A review on Genetic markers with special reference to Genetic Diversity of Four Economically Important Trees of Myrtaceae Family of Braj Region, India
DOI:
https://doi.org/10.14719/tcb.2887Keywords:
Economic important trees, Molecular study, Myrtaceae, DNA marker, PCR, RAPDsAbstract
Callistemon viminalis (Sol. ex Gaertn.) Byrnes, Psidium guajava L., Syzygium cumini L. and Eucalyptus grandis W.Hill are members of the Myrtaceae family and are found growing in various locations throughout the Districts of Agra and Mathura. Although some trees can be found in tropically dry and xeric locations, these trees are found in tropical and subtropical regions. These plants have significant medical value, are frequently used customarily in the Braj region, and contain high amounts of secondary metabolites and polyphenols that prevent the separation of plant DNA. DNA isolation is a method for purifying DNA from plant elements by integrating various chemical and physical techniques. For the investigation of plant genetic variation, DNA markers like PCR (RAPD, SSLP, and AFLP) are often used methods that only need a minimal amount of DNA material. The most widely used method for examining genetic diversity is RAPD analysis. RAPD is utilized for a variety of tasks, including gene mapping, genetic identification, and investigations involving closely related species. This database review's main goal is to provide extensive, essential genetic information, methods, and applications. Significant connections between the history of a plant species and the makeup of its current population can be found thanks to genetic diversity. Researchers may utilize this information in the future to manage, cultivate, and improve the breeding programme for these plant species.
Downloads
References
Priya K, Indira EP, Sreekumar VB, Renuka C. Assessment of genetic diversity in Calamus vattayila Renuka (Arecaceae) using ISSR markers. J Bamb Rattan. 2011;15 (1-4): 61-69.
Heywood VH. Watson RT. Global biodiversity assessment. Cambridge University Press. Cambridge; 1995:1140.
Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, AFLPs. Theoret Appl Gen. 1998;97(8):1248-1255.
Bohn MH, Utz H, Friedrich, Melchinger and Albrecht E. Genetic similarities among winter Wheat cultivars determined on the basis of RFLPs and SSRSs and their use for predicting progeny variance. Crop Sci. 1999;39(1): 228-237.
Nadeem MA, Nawaz MA, Shahid MQ, Do?an Y, Comertpay G, Y?ld?z M, Hatipoglu R, Ahmad F, Alsaleh A, Labhane N, Ozkan H, Chung G & Baloch FS. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 2018;32(2): 261-285.
Moghaieb RE, Abdelhadi AA, El Sadaway HA, Allam NA, Biaome BA, Soliman MH. Molecular identification and genetic diversity among Photorhabdus and Xenorhabdus isolation. Biotechnol. 2017;7(1): 6.
Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA Polymorphisms Amplified By Arbitrary Primers Are Useful As Genetic Markers. Nucleic Acids Res. 1990;18: 6531-6535.
Joshi SP, Ranjeker PK, Gupt VS. Molecular marker in plant genome analysis. Curr Sci. 1999;77(2): 230-240.
Powell W, Morgante M, Aandre C, Hanafey M, Vogel J, Tingey S, Rafalski A. The Comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed. 1996;2(3):225-238.
Kennard WC, Poetter K, Dijkhuizen A, Meglic V, Stacls JE, Havey MJ. Linkages among RELP, RAPD, isozymes, disease resistance and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet. 1994;89:42-48.
Schierwater B, Ender A, Schwent K, Spaak P, Streit B. Molecular Ecology Evolution: Approaches and applications. Birkhauser verleg, Basel, Boston. 1994;495-500.
Elisia AP, Justo E, Leitaao J. Identification of Mandarin Hybrids by isozyme and RAPD analysis. Sci. Hortic. 1999;81(3):287-299.
Yang X, Quiros CF. Construction of a genetic linkage map in celery using DNA based markers. Genome. 1993;38:36-44.
Nicese FP, Hormaza JI, Mcgranahan GH. Molecular characterization and genetic relatedness among walnut (Juglans Regia L.) genotypes based on RAPD markers. Euphytica. 1998;101:199-206.
Harrison RE, Luby JJ, Furnier GR, Hancock JF. Morphological and molecular variation among populations of octoploid Fragaria virginiana and F. chiloensis (Rosaceae) From North America. Amer J Bot. 1997;84(5):612-620.
Hafez EE, Ghany A, Zakil EA. Ltr Retrotransposons based molecular markers in cultivated egyptian cottons G. barbadense L. Afr J Biotechnol. 1997;5:1200-1204.
Kardolus JP, Van Eck HJ, Van Den Berg RG. The Potential of AFLPS biosystematics: A Application in Solanum Taxonomy (Solanaceae). Plant Syst. 1998;210:87-103.
Katterman FRH, Shattuck VI. An effective method of DNA isolation from the mature leaves of Gossypium species that contain large amount of phenolic terpenoids and tannins. Preparative biochem. 1983; 13(4):343-359.
Loomis WD. Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles. Methods Enzymol. 1974;31:528-44.
Melchinger AE, Messmer MM, Lee M, Woodman WL, Lamkey KR. 1991. Diversity and relationships among U.S. Maize inbreds revealed by restriction fragment length polymorphisms. Crop Sci. 1974;31:669-678.
Wendel FJ, Alvert AV. Phylogenetics of the Cotton genus (Gossypium): character state weighted parsimony analysis of chloroplast DNA restriction site data and its systematic and biogeographic implications. Syst Bot. 1992;17(1):15-143.
Tanksley Sd, Young Nd, Paterson AH, Bonierbale MW. RFLP mapping in plant breeding: new tools for an old science. Biotechnol. 1989;7:257-264.
Williams CE, St Clair DA. Phenetic Relationships and Levels of Variability Detected By Restriction Fragment Length Polymorphism and Random Amplified Dna Analysis Of Cultivated And Wild Accessions Of Lycopersicon Esculentum. Genome. 1993; 36:619-630.
Gepts P. The use of molecular and biochemical markers in crop evaluation studies. In: hecht mk (Ed). Evol Biol. 27. Plenum Press, New York. 1993;51-94.
Dos Santos JB, Nienhuis J, Skorch PW, Tivang J, Slocum MK. Comparison of RAPD and RFLP genetic markers in detecting genetic similarity among Brassica oleracea L.genotypes. Theor. Appl. Genet. 1994;87:909-915.
Mackill DJ. Classifying japonica rice cultivars with RAPD markers. Crop Sci. 1995; 35:889-894.
Demeke T, Adams RP, Chibbar R. Potential taxonomic use of Random Amplified Polymorphic DNA (RAPD): A case study in Brassica. Theor App Genet. 1992;84: 990-994.
Multani DS, Lyon BR. Genetic fingerprinting of Australian cotton cultivars with RAPD markers. Genome. 1995;38: 1995.
Gilbert J. Comparison of canadian Fusarium Graminearum isolates for aggressiveness, vegetative compatibility, and production of ergosterol and mycotoxins. Mycopathol. 2001; 153:209-215.
Gilbert JE, Lewis RV, Wilkinson MJ, Caligari PD. Heterogeneity of three molecular data partition phylogenies of mints related to M. piperita. Int J Biotech Mol Biol Res. 2006;209-215.
Wolfe KH, Morden CW, Palmer JD. Ins and outs of plastid genome evolution. Curr Opin Genet Devel. 1991;4:523-529.
Rafalski JA, Tingey SV. Genetic Diagnosis in Plant Breeding: RAPDs Microsatellites and machines. Trends in Genet. 1993;9:275-280.
Brooker MIH. A new classification of the genus Eucalyptus L’Her. (Myrtaceae). Austr Syst Bot. 2000;13(1):79-148.
Kallarackal J, Somen CK. 1997. An eco physiological evaluation of the suitability of Eucalyptus grandis for planting in the tropics. Forest Ecol Manag. 2000;95(1): 53-61.
Kallarackal J, Somen CK, Rajesh N. Studies on water use of six tropical eucalypt species in Kerala. In: National Workshop on Eucalyptus, Coimbatore, Recent eucalypt research in India: Proceedings edited by S.K. Bagchi; M. Varghese and Siddappa. Coimbatore, IFGTB. 2002; 94-115.
Ahmad K. Athar F. Phytochemistry and Pharmacology of Callistemon viminalis (Myrtaceae): A Review. Nat Prod J. 2018;7:1-10.
Grover JK, Vats V, Rathi SS. Antihyperglycemic effect of Eugenia jambolana and Tinospora cordifolia in experimental diabetes and their effects on key metabolic enzymes involved in carbohydrate metabolism. J Ethnopharmacol. 2000;73:461-470.
Shakya R, Siddiqui SA, Srivatawa N, Bajpai A. Molecular Characterization of Jamun (Syzygium cumini L. Skeels) Genetic Resources. Int J Fruit Sci. 2010;10:29-39.
Asif H, Khan A, Iqbal A, Khan IA, Heinze B, Azim MK. The chloroplast genome sequence of Syzygium cumini (L.) and its relationship with other angiosperms. Tree Genet Gen. 2013;1-11.
Wolfe AD, Liston A. Contributions of PCR based methods to plant systematics and evolutionary biology. In D.E. Soltis, P.S. Soltis, and J.J. Doyle (Eds.), Plant Molecular Systematics II. Kluwer, Boston.1998;43-86
Ahmed B, Mannan MA, Hossain SA. Molecular characterization of guava (Psidium guajava L.) germplasm by RAPD analysis. Int J Nat Sci.2013;1(3):62-67.
Viji G, Harris DL, Yadav AK, Zee FT. Use of microsatellite markers to characterize genetic diversity of selected accessions of Guava (Psidium guajava) in the United States. Acta Horticul. 2010;859:169-176.
Kareem A, Jaskani MJ, Mehmood A, Khan IA, Awan FS, Sajid MW. Morpho genetic profiling and phylogenetic relationship of guava (Psidium guajaval) as genetic resources in Pakistan. Rev Bras de Fruticul. 2018;40(4):1-11.
Costa SR, Santos CAF. Genetic divergence among Psidium accessions based on single nucleotide polymorphisms developed for Eucalyptus. Genet Mol Res. 2017;16 (2):1-9.
Grattapaglia D, Sederoff R. Genetic Linkage Maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo testcross: mapping strategy and RAPD markers. Genet. 1994;137: 1121-1137.
Abad JIM, Rocha RB, Cruz CD, Araujo EF. Obtainment of Eucalyptus sp. hybrids aided by molecular markers-SSR analysis. Sci for. 2005;67: 53-63.
Balasaravanan T, Chezhian P, Kamalakannan R, Ghosh M, Yasodha R, Varghese M, and Gurumurthi K. Determination of inter and intraspecies genetic relationships among six Eucalyptus species based on inter nsimple sequence repeats (ISSR). Tree Physiol. 2005; 25:1295-1302.
Verhaegen D. Plomion C. Genetic mapping in Eucalyptus urophylla and Eucalyptus grandis using RAPD markers. Genome. 1996;39:1051-1061.
Ribeiro T, Barrela RM, Berges H, Marques C, Loureiro J, Cecílio LM, Paiva JAP. Advancing Eucalyptus Genomics: Cytogenomics reveals conservation of Eucalyptus genomes. Front Plant Sci. 2016;7(510):1-12.
Hafer C, Mizrachi E, Joubert F, Myburg A. The Eucalyptus genome integrative explorer (EucGenIE): a resource for Eucalyptus genomics and transcriptomics. BMC Proceed. 2011; 5(7):49.
Kirst M, Cordeiro CM, Rezende GDSP, Grattapaglia D. Power of Microsatellite Markers for Fingerprinting and Parentage Analysis in Eucalyptus grandis. J Hered. 2005;96(2):1-6.
Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D, Sederoff RR, Kirst M High- throughput gene and SNP discovery in Eucalyptus grandis: an uncharacterized genome. BMC Genom. 2008;9(312):1-14.
Downloads
Published
Versions
- 22-02-2024 (2)
- 01-10-2023 (1)
Issue
Section
License
Copyright (c) 2023 Trends in Current Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.