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Abstract

Remote Sensing (RS) technology, which harnesses electromagnetic radiation, has changed agricultural disaster management. By
identifying spectral signatures generated various objects on the Earth's surface, it enables effective monitoring of crop health, soil
conditions and environmental changes. RS linked with Geographic Information Systems (GIS), prioritizes response actions, anticipates
damaged areas and simulates disaster scenarios, revolutionizing disaster management approaches. Integration with modern analytics,
such as machine learning, enhances catastrophe impact assessments, agricultural production estimations and land cover classification,
thereby boosting disaster preparedness and response. Recent innovations, such as Unmanned Aerial Vehicles (UAVs) and high-resolution
satellite imaging systems, offer rapid mapping of flooded areas and accurate post-disaster damage assessment. The merging of remote
sensing with artificial intelligence (Al) and big data analytics further enhances disaster response and management, lowering the dangers
associated with socio-ecological vulnerability. However, obstacles remain, including the need to boost sensor capabilities, improve data
delivery and address regulatory issues with UAVs. Future directions include combining hazard and disaster process models, developing
user-centric solutions and utilizing loT and big data for more accurate disaster prediction and mitigation. Overall, RS and GIS offer vital
tools for mitigating agricultural disasters, delivering early information for decision-making and decreasing the impact on food security and
agricultural output.
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enhance crop management, the vegetation index, which is a
set of waveband combinations associated with particular
plant properties, is a useful tool (5). With the creation of new
sensors and advancements in both spatial and temporal
resolution, the application of RS in precision agriculture has
made significant progress (6).

Introduction

The agricultural sector is the most vulnerable to the impacts of
climate change and natural disasters. Agricultural disasters,
including droughts, floods and storms, have a major effect on
food security, economic stability and rural life (1). The
utilization of geospatial information and technology, such as
RS and GIS, is increasingly adopted a means to enhance
agricultural disaster response. This is mostly owing to the
recent breakthroughs in spatial resolution, accessibility and
cost (2).

Technological developments in RS have greatly
enhanced our capacity to track and respond to agricultural
disasters. Timely delivery of real-time or near-real-time satellite
data such as vegetation indices, thermal imagery and
precipitation estimates is essential for effective agricultural
monitoring and disaster response (7, 8). The specific applications
of RS was outlined in detecting and quantifying agricultural
challenges, including nutrient deficiencies and crop diseases (9,
10). These studies collectively underscore the critical role of RS in
assessing the impacts of various agricultural disasters such as
floods, droughts and cyclones on crop health and productivity.

RS collects data by detecting electromagnetic
radiation reflected or emitted from objects, enabling the
observation of Earth's surface features without direct contact.
Differentiating between items is based on the different
electromagnetic radiation wavelengths that interact with
various surface materials, including bare earth, water and
vegetation (3). Hyperspectral remote sensing, which collects

data in small wavebands, is used to understand crop plant
features and processes (4). To evaluate these traits and

RS platforms such as satellites and UAVs have
significantly advanced the monitoring of agricultural disasters.

Plant Science Today, ISSN 2348-1900 (online)


http://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://crossmark.crossref.org/dialog/?doi=10.14719/pst.9861&domain=horizonepublishing.com
https://doi.org/10.14719/pst.9861
mailto:shanmugam.npsk@gmail.com
https:/doi.org/10.14719/pst.9861

SHANMUGAM ET AL

These tools play a crucial role in tracking key indicators of
impending disasters, including changes in soil moisture, water
availability and vegetation health (11, 12). The value of RS in
detecting both biological and physical stresses that influence
crop vyield (9). Similarly, previous works highlighted the
potential of microwave remote sensing for identifying drought
occurrences throughout the crop growth cycle (13). Together,
these studies demonstrate the effectiveness of RS in providing
timely and spatially detailed insights critical for agricultural
disaster preparedness and response.

Advancements in spectral sensor technologies and data
processing methods have significantly enhanced the ability to
assess damage resulting from agricultural disasters.
Multispectral and hyperspectral sensors are increasingly
applied in post-disaster assessments, not only for evaluating
building damage but also for detecting and quantifying crop
stress and losses. The role of RS in identifying agricultural
stresses (9), while early works demonstrated the effectiveness
of multitemporal satellite imagery in post-earthquake
structural damage assessment methods that are increasingly
being adapted for agricultural applications as well (14). These
sensors can distinguish between stressed and healthy
vegetation by analyzing their data and spectral changes
suggestive of damage can be found. The importance of RS and
GIS in agricultural disaster response, emphasizing the use of
technology and geospatial information to improve data
services and lower the risk of disaster (2, 15).

Disaster management techniques have been greatly
enhanced by the integration of RS data with GIS (16). This
integration enables the prioritization of response activities,
prediction of affected areas and simulation of disaster
scenarios (17). The speed and efficacy of response operations
are further increased by the application of Al in disaster
management, including RS and geographic analyses (18).
However, for the effective gathering and distribution of spatial
data during emergencies, user-friendly, Internet-based GIS
systems must be created (19).

2

Disaster impact assessments in agriculture have greatly
improved with the application of Al and machine learning
techniques to analyze RS data (20). By predicting crop yields,
detecting anomalies and classifying different types of land
cover, these technologies improve disaster preparedness and
response (21). Additionally, it has been demonstrated that
automating the prediction of agricultural yield via the use of
machine learning and RS is faster and more effective than
conventional techniques (22).

Major agricultural disasters
Drought

RS technology is used to monitor agricultural droughts
spatially and temporally to minimize losses. The dominant
method is the drought index, which involves the variable land
surface temperature (LST), vegetation index, land cover,
wetness index and rainfall. Drought mapping using GIS and RS
at the district scale provides detailed spatial information on
climate and physiographic aspects, but it requires consistent
temporal data to accurately track changes over time. This
presents challenges due to cloud cover, limited revisit cycles
and delays in data processing or delivery, which may hinder
timely assessment during fast-evolving disasters (23).

The National Remote Sensing Centre, part of the Indian
Space Research Organisation (ISRO), has established a satellite
-based initiative for the evaluation of drought conditions,
known as the National Agricultural Drought Assessment and
Monitoring System (NADAMS) (24). NADAMS data from NOAA,
MODIS and resources at 2 satellites were used for rainfall, soil
moisture and irrigation crop sowing data to assess periodical
drought situations.

Fig. 1 depicts the process of estimating drought or flood
consequences based on rainfall data, specifically rainfall
deviation (RFDev) and dry period circumstances. If no drought
or flood trigger is discovered, a basic evaluation is carried out
and the condition is reported as no drought or flood. If a trigger
is detected, the method advances to analyzing impact indicators
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Fig. 1. Flow diagram of procedure of drought assessment as per new drought manual (25).
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utilizing RS data, soil moisture, hydrological data and crop
planted area. These signs assist characterize the event's intensity
as severe, moderate, or normal. Ground truth data is then
obtained to validate these determinations on the ground. Based
on this verification, the final impact is appraised and an official
declaration is produced (25).

Flood

Fig. 2 delineates the temporal sequence of activities associated
with flood event management, underscoring the systematic
integration of flood inundation models and risk data across
four key phases: planning, pre-event, response and recovery. In
the initial planning stage, flood risk models and historical
datasets are employed to conduct rapid scenario planning,
facilitating the development of simulations for flood events of
varying magnitudes. This is subsequently augmented by
detailed scenario planning, informed by domain experts to
enhance the specificity and robustness of preparedness
measures. In the lead-up to a potential flood event, the models
are continuously refined using real-time forecast data, enabling
updated rapid scenario planning that supports anticipatory
decision-making. In the event of a flood, these pre-established
scenarios guide immediate response strategies. The recovery
phase is characterized by the integration of field-based
observations to generate event-specific flood extent and
damage maps, which are essential for impact assessment and
informing future mitigation and adaptation strategies. The
figure exemplifies a cyclical and adaptive framework for flood
risk management, highlighting the dynamic interplay between
predictive modeling, expert knowledge and empirical data in
enhancing overall resilience to flood hazards.

Flood impact assessment and response tactics have
been transformed by RS, especially high-resolution satellite
imagery, Synthetic Aperture Radar (SAR) and LiDAR (26). These
technologies allow for the quick mapping of flooded areas,
early detection and monitoring of flood extents and accurate
elevation mapping, all of which are essential for
comprehending the dynamics of floods and potential damage
(27). RS data and GIS are combined to create comprehensive
flood risk maps and precise damage assessments. This helps
with mitigation and recovery efforts (28). In urban sprawl
contexts, flood risk management can be further improved

3

through a multitemporal analysis of multispectral satellite
imagery (29).

Cyclone

RS technologies, including satellite imagery and aerial
photography, serve as essential tools for assessing the impacts
of cyclones on agricultural landscapes. The value of RS in
accurately mapping cyclone-induced changes, particularly
highlighting its effectiveness in detecting terrain alterations
and evaluating the extent of damage (30). The effectiveness of
a multi-scalar technique is that it combines radar and optical
RS to quickly estimate the extent of flooding and vegetation
damage during cyclones (31).

Cyclones can have devastating impacts on agriculture,
causing widespread crop damage, soil erosion and flooding. RS
and GIS play an important role in assessing and mitigating the
effects of cyclones on agricultural lands. Satellite imagery and
aerial photography allow for rapid mapping of cyclone-affected
areas, providing timely information on the extent of flooding,
wind damage to crops and soil erosion (2). Multispectral and
radar sensors can penetrate cloud cover to assess damage even
during ongoing storms. Change detection techniques comparing
pre- and post-cyclone imagery enable quantification of impacted
agricultural areas (32). GIS integration of RS data with other
spatial information like topography, land use and infrastructure
allows for comprehensive damage assessment and prioritization
of response efforts. Flood inundation modeling using digital
elevation models and rainfall data helps predict at-risk
agricultural zones. Vegetation indices derived from multispectral
imagery track crop health and recovery in cyclone-affected
regions over time (33).

RS technologies in disaster management

RS technologies have emerged as essential instruments for
disaster assessment, providing precise and timely data that are
essential for efficient response and mitigation (2).
Developments in data processing algorithms and sensor
technology have improved our capacity to track, evaluate and
respond to a range of man-made and natural disasters (34).
With an emphasis on current advancements and uses, this
paper explores the functions of optical, microwave, radar,
thermal and hyperspectral RS in catastrophe assessments (35).
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Fig. 2. Chronological framework of a flood event.
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For example, SAR delivers high-resolution imagery capable of
detecting subtle changes in Earth's surface, making it
particularly effective in seismic monitoring. Techniques like
InSAR enable the measurement of surface displacement over
time, offering valuable insights into tectonic activity and
structural damage (36). In flood management, the combined
use of optical and microwave sensors enhances the accuracy of
flood extent mapping. Optical sensors capture high-resolution
images for visual interpretation, while microwave sensors
provide all-weather, real-time data, even under cloud cover
crucial for predicting and managing flood events (37).

Similarly, RS plays a vital role in landslide detection,
especially in regions that are remote or difficult to access.
Technologies such as LiDAR, SAR and optical imagery allow for
the monitoring of slope stability and the mapping of geological
hazards with high spatial accuracy (38). Drought monitoring
relies heavily on vegetation indices (e.g.,, NDVI) and soil
moisture data derived from satellite platforms, which can
assess crop health and water stress over large areas, thereby
aiding early warning systems (39). These applications highlight
the versatility RS across different disaster types. Moreover, global
collaboration in RS through frameworks like the International
Charter on Space and Major Disasters further enhances disaster
risk reduction by promoting the sharing of critical satellite data
during emergencies (40, 41). Together, these technologies and
cooperative efforts demonstrate how RS continues to
revolutionize disaster assessment and management across the
globe.

OpticalRS

Several satellite sensors were used in optical RS satellites such as
Landsat, Sentinel-2, SPOT which pick up reflected sunlight in a
range of spectral bands, mostly in the visible and near-infrared
(NIR) ranges. High-resolution imagery from these sensors is
crucial for evaluating damage caused by natural disasters,
including floods, landslides and earthquakes (2).

Optical imagery is crucial for landslide detection in post-
earthquake situations. For example, one study used Sentinel-2
data to track landslides caused by earthquakes both manually
and semi-automatically by examining variations in brightness
values and vegetation indices. To find patches of bare earth
suggestive of landslides, false-color composites were
constructed and indices such as the Normalized Difference
Vegetation Index (NDVI) were computed. This method aided
hazard assessment and response planning by enabling the
rapid creation of landslide inventories (42).

However, optical RS has limitations at night and under
cloud cover, which may make it more difficult to collect data in
a timely manner during some crisis scenarios. Integrating
optical data with other RS modalities has become a standard
practice to address these difficulties (2).

Microwave and radar RS

Microwave and radar RS, particularly SAR, offer all-weather, day-
and-night imaging capabilities, making them invaluable for
disaster assessment. SAR systems emit microwave signals and
measure backscattered responses, enabling the detection of
surface changes regardless of weather conditions (43). SAR has
proven to be effective for flood monitoring. For example,
companies such as Umbra utilize SAR data to track flooding

events, providing real-time information crucial for emergency
response. SAR's ability to penetrate cloud cover and darkness
allows for the detection of flood extents, water levels and even
distinctions between freshwater and saltwater intrusion. This
capability is particularly beneficial in regions that are prone to
frequent and severe flooding (44).

Moreover, SAR data can be integrated with optical
imagery using advanced algorithms. A study demonstrated the
use of a Generative Adversarial Network (GAN)-based model to
translate SAR images into optical-like images, facilitating the
assessment of wildfire impacts. By generating synthetic optical
images from SAR data, researchers can calculate burn-sensitive
spectral indices, achieving high accuracy in burned area
detection and burn severity mapping (43). InSAR techniques
further enhance disaster assessment by measuring the ground
deformation. InSAR has been employed to monitor tectonic
movements, volcanic activity and land subsidence, providing
critical information for early warning systems and
infrastructure planning (42).

Thermal RS

Thermal RS detects emitted infrared radiation and captures
surface temperature variations that are indicative of various
disaster-related phenomena. Thermal sensors are particularly
useful for monitoring wildfires, volcanic eruptions and urban
heat islands (44). Wildfire assessment and thermal imagery
enable the detection of active fire fronts and the mapping of
burned areas. The high sensitivity of thermal sensors to
temperature differences allows for the identification of
hotspots and monitoring of fire progression, even in the
presence of smoke. This information is vital for directing
firefighting efforts and assessing the post-fire impacts on
ecosystems and infrastructure (43).

Thermal RS contributes to volcanic monitoring by
detecting thermal anomalies associated with magma
movement and eruptions. By analyzing thermal data, scientists
can identify changes in volcanic activity, aiding hazard
assessment and evacuation planning (35). Furthermore,
thermal imagery can be used to assess urban heat islands,
which can exacerbate the effects of heatwaves. By mapping the
temperature distributions across urban areas, authorities can
implement mitigation strategies to reduce heat-related health
risks (45).

Hyperspectralimaging

Hyperspectral imaging captures data across numerous
contiguous spectral bands, providing detailed spectral
information for every pixel in an image. This rich spectral data
enables the identification and characterization of materials
including urban sediments, glacial tills and mineral substrates,
pollutants and also crop types, making hyperspectralimaging a
powerful tool for disaster assessment (35). In agricultural
disaster response, hyperspectral imaging offers essential
capabilities for identifying and assessing human-induced and
environmental components influencing crop lands and soil. A
unique hyperspectral RS method has been created to aid in
monitoring afflicted regions by recognizing components such as
soil pollutants, agricultural residue and synthetic inputs like
fertilizers or plastics. The solution functions through a bespoke
software extension for hyperspectral picture analysis, boosting
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situational awareness during droughts, floods, or chemical
exposure incidents. Although promising, this instrument is still an
emerging approach and continued validation is needed for its
frequent implementation in agricultural monitoring and
emergency response (35).

Hyperspectral imaging also contributes to environmental
monitoring by detecting changes in vegetation health, soil
properties and water quality. These applications are crucial for
assessing the impact of disasters on ecosystems and guiding
recovery and restoration efforts (2).

Advances in satellite and UAV RS

Recent developments in satellite and unmanned aerial vehicle,
RS have greatly enhanced agricultural disaster monitoring. The
potential of UAV RS in precision agriculture is particularly in
identifying weed and pathogen infestations, drought stress and
evaluating nutrient status and growth vigor (46). The use of
satellite RS in disaster management, especially during the
preparation and reaction phases is rapid and highly effective to
create awareness (47). The importance of multi-scale imaging
was highlighted through the fusion of UAV and satellite data,
emphasizing its effectiveness for crop monitoring and early
stress detection (48). The application of RS was examined in
crop protection, focusing on the identification of biological and
physical stresses that impact crop productivity (9). Collectively,
these findings illustrate how satellite and UAV based RS
technologies have transformed the monitoring and
management of agricultural disasters.

Disaster management and agricultural monitoring have
greatly benefited from satellite RS, especially with the use of
multispectral and hyperspectral data. The use of satellite RS in
disaster management. It is mainly used for planning mitigation
strategies and hazard risk assessment particularly for its ability
to cover large areas and cost-effectiveness (47, 49) (Table 1).

The accuracy and speed of disaster assessment and
response can be further improved by integrating satellite data
with cutting-edge analytical methods, such as machine
learning algorithms (47). RS with UAVs has the potential to
revolutionize precision agriculture, especially in drought stress,
weed and pathogen detection, nutrient status assessment and
yield prediction (46). In particular, the use of hyperspectral RS
in agricultural management, includes crop yield estimation,
insect pest monitoring and plant disease monitoring (50). All
these studies highlight the importance of satellite RS for
precision agriculture and disaster relief.

UAVs have been used in precision agriculture, disaster
domains and agricultural landscapes that support biodiversity
(51-53). Their multispectral sensors, thermal imaging

Table 1. Characteristics of UAVs for agricultural RS monitoring.

capabilities and high-resolution cameras allow them to capture
detailed information, which makes it easier to conduct
targeted surveys and deploy them quickly in disaster-affected
areas (51). The integration of UAV and satellite RS technologies
has made agricultural disaster management more accurate,
efficient and effective (51). Despite the potential for greater
economic and environmental benefits, precision agriculture
has not yet fully embraced these technologies (53).

Integrating RS with GIS for disaster assessment

Agricultural disaster assessment and management have
greatly advanced as a result of the integration of RS and GIS,
which offers a thorough method for comprehending, tracking
and responding to a variety of hazards (16, 54-56). Through this
integration, stakeholders including farmers, government
agencies, disaster response teams, policymakers, insurance
providers and researchers can effectively carry out targeted
interventions during agricultural disasters. And by combining
the strengths of RS technologies, such as drones and satellites,
with GIS's spatial analysis capabilities of GIS they make
informed decisions. Stakeholders can determine the extent
and severity of the impacts of a disaster and prioritize response
efforts by identifying vulnerable areas and analyzing spatial
patterns (16, 54-56).

The integration of RS and GIS provides comprehensive
disaster risk maps, visualizing disaster risk hotspots to monitor
and enabling the development of focused mitigation strategies
by combining RS data with GIS layers. Additionally, it facilitates
early warning systems and real-time monitoring of agricultural
disasters, allowing stakeholders to quickly identify changes in
crop health and environmental conditions (57). Satellite RS has
proven especially useful in agriculture because of its ability to
provide information on soil moisture content, environmental
conditions and crop health (58). Furthermore, crop
identification, classification and yield estimation have been
made possible by the integration of RS and GIS in land-use
planning and decision support systems (59) (Table 2).

The integration of GIS and RS provides a powerful
framework for post-disaster assessment and recovery in
agriculture. These technologies enable the collection, analysis
and visualization of spatial data, offering critical support in
evaluating damage and guiding response efforts. The potential
of GIS and RS to deliver near real-time data for effective disaster
monitoring, prediction and decision-making in agricultural
contexts (8, 60). In particular, for forestry applications, the
importance of RS as a primary data source for GIS technologies
enable improved mapping, inventory and decision-making
processes. The value of GIS and RS in disaster management,

Category Benefits Limitations
Lorlig renedlléraadnce, Takeoff needs run-up
Fixed-wing arg 4 Landing needs glide
Fast flight speed and No hovering capabilit
Large operation range g Y
Fly horizontally and vertically
Vertical takeoff and landing Short endurance time
Multirotor Hovering at a given location Small load

Autonomous navigation

Poor resistance to harsh environment

Simple structure

Vertical takeoff and landing
Hovering at a given location
Flight stability

Unmanned helicopter

Complex wing structure
High maintenance cost
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particularly in terms of supporting decision-making (16).
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Table 3. Common vegetation indices used in agricultural RS

Index Full form Formula Purpose

NDVI Normalized Difference Vegetation Index (NIR - Red) / (NIR + Red) Detects live green vegetation.
RVI Ratio Vegetation Index NIR / Red Highlighgztvxgs;aﬁi&naa)éu;;ggbz ﬁig;ple ratio
IPVI Infrared Percentage Vegetation Index (NDVI+1)/2 Scales ND\{LEZ;)?;;SQE? for easier
SAVI Soil-Adjusted Vegetation Index (NIR-Red) / (NIR+Red + 1) * (1+1)  Reducessoil Eggfstgszsgsgi%if” areas with
VeI VegetstonCondidonindex  (NOVI"NOWL min/(ouLmax- - Moritrs drough by comparing curent o
VHI Vegetation Health Index a*VCl+(1-a)*TCl Combines\\//ecgleatg?i;sLt:a?:ﬁ'ess overall
TCl Temperature Condition Index (T_max-T)/(T_max-T_min) * 100 Identifies vegetation stress caused by

temperature anomalies.

integration of multi-sensor RS data, such as multispectral
optical data and radar imagery (74).

Geospatial analytics for risk modeling

Geospatial analytics is essential for risk modeling in many
different fields, especially when combined with sophisticated
analytical methods. By examining variables like elevation, land
cover and proximity to water bodies, it can simulate flood risks
in the context of natural disasters (75). In the field of
epidemiology, variables like population density, travel patterns
and healthcare infrastructure are taken into account to aid in
the modeling of disease transmission. Within the finance
industry, geospatial analytics is employed to simulate risks
related to market dynamics, insurance claims and property
values (75). Additionally, it makes it possible to evaluate
environmental hazards like pollution and the effects of climate
change on local communities (76). Decision-makers are better
able to recognize, manage and reduce risks when they have
access to spatially explicit insights from geospatial analytics,
which eventually results in more resilient and sustainable
societies (77).

Innovative approaches to uncertainty analysis

There have been many novel approaches put forth in the field
of uncertainty analysis. Strong and flexible approaches are
essential, especially when dealing with profound uncertainty,
as is frequently the case in intricate and dangerous systems
(78). Model outputs can vary significantly depending on
uncertainty representation technique (79). The shortcomings
of current approaches in managing uncertainty in model
structure and variability in society and various approaches are
proposed (80). Computationally effective methods for
propagating the effect of uncertainty with a focus on
probabilistic uncertainty analysis in multidisciplinary design
(81). Together, these studies highlight the value of varied and
thorough approaches to uncertainty analysis, especially when
dealing with complex and uncertain systems.

High-resolution spatial modeling

Accurate mapping and environmental analysis depend on the
application of high-resolution spatial modeling, made possible
by cutting-edge RS technology (82). Because it can offer precise
representations of land use dynamics, this is especially
significant in urban and regional systems (83). The accuracy
and applicability of these models are further improved by
combining conventional geostatistics methods with cutting-
edge approaches like support vector machines and artificial
neural networks (84). However, as noted by previous

researchers, the demand for higher-resolution global land
cover mapping underscores the necessity for continued
advancement and refinement of RS models to meet emerging
agricultural and environmental monitoring needs (85).

Applications of machine learning (ML) in remote sensing

ML is a branch of artificial intelligence dedicated to creating
algorithms that enable computers to learn from data and make
decisions on their own, without specifically programming them
(86). ML has become known as an efficient tool in RS for
agricultural applications, delivering advanced capabilities for data
interpretation and forecasting (87).

The agricultural industry has undergone a revolution
thanks to ML techniques, especially in the early detection and
assessment of natural disasters like wildfires, floods, droughts
and pest outbreaks (88). Large amounts of sensor and satellite
data can be processed by these methods to find patterns and
anomalies related to these disasters, allowing for quick
mitigation and response plans (89). Additionally, ML models are
essential for determining the effects of agricultural disasters on
crop health and productivity, forecasting yield losses,
pinpointing areas of wvulnerability and suggesting
countermeasures to reduce financial losses for (88). Recent
advancements in deep learning have significantly enhanced RS
applications in disaster management. Unlike traditional ML
pipelines that require manual feature extraction and post-
processing, deep learning enables end-to-end learning,
allowing models to simultaneously learn feature
representations, processing rules and prediction outputs (90,
91). These models, particularly autoencoders, are effective in
pixel-wise classification tasks such as land cover mapping,
where each pixel is categorized into classes like forest, water, or
urban areas. Meanwhile, object detection frameworks
including Faster R-CNN and Mask R-CNN are used to identify
discrete entities (e.g., buildings, vehicles) by generating
bounding boxes and performing instance segmentation (92,
93). In disaster scenarios, such capabilities enable precise
mapping of damaged structures or flooded zones. Applications
of convolutional neural networks (CNNs) have also shown
strong performance in high-resolution land cover classification
(94) and scene classification (95). However, due to the data-
and computation-intensive nature of training deep models,
transfer learning is commonly used to adapt pre-trained
networks to new RS tasks with limited labeled data (96). These
deep learning methods collectively support improved accuracy
and automation in disaster detection, damage assessment and
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resilience planning through satellite and UAV imagery analysis.

The resilience of agricultural systems has greatly
increased as a result of recent developments in artificial
intelligence and RS (97). By combining these technologies with
big data strategies, disaster response and management can be
improved, which reduces the effects and risks associated with
socio-ecological vulnerability (98). Particularly, ML applications
have been crucial in assisting with agricultural management
choices, such as the identification and prediction of extreme
events (89). Additionally, research on climate change and
preparedness can benefit from the application of artificial
intelligence and ML, which can improve alerts for impending
weather phenomena, including extreme events (99).

Challenges and future directions in RS

Agriculture disaster management through RS presents a variety
of challenges and opportunities for the future. When designing
and developing RS systems, previous researchers highlights
how important it is to put end users first, especially when it
comes to disaster relief (100). Enhancing sensor capabilities
and data dissemination are two ways that emphasizes the
significance of timely data delivery (7). 10T, wireless sensor
networks and big data analytics are examples of emerging
technologies that have the potential to improve disaster
management and prediction (101). Improved spatial and
temporal resolution, data integration and interoperability are
among the issues that addresses, when examining the benefits
and drawbacks of using RS to monitor irrigated agriculture
(102). The necessity of user-centric, timely and integrated
remote RS for agricultural disaster management is highlighted
by all of these studies combined.

The resilience of agricultural systems has greatly
increased as a result of recent developments in artificial
intelligence and RS (97). But by incorporating hazard and disaster
process models into research, the potential of these technologies
can be further realized (103). Planning and damage assessments
can be improved, as well as hazard detection, identification,
mapping and monitoring. Additionally, by utilizing current
sensors and NASA's Earth Observing System's Data and
Information System, the timely delivery of RS data for agricultural
and disaster management applications can be enhanced (7).
Additionally, the development of methods for large-scale
surveillance and the dissemination of pertinent data to growers
and consultants can improve the use of RS for crop protection,
including the detection of disease, weed and insect infestations
and nutrient deficiencies (9).

Benefits of RS and GIS in mitigating agricultural disasters

By delivering timely and precise information on crop health,
soil moisture levels and weather patterns, RS and GIS play a
critical role in reducing agricultural disasters (58). These tools
are especially helpful in determining and understanding how
topography, soil and climate affect agricultural output (33).
Additionally, they facilitate decision-making in disaster
management by offering real-time information and
visualization capabilities (16). In addition, calamities like floods,
droughts and pest infestations can be tracked and predicted
with the use of RS and GIS (8). Due to their ability to provide
precise and timely information, RS and GIS are essential tools
for mitigating agricultural disasters (104). These technologies
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make it possible to recognize possible hazards, such as floods
and droughts and to take preventative action to lessen their
effects (105). Through the ability to overlay affected areas with
available data sources, estimate the magnitude of the disaster
and determine resource requirements, GIS also aids in disaster
response and recovery (106).

RS technologies, including satellite imagery and UAVs,
drones, manned aircraft sensor imagery, provide real-time data
on crop health, soil moisture and weather patterns. This
facilitates early detection of anomalies such as droughts, floods
and pest infestations. For instance, the integration of RS data
with GIS platforms enables the mapping of vulnerable areas,
allowing for timely interventions and resource allocation (107).
GIS offers spatial analysis tools that are crucial for risk
assessment and disaster planning. By overlaying various data
layers such as topography, land use and historical disaster
occurrences GIS helps identify high-risk zones and informs the
development of mitigation strategies. This spatial awareness is
vital for policymakers and stakeholders in making informed
decisions (45). After a disaster, RS and GIS are instrumental in
assessing the extent of damage. High-resolution satellite
images can quantify crop losses and infrastructure damage,
providing essential information for recovery efforts and
insurance claims. Such assessments enable a swift response,
minimizing the long-term impacts on agricultural productivity
(107).

The fusion of RS and GIS with advanced technologies
like Al and ML has enhanced predictive modeling and decision-
making processes. These integrations allow for more accurate
forecasts of agricultural disasters and the development of
automated response systems, thereby improving the efficiency
of mitigation efforts (34). Data derived from RS and GIS
analyses support the formulation of evidence-based policies
and efficient resource management. By understanding the
spatial distribution of risks and resources, governments and
organizations can allocate aid effectively, plan for sustainable
land use and implement practices that reduce vulnerability to
future disasters (107). The integration of RS and GIS
technologies plays a pivotal role in mitigating agricultural
disasters. Their capabilities in early detection, risk assessment,
impact analysis and policy support are essential for building
resilient agricultural systems. As these technologies continue to
evolve, their application will become increasingly vital in
safeguarding global food security (32).

Technologies and techniques for RS

The advancement of high-resolution satellite imaging systems
(e.g., Sentinel-2, WorldView, Landsat 9) has markedly improved
the application of RS in agricultural catastrophe monitoring (9).
Accurate monitoring of crop health, soil conditions and water
availability is made possible by these systems' ability to take
accurate pictures of agricultural environments. These
platforms are made even more capable by the addition of
multispectral and hyperspectral sensors, which enable the
detection of minute variations in vegetation stress (46).
Because technology makes it possible to identify and evaluate
any issues early on, this has significantly transformed how
agricultural disasters are assessed and handled. Furthermore,
post-disaster damage assessment has made use of RS
technology, mapping the impacted areas and identifying
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building damage through the use of satellite photos (108). The
procedures for gathering, analysing and making decisions in
disaster management have all been greatly enhanced by these
developments.

UAV surveillance of agricultural disasters is a fast-
developing topic that has great promise for improving resource
allocation and response coordination (52). These tools have been
effectively used in a variety of catastrophe contexts, such as
critical infrastructure post-disaster monitoring (109). They are
especially useful for tracking and mapping the consequences of
natural hazards because of their affordability and adaptability
(110). However, resolving privacy, safety and regulatory issues is
necessary before they can be widely used (111).

Conclusion

RS technology has greatly enhanced the identification monitoring
and assessment of agricultural calamities by using
electromagnetic radiation to gather information about different
objects on the Earth's surface. The combination of GIS with this
technology has revolutionized disaster management techniques
by enabling precise interventions, predictive modeling and
continuous real-time monitoring. RS allows for the detection and
analysis of characteristics and activities of agricultural plants,
hence improving crop management using techniques such as
vegetative indices. The integration of RS and GIS has
revolutionized disaster management approaches by prioritizing
response measures, forecasting impacted regions and modeling
catastrophe scenarios. ML, a form of advanced analytics, has
enhanced the accuracy of catastrophe impact assessments,
estimations of agricultural output and categorization of land
cover. As a result, disaster planning and response efforts have
become more efficient. The combination of several data sources,
semantic segmentation and spatial-temporal change detection
methods has improved the precision and dependability of
assessing agricultural conditions.

The use of advanced technology such as UAVs and high-
resolution satellite imaging systems has significantly changed
the way agricultural disaster monitoring is conducted. This
technology allows for quicker mapping of flooded regions and
precise evaluation of damage after a catastrophe. The
integration of RS technology with Al and big data analytics has
significantly enhanced the ability to respond to and manage
disasters, therefore mitigating risks associated with socio-
ecological vulnerability. Nevertheless, there are still obstacles
that need to be overcome, such as enhancing the capabilities of
sensors, optimizing the flow of data and resolving regulatory
concerns associated with UAVs. Future advancements in RS for
agricultural disaster management include integrating hazard
and disaster process models, developing solutions that prioritize
user (e.g., farmers, governments, agribusiness) needs and
harnessing the potential of IoT and big data analytics to enhance
the accuracy of catastrophe prediction and mitigation.
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