of hydrogels.  
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release of fertilizers, as they optimize nutrient availability and reduce 

leaching losses. Their use in controlled-release fertilizer systems is 

especially valuable because it allows progressive nutrient dosing, 

minimizes leaching losses and improves plant uptake (44-46). 

Results and Discussion 

The most important and crucial phases of plant growth are seed 

germination and development, which are directly related to soil 

water availability. Hydrogels can be very useful, as they allow water 

storage and create reservoirs close to the plant root, which reduces 

water stress and improves soil osmotic moisture. This leads to a 

significant improvement in seed germination, root development, 

viability, ventilation and water uptake in plants, thus promoting their 

growth (43). In recent years, interest in developing hydrogels capable 

of improving plant and crop properties in the agricultural field. 

Below, various research projects addressing the use of hydrogels 

and their applications in agriculture are presented. The information 

presented is documentary and based on an exhaustive literature 

review, supported by publications in indexed journals, articles and 

reliable top-level sources related to the study.  

 The behavior of gelatin hydrogels crosslinked with poly 

acrylic acid, which were subsequently modified with carbon 

nanotubes, was reported in earlier studies (47). The resulting 

hydrogels were capable of absorbing water equivalent to 100 % of 

their weight, surpassing those without carbon nanotubes. The results 

demonstrated that hydrogels incorporating carbon nanotubes 

improve the efficiency of water absorption and gradual release, 

depending on exposure time to heat, making them ideal for 

agricultural applications (47).  

 A hydrogel based on poly (acrylamide-co-acrylic acid (AAm/

AAc)) crosslinked with silver-coated nanoclay was synthesized for 

sustainable agriculture (48). The AAm/AAc hydrogels showed greater 

swelling: 59.6 and 82.6 % of their weight at 15 and 30 days, 

respectively. These properties allowed for water saving and 

management by prolonging irrigation cycles, as well as reducing non

-biodegradable waste in the soil. These hydrogels can be used as 

water and nutrient regulators in agricultural systems (48).  

 Different doses of hydrogel and compost were evaluated for 

use as soil moisture retainers, along with their photosynthetic effects 

and impact on forage corn production (49). The concentrations used 

were 12.5 and 25 kg ha-1 applied to larger plots, followed by small 

plots where the compost dose was 0 and 20 t ha-1. The results 

showed that the photosynthetic activity of the forage corn plant 

increased 20.2 % and 28.0 % at concentrations of 12.5 and 25 kg ha-1, 

respectively. Likewise, fresh forage production increased from 19.5 t 

ha-1 in the control to 77.6 and 81.6 t ha⁻¹ with the aforementioned 

doses of hydrogel, evidencing its effectiveness in improving the soil 

in corn crops (49).  

 Hydrogels of polyvinylpyrrolidone (PVP) and 
carboxymethylcellulose (CMC) were prepared and subsequently 

loaded with fertilizers for application to corn plants (50). The results 

showed that varying the CMC content (PVP/CMC: 60/40) in the 

hydrogel increased swelling and improved water retention capacity 

for up to 9 days. PVP/CMC hydrogels present potential application as 

conditioners and controlled release systems for fertilizers in 

agricultural applications (50).  

 Likewise, a hydrogel was prepared by gamma irradiation of 

carboxymethylcellulose (CMC) and polyacrylamide (PAM) with the 

addition of olioalginate and nutrients, and subsequently analyzed as 

an immobilizer and nutrient reservoir for the growth of Chinese 

mustard (Brassica juncea) and lettuce (Lactuca sativa) in agriculture 

(51). This study showed that the synthesized hydrogel improved the 

seed germination of the plants (presented greater height when 

compared to the control) and controlled the humidity in the 

medium. This research shows PAM/CMC hydrogels as a hydroponic 

medium for the cultivation and germination of seeds, showing that 

their growth was improved in terms of root length, shoot height and 

total fresh biomass, being promising as a new technique for the 

production of safe vegetables with high yield and quality (51).  

 A hydrogel based on chitosan, gelatin, and polyvinyl alcohol 

was synthesized through cryogenic and chemical treatment, with 

subsequent incorporation of inulin to protect chili plants from 

microorganisms (52). The results of this work showed that the 

synthesized hydrogel presented biodegradability, with high porosity 

and crosslinking and also presented resistance against Phytophthora 

capsica, which is a pathogenic fungus that affects crops of the 

Solanaceae family such as peppers, chilies, tomatoes, eggplants and  

also cucurbits, causing economic losses. These hydrogels have great 

potential in agricultural applications such as agrochemical carriers 

and inducers in plant resistance treatments (52). 

 The growth of banana plantations was evaluated and their 

characteristics were determined using Aloe vera hydrogels and 

compound fertilizer (53). This work showed that incorporating A. 

vera into the hydrogel can improve the plant's ability to absorb 

fertilizer and increase its growth (53). 

 A hydrogel composed of calcium montmorillonite (NCMMt), 
PAAm (polyacrylamide compression), and CMC 

(carboxymethylcellulose) was developed and applied to tomato 

plants to evaluate its impact on growth and development (55). 

These hydrogels showed greater growth and development of 

tomato plants, by increasing height, stem diameter, leaf area and 

height/weight ratio, without presenting any toxic effect on this plant 

when compared to a control. Demonstrating that these hydrogels 

can be successfully applied in the agricultural area (54). 

 A biodegradable hydrogel composed of polyvinyl alcohol 

(PVA) and Premna oblongifolia Merr. (POM) extract was fabricated 

using glutaraldehyde as a crosslinker, and a zinc nitrate fertilizer 

solution was subsequently used to evaluate its absorption and 

release behavior (55). The absorption and release capacity of zinc 

nitrate shows 550 % in the water absorption capacity for 

approximately 3 weeks. PVA/POM hydrogels are a promising 

alternative as a material to absorb and subsequently release water in 

the field (55).  

 A potassium acrylate (PA)–based hydrogel was synthesized 

for use as a water reservoir to reduce fertilizer loss while maintaining 

tomato and cucumber production (4). The results indicated that 

these hydrogels represent an effective alternative for saving water 

and fertilizers, managing to conserve 747 ppm of nitrogen and 139 

ppm of phosphorus. These hydrogels are promising for increasing 

the yield of cucumber (2.3 kg m-2) and tomato (4.7 kg) crops, 

reducing water consumption (tomato 86 % and cucumber    47 %) 

and environmental impact, while maintaining plant quality (4). 

 Carrageenan/psyllium hydrogels incorporating 

montmorillonite were synthesized, resulting in an increase in soil 

water retention capacity from 0.533 to 0.836 g/g and an increase in 

soil water content by more than 60 % (56). The obtained results show 

carrageenan/psyllium hydrogels as an ecological and biodegradable 

https://plantsciencetoday.online
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alternative applied as an absorbent in agriculture (56).  

 A hydrogel in the form of Fe(III) alginate beads was 

developed to recover nutrients from agricultural waste and use 

them as fertilizers (57). Subsequently, they evaluated its efficiency in 

the nutrient release process and also  assessed the growth of tomato 

plants (Solanum lycopersicum). The developed hydrogels absorbed 

0.05 mg g-1 of NH₄ and NO₃ from 100 ppm solutions at pH 7, with a 

phosphate absorption greater than 80 % and an ammonium and 

nitrate absorption of approximately 30 %. The hydrogel beads 

promoted the growth of fruits and roots in the plant when compared 

to a conventional fertilizer solution, showing a controlled supply of 

nutrients for plants. These hydrogels are capable of being used in the 

agricultural field to improve the growth and formation of fruits in 

plants, as well as a slow-release natural fertilizer system and 

contribute to the mitigation of environmental problems (57).  

  Soybean product manufacturing waste (okara) was 

investigated as a soil supplement through the synthesis of okara 

hydrogels by grafting poly acrylic acid (PAA) crosslinked with N,N′-

methylenebisacrylamide (58). The Ok- PAA hydrogels showed an 

increase in the yield of the cultivated plants with an increase of 113 % 

when compared to the control. These hydrogels proved to be 

innovative with potential in agricultural and environmental 

applications (58).  

  A hydrogel composed of 96 % potassium polyacrylate was 

evaluated on purple corn crops at three application rates (50, 70, and 

90 kg ha-¹) compared with a control to assess corn plant 

development and yield (59).  The 90 kg concentration showed better 

yield and water retention with 6.50 ha-1 and less irrigation (8 

irrigations). These hydrogels can be efficiently used in agronomy as a 

soil additive to alleviate drought stress in purple corn crops (59).  

 A hydrogel containing Aloe vera extract was synthesized to 
evaluate its biostimulant effect during the initial growth phase of 

tomato (Solanum lycopersicum), as well as its influence on 

phenological development when applied foliarly to tomato plants.  

The hydrogels synthesized in this work showed an increase in height, 

number of leaves (17.8 cm), as well as the number of roots, length 

and radial volume (4.1 mm) in tomato, demonstrating that A. vera 

hydrogels are beneficial in the growth and development of tomato. 

  The effect of alginate hydrogels, nopal polysaccharides, Aloe 

vera, and chitosan was evaluated against a commercial potassium 

polyacrylate hydrogel in terms of water retention capacity, 

biodegradability, and morphometry and germination of alfalfa 

plants under controlled conditions (3). The results showed that the 

nopal, A. vera and chitosan hydrogels presented higher water 

retention (714 ± 40.84 %) and biodegradability (30.36 ± 0.58 %), as well 

as higher germination potential 30 % higher than the commercial one, 

greater height and foliage development in the Alfalfa plant compared 

to the potassium acrylate hydrogel. These natural polymer hydrogels 

are a potential alternative for the rational use of irrigation water in 

Alfalfa cultivation (3).  

 An Aloe vera–based hydrogel was synthesized to improve 
water retention in arid soils (60).The results showed a 25 % increase in 

biomass and 30 % growth in crops treated with this hydrogel when 

compared to untreated hydrogels. They were also able to retain up to 

50 % more water in dry soil. This work showed that A. vera hydrogels 

are capable of absorbing large amounts of water and gradually 

releasing it during prolonged periods of drought. These hydrogels are 

promising for improving agricultural sustainability in regions with 

water scarcity, offering better crop yields, as well as reducing water 

(60).  

 A hydrogel based on N-isopropylacrylamide (NIPAM) 

incorporating calcium chloride (CaCl₂) was developed to improve 

plant growth through a controlled, self-sustained supply of water 

and nutrients, focusing on self-irrigation and slow release (SISRH) 

(61). The developed hydrogel showed hygroscopic properties, as 

well as controlled nutrient release, achieving improved water 

savings (40 %), reducing irrigation frequency and improving plant 

growth in the crop. These hydrogels are promising to meet the 

needs of water scarcity and efficient nutrient absorption in 

sustainable agriculture (61).  

 It is of utmost importance to mention that the agroindustrial 

engineer Eduardo Luligo Montealegre, from the National University 

of Colombia (UNAL) was granted a patent for the creation of “Water 

absorbent composition comprising dry particles of the cuticle of Aloe 

barbadensis Miller", used as a biodegradable technology to retain 

water in soils and improve water efficiency in agronomy and thus 

give greater vigor to plants. This hydrogel was synthesized with 

agroindustrial waste from the cuticle of A. vera leaves. Field trials 

showed that the synthesized hydrogel is safe and beneficial for crop 

growth, through vigorous development, with optimal root growth, 

height and diameter. One of the most important aspects to mention 

is the resistance they present to changes in pH, temperatures and 

the presence of salts in the soil (62).  

 Table 1 summarizes the research conducted in recent years on 

synthesized hydrogels, as well as their applications in the agricultural 

field. Research demonstrates that hydrogels are an effective tool for 

mitigating agricultural problems, such as soil water retention, 

improving seed germination and aiding plant growth. The existence of 

a wide variety of hydrogels used in the agricultural field for their 

multiple applications. Research focuses primarily on water retention 

capacity, irrigation reduction and plant growth and development 

without compromising quality. It is important to emphasize that the 

research documented in this work is highly relevant as a scientific 

contribution to the development of new sustainable agricultural 

methodologies. This work explores and demonstrates that hydrogels 

are capable of retaining water and enabling the development of 

multiple external stimuli (temperature and pH) that aid plant growth 

and development. This research also serves as an innovative way of 

improving the efficiency of water and nutrient uptake and release, 

optimizing their use in various agricultural areas, especially in arid 

areas or places where irrigation water is scarce.   

 Throughout the literature review, it is observed that research 

has presented positive results on various plants, highlighting hydrogels 

as an ideal material with high potential for use in agriculture, 

improving soil moisture, increasing crop yields and promoting 

sustainable agricultural practices. Hydrogels play a very important role 

in ensuring safety and environmental sustainability and although 

there are relevant studies on hydrogels in the agricultural field, there 

are still areas of opportunity for future research in the agronomic field.  

Limitations of hydrogels 

Synthetic hydrogels have multiple limitations and disadvantages, as 

they are not biodegradable and their partial degradation can release 

toxic compounds that accumulate in the soil for several years, 

causing damage to the soil and aquifers (63). The accumulation of 

these hydrogels for long periods alters the structure and fertility of 

the soil since their degradation is extremely slow and depends on 
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environmental factors, impacting their useful life (64). In addition, the 

costs of synthetic hydrogels are relatively high, sometimes being 

inaccessible to farmers (65). On the other hand, natural hydrogels 

also have limitations that affect their effectiveness because they 

degrade more quickly. This degradation depends on the soil's 

environmental conditions. Furthermore, they require improved 

optimization during synthesis to increase their stability and 

functionality (63, 65). 

 Synthetic hydrogels, therefore have a negative environmental 

impact, slow degradation, generate toxic waste and their high costs 

make them less sustainable compared to natural hydrogels since 

these, despite their limitations, are preferable to synthetic hydrogels, 

due to their biodegradability and non-toxicity. The water retention 

capacity improves irrigation efficiency, decreases the use of fertilizers, 

the availability of nutrients and seed germination especially in periods 

of drought. It is of utmost importance to mention that despite the 

challenges presented by natural hydrogels, they are respectful with the 

environment, contributing in a resilient and sustainable way, being an 

ecological and sustainable alternative in agriculture (66, 67). 

Recommendations  

The effectiveness of hydrogels in reducing the effects of water stress 

on plants remains limited, making further research essential to 

optimize plant growth and yield and to determine the optimal 

application rate of hydrogels for different types of crops and soil 

conditions. Furthermore, it is crucial to raise awareness among 

farmers about the economic benefits of using hydrogels, as they not 

only improve productivity and increase crop and biomass 

production, but also maintain efficient water retention and plant 

yield, promoting sustainable plant development. To encourage 

wider adoption, it is recommended to implement outreach 

programs through demonstration plots, accessible educational 

materials, technical training and field trips, beginning in agricultural 

areas affected by drought. Such initiatives would help farmers better 

understand the advantages of hydrogels and integrate them 

effectively into their agricultural practices.  

 

 

Years Hydrogel 
Water 

absorption/ retention 
Results Reference 

 2010  PAAa, Gb-NTCc 100 % absorption Increased efficiency in water absorption and release 
  

(44) 

 2015 Aam/Aacd-Age 190 g/g absorption Excellent water retention capacity (48) 

2017 Compost  95 % absorption Increased photosynthetic activity and forage 
production 

(49) 

2017 PVP/CMCf-Fertilizer 36 % retention 
Increased swelling, water retention, 
fertilizer release and soil conditioner 

(35) 

2017 PAM/ CMCg- olioalginate 351 % absorption Increased plant growth, improved seed quality and 
germination and controlled soil moisture 

(51) 

2018 CS/G/PVAh dahlia inulin  - 
carrier and inducer of agrochemicals, it presented 

biodegradability and resistance against Phytophthora 
capsica and was biodegradable 

(52) 

2018 AVi - Improved soil capacity and plant growth (53) 

2019 NC-MMt/PAAm/CMCj 
  
- 

Increased plant growth and development (54) 

2019 PVA/POM k  550 % absorption Improved water absorption and release (55) 

2020 APl - Ecological and biodegradable applied as an absorbent  (4) 

2020 
Carrageenan/psyllium- 

MMtm 
83 % retention Growth promoter and nutrient releasers (56) 

2020 ALG/Fen - Increased plant yield (57) 

 2020 Ok− PAAñ - Increased plant growth and flowering  (58) 

2023 Potassium polyacrylate 
  
- 

Increased plant growth and development (59) 

2023 AV - 
Greater water retention, germination, biodegradability 

and growth 
(9) 

2023 ALG/N/AV/CSo 95 % absorción Greater water absorption (3) 

2024 AV 50 % retention Greater water absorption (60) 

2024 NIPAMp - CaCl2
q - It improved its hygroscopic properties and increased 

plant growth  
(61) 

Table 1. Summary of hydrogel research in agronomy 

PAA: poli (ácido acrílico)a; G: gretetinab: NTC: nanotubos de carbonoc; AAm/AAc: poli(acrilamida-co-ácido acrílicod; Ag: platae; PVP/ CMC: 
polivinilpirrolidona/carboximetilcelulosaf; PAM/CMC: poliacrilamida y carboximetilcelulosag; CS/G/PVA; quitosano, gelatina y alcohol 

polivinílicoh; AV: Aloe verai; NC-MMt/PAAm/CMC: montmorillonita de calcio/poliacrilamida/carboximetilcelulosaj; PVA/POM: alcohol 

polivinílico/extracto de Premna oblongifolia merrk, AP: acrilato de potasiol; MMt: montmorillonitam ALG/Fe: alginato de Fierron; Ok− PAA:okara/

poli(ácido acrílicoñ; ALG/N/AV/CS: alginato, nopal,alo vera y  quitosanoo; NIPAM: N-isopropilacrilamidap; CaCl2: cloruro de calcioq 
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Conclusion  

The development and application of hydrogels in agriculture have 

emerged as a highly effective, sustainable and innovative strategy, 

with a positive impact on water efficiency and crop resilience. Their 

capacity to absorb and release water in a controlled manner makes 

them an innovative tool in the face of extreme climate change 

(drought), which is increasingly affecting the world's agricultural 

regions. In water-scarce areas, hydrogels improve soil moisture 

retention, increasing water availability and, in turn, reducing the 

frequency of irrigation during prolonged periods of drought. 

 Furthermore, hydrogels strengthen root system, improve 

nutrient absorption efficiency and promote uniform germination, 

leading to greater increases in agricultural yields without 

compromising plant quality. Their adaptability to different soil types 

and climates, as well as their biodegradable nature, reinforce their 

application as an ecological and economically accessible solution. 
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