Arbascular Mycorrhiza and sustainable agriculture: A green approach
DOI:
https://doi.org/10.14719/tcb.3236Keywords:
Nutraceutical value, AMF functional diversity, Arbuscular mycorrhizal symbionts, Sustainable agriculture, Healthy food, Secondary metabolism gene regulation, Health-promoting phytochemicalsAbstract
Agriculture is new paradigm, sustainable intensification, focuses back on beneficial soil microorganisms for their role in reducing chemical fertilizer and pesticide input and improving plant nutritional and health.More research has been done on arbuscular mycorrhizal fungi (AMF) because they form symbiotic relationships with the root systems of most land plants and make it easier for plants to absorb nutrients by creating extraradical networks of hyphae that spread out from colonized roots into the soil and serve as supplemental absorbents.Plants are protected from abiotic and biotic factors by AMF, and they also contribute in modulating the activity of antioxidant enzymes and secondary metabolites (phytochemicals), including polyphenols, anthocyanins, phytoestrogens and carotenoids.The employment of AMF symbionts to enhance the nutritional and medicinal value of active food items has come under more and more scrutiny in studies.Despite the wide physiological and genetic diversity of plant species, only a few AMFs have been used, thus limiting their full exploitation.This review study concentrates on the results of AMF on plant secondary substance biosynthesis that can improve health, as well as the standards for choosing the best symbionts to be utilized as sustainable biotechnological instruments to create food that is healthy and safe.The main objectives of the articlewas to examine the role AMF plays in improving soil's physical, biological and chemical properties. Regarding the information gaps found in this review, a discussion of potential future research is given. This will improve our understanding of AMF, encourage additional study, and aid in maintaining soil fertility.
Downloads
References
Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology. 2013;11(11):789-99. https://doi.org/10.1038/nrmicro3109
Velten S, Leventon J, Jager N, Newig J. What IsSustainable Agriculture? A Systematic Review.Sustainability. 2015; 7(6):7833-7865. https://doi.org/10.3390/su7067833
Abbasi M, Maleki A, Mirzaeiheydari M, Rostaminiya M. The Symbiosis Effect of Mycorrhizal Fungi and Nano-fertilizers on Qualitative and Quantitative Traits, Biochemical Characteristics and Water Use Efficiency of Mung Bean Under Water Stress Conditions. GesundePflanzen. 2022;7:1-2. https://doi.org/10.1007/s10343-022-00640-3
Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology advances. 2014;32(2):429-48. https://doi.org/10.1016/j.biotechadv.2013.12.005
Ortas I, Ustuner O. The effects of single species, dual species and indigenous mycorrhiza inoculation on citrus growth and nutrient uptake. European Journal of Soil Biology. 2014;63:64-9. https://doi.org/10.1016/j.ejsobi.2014.05.007
SCHÜßLER A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological research. 2001;105(12):1413-21. https://doi.org/10.1017/S0953756201005196
Prasad R, Bhola D, Akdi K, Cruz C, KVSS S, Tuteja N, Varma A. Introduction to mycorrhiza: historical development. Mycorrhiza-function, diversity, state of the Art. 2017:1-7.
Brundrett MC. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil. 2009;320:37-77.
Saxena J, Chandra S, Nain L. Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. Journal of soil science and plant nutrition. 2013;13(2):511-25.
Augé RM, Toler HD, Saxton AM. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza. 2015;25(1):13-24. https://doi.org/10.1007/s00572-014-0585-4
Quiroga G, Erice G, Aroca R, Chaumont F, Ruiz-Lozano JM. Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Frontiers in plant science. 2017;8:1056. https://doi.org/10.3389/fpls.2017.01056
Amirnia R, Ghiyasi M, Siavash Moghaddam S, Rahimi A, Damalas CA, Heydarzadeh S. Nitrogen-fixing soil bacteria plus mycorrhizal fungi improve seed yield and quality traits of lentil (Lens culinaris Medik). Journal of Soil Science and Plant Nutrition. 2019;19:592-602. https://doi.org/10.1007/s42729-019-00058-3
Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiology. 2016;171(2):1009-23. https://doi.org/10.1104/pp.16.00307
Mirshad PP, Puthur JT. Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceumretz.). Environmental Monitoring and Assessment. 2016;188:1-20. https://doi.org/10.1007/s10661-016-5428-7
Fiorilli V, Vannini C, Ortolani F, Garcia-Seco D, Chiapello M, Novero M, Domingo G, Terzi V, Morcia C, Bagnaresi P, Moulin L. Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. Scientific Reports. 2018;8(1):1-8. https://doi.org/10.1038/s41598-018-27622-8
Bernaola L, Stout MJ. The effect of mycorrhizal seed treatments on rice growth, yield, and tolerance to insect herbivores. Journal of Pest Science. 2021 Mar;94(2):375-92. https://doi.org/10.1007/s10340-020-01279-7
Sadhana B. Arbuscular Mycorrhizal Fungi (AMF) as a biofertilizer-a review. Int. J. Curr. Microbiol. App. Sci. 2014;3(4):384-400.
Jamio?kowska A, Ksi??niak A, Ga??zka A, Hetman B, Kopacki M, Skwary?o-Bednarz B. Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a review. International Agrophysics. 2018;32(1).
Parihar M, Rakshit A, Meena VS, Gupta VK, Rana K, Choudhary M, Tiwari G, Mishra PK, Pattanayak A, Bisht JK, Jatav SS. The potential of arbuscular mycorrhizal fungi in C cycling: a review. Archives of Microbiology. 2020;202:1581-96. https://doi.org/10.1007/s00203-020-01915-x
Siddiqui ZA, Pichtel J. Mycorrhizae: an overview. Mycorrhizae: sustainable agriculture and forestry. 2008:1-35.
Zancarini A, Lépinay C, Burstin J, Duc G, Lemanceau P, Moreau D, Munier?Jolain N, Pivato B, Rigaud T, Salon C, Mougel C. Combining Molecular Microbial Ecology with Ecophysiology and Plant Genetics for a Better Understanding of Plant–Microbial Communities' Interactions in the Rhizosphere. Molecular microbial ecology of the rhizosphere. 2013;1:69-86. https://doi.org/10.1002/9781118297674.ch7
Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108(5):1028-46. https://doi.org/10.3852/16-042
Smith SE, Read DJ. Mycorrhizal symbiosis. Academic press; 2010.
Dal Cortivo C, Ferrari M, Visioli G, Lauro M, Fornasier F, Barion G, Panozzo A, Vamerali T. Effects of seed-applied biofertilizers on rhizosphere biodiversity and growth of common wheat (Triticum aestivum L.) in the field. Frontiers in Plant Science. 2020;11:72. https://doi.org/10.3389/fpls.2020.00072
Dowarah B, Gill SS, Agarwala N. Arbuscular mycorrhizal fungi in conferring tolerance to biotic stresses in plants. Journal of Plant Growth Regulation. 202;1-6. https://doi.org/10.1007/s00344-021-10392-5
Zhu Y, Lv GC, Chen YL, Gong XF, Peng YN, Wang ZY, Ren AT, Xiong YC. Inoculation of arbuscular mycorrhizal fungi with plastic mulching in rainfed wheat: A promising farming strategy. Field Crops Research. 2017;204:229-41. https://doi.org/10.1016/j.fcr.2016.11.005
Espidkar Z, Yarnia M, Ansari MH, Mirshekari B, Asadi Rahmani H. Differences in nitrogen and phosphorus uptake and yield components between barley cultivars grown under arbuscular mycorrhizal fungus and pseudomonas strains co-inoculation in rainfed condition. Applied Ecology and Environmental Research. 2017;15(4):195-216.
Suri VK, Choudhary AK. Effects of vesicular arbuscular mycorrhizae and applied phosphorus through targeted yield precision model on root morphology, productivity, and nutrient dynamics in soybean in an acid alfisol. Communications in Soil Science and Plant Analysis. 2013;44(17):2587-604. https://doi.org/10.1080/00103624.2013.803569
Erman M, Demir S, Ocak E, Tüfenkçi ?, O?uz F, Akköprü A. Effects of Rhizobium, arbuscular mycorrhiza and whey applications on some properties in chickpea (Cicer arietinum L.) under irrigated and rainfed conditions 1—Yield, yield components, nodulation and AMF colonization. Field Crops Research. 2011;122(1):14-24. https://doi.org/10.1016/j.fcr.2011.02.002
Sharma V, Sharma S, Sharma S, Kumar V. Synergistic effect of bio-inoculants on yield, nodulation and nutrient uptake of chickpea (Cicer arietinum L) under rainfed conditions. Journal of Plant Nutrition. 2019;42(4):374-83. https://doi.org/10.1080/01904167.2018.1555850
Rezaei-Chiyaneh E, Jalilian J, Seyyedi SM, Barin M, Ebrahimian E, Afshar RK. Isabgol (Plantago ovata) and lentil (Lens culinaris) intercrop responses to arbuscular mycorrhizal fungi inoculation. Biological Agriculture & Horticulture. 2021;37(2):125-40. https://doi.org/10.1080/01448765.2021.1903556
Trewin, N.H. & C.M. Rice (eds.): The Rhynie hot-spring system: geology, biota and mineralisation. – Trans. Roy. Soc. Edinburgh, Earth Sci. 2004;94: 285–521.
PIROZYNSKI KA, DALPE Y. Geological history of the Glomaceae with particular reference to mycorrhizal symbiosis. Symbiosis. 1989.
Redecker D. Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza. 2000;10(2):73-80. https://doi.org/10.1007/s005720000061
Brundrett MC. Coevolution of roots and mycorrhizas of land plants. New phytologist. 2002;154(2):275-304. https://doi.org/10.1046/j.1469-8137.2002.00397.x
Raven JA, Andrews M. Evolution of tree nutrition. Tree Physiology. 2010;30(9):1050-71. https://doi.org/10.1093/treephys/tpq056
Li X, Zhang J, Gai J, Cai X, Christie P, Li X. Contribution of arbuscular mycorrhizal fungi of sedges to soil aggregation along an altitudinal alpine grassland gradient on the T ibetan P lateau. Environmental microbiology. 2015;17(8):2841-57. https://doi.org/10.1111/1462-2920.12792
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL. Three keys to the radiation of angiosperms into freezing environments. Nature. 2014;506(7486):89-92. https://doi.org/10.1038/nature12872
Smith, S.E.; Smith, F.A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from
cellular to ecosystem scales. Biol. Annu. Rev. Plant 2011, 62, 227–250. https://doi.org/10.1146/annurev-arplant-042110-103846
Brundrett MC. Global diversity and importance of mycorrhizal and nonmycorrhizal plants. Biogeography of mycorrhizal symbiosis. 2017:533-56.
Swaty R, Michael HM, Deckert R, Gehring CA. Mapping the potential mycorrhizal associations of the conterminous United States of America. Fungal Ecology. 2016;24:139-47. https://doi.org/10.1016/j.funeco.2016.05.005
Brundrett MC. Coevolution of roots and mycorrhizas of land plants. New phytologist. 2002;154(2):275-304.
Freudenstein JV, Broe MB, Feldenkris ER. Phylogenetic relationships at the base of Ericaceae: implications for vegetative and mycorrhizal evolution. Taxon. 2016;65(4):794-804. https://doi.org/10.12705/654.7
Szabó K, Böll S, Er?s-Honti ZS. Applying artificial mycorrhizae in planting urban trees. Applied ecology and environmental research. 2014;12(4):835-53.
van Der Heijden MG, Martin FM, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution: the past, the present, and the future. New phytologist. 2015;205(4):1406-23. https://doi.org/10.1111/nph.13288
Pellegrino E, Bedini S. Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biology and biochemistry. 2014;68:429-39. https://doi.org/10.1016/j.soilbio.2013.09.030
Prasad R, Bhola D, Akdi K, Cruz C, KVSS S, Tuteja N, Varma A. Introduction to mycorrhiza: historical development. Mycorrhiza-function, diversity, state of the Art. 2017:1-7.
Cervantes-Gámez RG, Bueno-Ibarra MA, Cruz-Mendívil A, Calderón-Vázquez CL, Ramírez-Douriet CM, Maldonado-Mendoza IE, Villalobos-López MÁ, Valdez-Ortíz Á, López-Meyer M. Arbuscular mycorrhizal symbiosis-induced expression changes in Solanum lycopersicum leaves revealed by RNA-seq analysis. Plant Molecular Biology Reporter. 2016;34:89-102. https://doi.org/10.1007/s11105-015-0903-9
Castellanos?Morales V, Villegas J, Wendelin S, Vierheilig H, Eder R, Cárdenas?Navarro R. Root colonisation by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria× ananassa Duch.) at different nitrogen levels. Journal of the Science of Food and Agriculture. 2010;90(11):1774-82. https://doi.org/10.1002/jsfa.3998
Lingua G, Bona E, Manassero P, Marsano F, Todeschini V, Cantamessa S, Copetta A, D’Agostino G, Gamalero E, Berta G. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization. International journal of molecular sciences. 2013;14(8):16207-25. https://doi.org/10.3390/ijms140816207
Zubek S, Blaszkowski J, Seidler-Lozykowska K, Baba W, Mleczko P. Arbuscular mycorrhizal fungi abundance, species richness and composition under the monocultures of five medicinal plants. Acta Scientiarum Polonorum. Hortorum Cultus. 2013;12(5).
Baslam M, Qaddoury A, Goicoechea N. Role of native and exotic mycorrhizal symbiosis to develop morphological, physiological and biochemical responses coping with water drought of date palm, Phoenix dactylifera. Trees. 2014;28:161-72.
da Silva IR, de Mello CM, Neto RA, da Silva DK, de Melo AL, Oehl F, Maia LC. Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the Brazilian semiarid. Applied Soil Ecology. 2014;84:166-75. https://doi.org/10.1016/j.apsoil.2014.07.008
Eftekhari M, Alizadeh M, Mashayekhi K, Asghari HR. In vitro propagation of four Iranian grape varieties: influence of genotype and pretreatment with arbuscular mycorrhiza. Vitis. 2012;51(4):175-82.
Dave S, Tarafdar JC. Stimulatory synthesis of saponin by mycorrhizal fungi in safed musli (Chlorophytum borivilianum) tubers. Int Res J Agric Sci Soil Sci. 2011;1:137-41.
Geneva MP, Stancheva IV, Boychinova MM, Mincheva NH, Yonova PA. Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. Journal of the Science of Food and Agriculture. 2010;90(4):696-702. https://doi.org/10.1002/jsfa.3871
Garg N, Bharti A. Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress. Mycorrhiza. 2018;28(8):727-46.
Karagiannidis N, Thomidis T, Lazari D, Panou-Filotheou E, Karagiannidou C. Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Scientia horticulturae. 2011;129(2):329-34. https://doi.org/10.1016/j.scienta.2011.03.043
Cosme M, Fernández I, Declerck S, van der Heijden MG, Pieterse CM. A coumarin exudation pathway mitigates arbuscular mycorrhizal incompatibility in Arabidopsis thaliana. Plant molecular biology. 2021;106:319-34.
Rasouli-Sadaghiani M, Hassani A, Barin M, Danesh YR, Sefidkon F. Effects of arbuscular mycorrhizal (AM) fungi on growth, essential oil production and nutrients uptake in basil. J Med Plants Res. 2010;4(21):2222-8. https://doi.org/10.5897/JMPR10.337
Mishra V, Gupta A, Kaur P, Singh S, Singh N, Gehlot P, Singh J. Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. International journal of phytoremediation. 2016;18(7):697-703. https://doi.org/10.1080/15226514.2015.1131231
Ratti N, Verma HN, Gautam SP. Effect of Glomus species on physiology and biochemistry of Catharanthus roseus. Indian Journal of Microbiology. 2010;50:355-60.
Giovannetti M, Volpe V, Salvioli A, Bonfante P. Fungal and plant tools for the uptake of nutrients in arbuscular mycorrhizas: a molecular view. InMycorrhizal mediation of soil 2017;107-128. https://doi.org/10.1016/B978-0-12-804312-7.00007-3
Mandal S, Evelin H, Giri B, Singh VP, Kapoor R. Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Applied soil ecology. 2013;72:187-94. https://doi.org/10.1016/j.apsoil.2013.07.003
Nell M, Wawrosch C, Steinkellner S, Vierheilig H, Kopp B, Lössl A, Franz C, Novak J, Zitterl-Eglseer K. Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L. Planta Medica. 2009;80:393-8. https://doi.org/10.1055/s-0029-1186180
Miura C, Yamaguchi K, Miyahara R, Yamamoto T, Fuji M, Yagame T, Imaizumi-Anraku H, Yamato M, Shigenobu S, Kaminaka H. The mycoheterotrophic symbiosis between orchids and mycorrhizal fungi possesses major components shared with mutualistic plant-mycorrhizal symbioses. Molecular Plant-Microbe Interactions. 2018;31(10):1032-47. https://doi.org/10.1094/MPMI-01-18-0029-R
Qin Z, Zhang H, Feng G, Christie P, Zhang J, Li X, Gai J. Soil phosphorus availability modifies the relationship between AM fungal diversity and mycorrhizal benefits to maize in an agricultural soil. Soil Biology and Biochemistry. 2020;144:107790. https://doi.org/10.1016/j.soilbio.2020.107790
Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Jiang Y, Liu A, Zhao P, Wang M, Ahammed GJ. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers in Microbiology. 2017;8:2516. https://doi.org/10.3389/fmicb.2017.02516
Shen SK, Wang YH. Arbuscular mycorrhizal (AM) status and seedling growth response to indigenous AM colonisation of Euryodendron excelsum in China: implications for restoring an endemic and critically endangered tree. Australian Journal of Botany. 2011;59(5):460-7. https://doi.org/10.1071/BT11002
Rodrigues MÂ, Piroli LB, Forcelini D, Raimundo S, da Silva Domingues L, Cassol LC, Correia CM, Arrobas M. Use of commercial mycorrhizal fungi in stress-free growing conditions of potted olive cuttings. Scientia Horticulturae. 2021;275:109712. https://doi.org/10.1016/j.scienta.2020.109712
Zaidi A, Khan MS. Stimulatory effects of dual inoculation with phosphate solubilising microorganisms and arbuscular mycorrhizal fungus on chickpea. Australian Journal of Experimental Agriculture. 2007;47(8):1016-22. https://doi.org/10.1071/EA06046
Zhang H, Liu Z, Chen H, Tang M. Symbiosis of arbuscular mycorrhizal fungi and Robinia pseudoacacia L. improves root tensile strength and soil aggregate stability. Plos one. 2016;11(4):e0153378. https://doi.org/10.1371/journal.pone.0153378
Nizar KM, Tan CC, Masya ME. Psychological Effects of Arbuscular Mychorrhiza Fungi Reducing Chemical Fertilizer on The Growth of Oil Palm Seedling. InIOP Conference Series: Earth and Environmental Science 2023; 1167(1):012017. https://doi.org/10.1088/1755-1315/1167/1/012017
Kalayu G. Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy. 2019;2019:1-7. https://doi.org/10.1155/2019/4917256
Faghihinia M, Jansa J, Halverson LJ, Staddon PL. Hyphosphere microbiome of arbuscular mycorrhizal fungi: a realm of unknowns. Biology and Fertility of Soils. 2023;59(1):17-34. https://doi.org/10.1007/s00374-022-01683-4
Parihar M, Chitara M, Khati P, Kumari A, Mishra PK, Rakshit A, Rana K, Meena VS, Singh AK, Choudhary M, Bisht JK. Arbuscular mycorrhizal fungi: Abundance, interaction with plants and potential biological applications. Advances in Plant Microbiome and Sustainable Agriculture: Diversity and Biotechnological Applications. 2020:105-43.
Hashem A, Kumar A, Al-Dbass AM, Alqarawi AA, Al-Arjani AB, Singh G, Farooq M, Abd_Allah EF. Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi journal of biological sciences. 2019;26(3):614-24. https://doi.org/10.1016/j.sjbs.2018.11.005
Alimi AA, Ezeokoli OT, Adeleke R, Moteetee A. Arbuscular mycorrhizal fungal communities colonising the roots of indigenous legumes of South Africa as revealed by high-throughput DNA metabarcoding. Rhizosphere. 2021;19:100405. https://doi.org/10.1016/j.rhisph.2021.100405
Larimer AL, Clay K, Bever JD. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology. 2014;95(4):1045-54. https://doi.org/10.1890/13-0025.1
Agarwal AN, Singh JA, Singh AP. Arbuscular mycorrhizal fungi and its role in sequestration of heavy metals. Trends Biosci. 2017;10(21):4068-77.
López-Pedrosa A, González-Guerrero M, Valderas A, Azcón-Aguilar C, Ferrol N. GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genetics and Biology. 2006;43(2):102-10. https://doi.org/10.1016/j.fgb.2005.10.005
Bedini S, Avio L, Sbrana C, Turrini A, Migliorini P, Vazzana C, Giovannetti M. Mycorrhizal activity and diversity in a long-term organic Mediterranean agroecosystem. Biology and Fertility of Soils. 2013;49:781-90.
Blanco?Canqui H, Lal R. Crop residue management and soil carbon dynamics. Soil carbon sequestration and the greenhouse effect. 2009;57:291-309. https://doi.org/10.2136/sssaspecpub57.2ed.c17
Khalvati M, Bartha B, Dupigny A, Schröder P. Arbuscular mycorrhizal association is beneficial for growth and detoxification of xenobiotics of barley under drought stress. Journal of Soils and Sediments. 2010;10:54-64. https://doi.org/10.1007/s11368-009-0119-4
Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW. The plant vascular system: evolution, development and functions f. Journal of integrative plant biology. 2013;55(4):294-388. https://doi.org/10.1111/jipb.12041
Solaiman ZM. Use of biochar for sustainable agriculture. J. Integr. Field Sci. 2018;15:8-17.
Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C, Parniske M. SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proceedings of the National Academy of Sciences. 2008;105(12):4928-32. https://doi.org/10.1073/pnas.0710618105
Seeram NP. Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. Journal of agricultural and food chemistry. 2008;56(3):627-9. https://doi.org/10.1021/jf071988k
Cavagnaro TR, Barrios-Masias FH, Jackson LE. Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system. Plant and soil. 2012;353:181-94. https://doi.org/10.1007/s11104-011-1021-6
García A, Labidi J, Belgacem MN, Bras J. The nanocellulose biorefinery: woody versus herbaceous agricultural wastes for NCC production. Cellulose. 2017;24:693-704. https://doi.org/10.1007/s10570-016-1144-2
Colombo RP, Ibarra JG, Bidondo LF, Silvani VA, Bompadre MJ, Pergola M, Lopez NI, Godeas AM. Arbuscular mycorrhizal fungal association in genetically modified drought?tolerant corn. Journal of environmental quality. 2017;46(1):227-31. https://doi.org/10.2134/jeq2016.04.0125
Nemec S. Virus-Glomus etunicatus interactions in citrus rootstocks. Phytopathology. 1981.
Shaul O, Galili S, Volpin H, Ginzberg I, Elad Y, Chet I, Kapulnik Y. Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Molecular Plant-Microbe Interactions. 1999;12(11):1000-7. https://doi.org/10.1094/MPMI.1999.12.11.1000
Zhang HS, Qin FF, Qin P, Pan SM. Evidence that arbuscular mycorrhizal and phosphate-solubilizing fungi alleviate NaCl stress in the halophyte Kosteletzkya virginica: nutrient uptake and ion distribution within root tissues. Mycorrhiza. 2014;24:383-95. https://doi.org/10.1007/s00572-013-0546-3
Ozgonen H, Erkilic A. Growth enhancement and Phytophthora blight (Phytophthora capsici Leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Protection. 2007;26(11):1682-8. https://doi.org/10.1016/j.cropro.2007.02.010
Siddiqui ZA, Sayeed Akhtar M. Effects of antagonistic fungi, plant growth-promoting rhizobacteria, and arbuscular mycorrhizal fungi alone and in combination on the reproduction of Meloidogyne incognita and growth of tomato. Journal of General Plant Pathology. 2009;75:144-53. https://doi.org/10.1007/s10327-009-0154-4
Pozo MJ, Azcón-Aguilar C. Unraveling mycorrhiza-induced resistance. Current opinion in plant biology. 2007;10(4):393-8. https://doi.org/10.1016/j.pbi.2007.05.004
Pradhan M, Baldwin IT, Pandey SP. Argonaute7 (AGO7) optimizes arbuscular mycorrhizal fungal associations and enhances competitive growth in Nicotiana attenuata. New Phytologist. 2023;240(1):382-98. https://doi.org/10.1111/nph.19155
Bordoloi A, Nath PC, Shukla AK. Distribution of arbuscular mycorrhizal fungi associated with different land use systems of Arunachal Pradesh of Eastern Himalayan region. World Journal of Microbiology and Biotechnology. 2015;31:1587-93. https://doi.org/10.1007/s11274-015-1909-z
García-Garrido JM, Ocampo JA, García-Romera I. Enzymes in the arbuscular mycorrhizal symbiosis. Marcel Dekker, New York; 2002 Jan 29.
Sundram S, Othman R, Idris AS, Angel LP, Meon S. Improved Growth Performance of Elaeis guineensis Jacq. Through the Applications of Arbuscular Mycorrhizal (AM) Fungi and Endophytic Bacteria. Current Microbiology. 2022;79(5):155. https://doi.org/10.1007/s00284-022-02842-4
Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Jiang Y, Liu A, Zhao P, Wang M, Ahammed GJ. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers in Microbiology. 2017;8:2516. https://doi.org/10.3389/fmicb.2017.02516
Khaosaad T, Staehelin C, Steinkellner S, Hage?Ahmed K, Ocampo JA, Garcia?Garrido JM, Vierheilig H. The Rhizobium sp. strain NGR234 systemically suppresses arbuscular mycorrhizal root colonization in a split?root system of barley
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Swapan Chowdhury, Mainak Banerjee, Tanmoy Majumdar
This work is licensed under a Creative Commons Attribution 4.0 International License.