Grapevine rootstock effects on abiotic stress tolerance

Authors

  • Massimiliano Corso University of Padova
  • Claudio Bonghi University of Padova

DOI:

https://doi.org/10.14719/pst.2014.1.3.64

Keywords:

Vitis, grafting, drought, salinity, iron chlorosis, vigour

Abstract

Amongst 60 species within the Vitis genus, Vitis vinifera L. is the mostly used species for the production of wine and distilled liquors. Before the devastation of European viticulture caused by the introduction of phylloxera from North America, varieties of V. vinifera used commercially for wine production in Europe were traditionally grown on their own roots. Subsequently, the use of rootstocks from the pest’s origin was introduced to provide resistance to this and other deleterious diseases and to save the fate of European viticulture. Rootstocks have been bred from a number of Vitis species and are known, in addition to the enhanced resistance to phylloxera and other pathogens, confer tolerance to abiotic stresses (e.g. drought, high salinity and Fe-deficiency) and to alter specific aspects of harvest/postharvest fruit quality of a scion. This review summarizes recent data related to the responses of grapevine rootstocks to abiotic stresses, with particular attention to drought, salinity and iron chlorosis.

Downloads

Download data is not yet available.

Author Biographies

Massimiliano Corso, University of Padova

Post-doc at Department of Agronomy Food Natural resources Animals and Environment, University of Padova

Claudio Bonghi, University of Padova

Associate Professor at DAFNAE Department, University of Padova

References

Alsina, M. M., Smart, D. R., Bauerle, T., de Herralde, F., Biel, C., Stockert, C., ... Save, R. (2011). Seasonal changes of whole root system conductance by a drought-tolerant grape root system. Journal of Experimental Botany, 62, 99-109. http://dx.doi.org/10.1093/jxb/erq247 PMid:20851906 PMCid:PMC2993904

Arrigo, N., & Arnold, C. (2007). Naturalised Vitis rootstocks in Europe and consequences to native wild grapevine. PloS One 2, e521. PMid:17565374 PMCid:PMC1885978 http://dx.doi.org/10.1371/journal.pone.0000521

Bavaresco, L., Fraschini, P., & Perino, A. (1993). Effect of the rootstock on the occurrence of lime-induced chlorosis of potted Vitis vinifera L. cv. 'Pinot blanc'. Plant and Soi,l 157, 305-311. http://dx.doi.org/10.1007/BF00011058

Bavaresco, L., & Lovisolo, C. (2000). Effect of grafting on grapevine chlorosis and hydraulic conductivity. Vitis, 39, 89-92.

Cookson, S. J., Clemente Moreno, M. J., Hevin, C., Nyamba Mendome, L. Z., Delrot, S., Magnin, S., ... Ollat, N. (2014). Heterografting with nonself rootstocks induces genes involved in stress responses at the graft interface when compared with autografted controls. Journal of Experimental Botany 65 (9), 2473-2481 http://dx.doi.org/10.1093/jxb/eru145

Covarrubias, J., & Rombolà, A. (2013). Physiological and biochemical responses of the iron chlorosis tolerant grapevine rootstock 140 Ruggeri to iron deficiency and bicarbonate. Plant and Soil, 370, 305-315. http://dx.doi.org/10.1007/s11104-013-1623-2

Cramer, G., Ergül, A., Grimplet, J., Tillett, R., Tattersall, E. R., Bohlman, M., ... Cushman, J. (2007). Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Functional and Integrative Genomics, 7, 111-134. http://dx.doi.org/10.1007/s10142-006-0039-y

Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3, 52-58. http://dx.doi.org/10.1038/nclimate1633

Damour, G., Simonneau, T., Cochard, H., & Urban, L. (2010). An overview of models of stomatal conductance at the leaf level. Plant, Cell and Environment, 33, 1419-1438. PMid:20545879

Deluc, L. G., Quilici, D. R., Decendit, A., Grimplet, J., Wheatley, M. D., Schlauch, K. A., ... Cramer, G. R. (2009). Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics, 10, 212. PMid:19426499 PMCid:PMC2701440 http://dx.doi.org/10.1186/1471-2164-10-212

Fisarakis, I., Chartzoulakis, K., & Stavrakas, D. (2001). Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agricultural Water Management, 51, 13-27. http://dx.doi.org/10.1016/S0378-3774(01)00115-9

Flexas, J., Barón, M., Bota, J., Ducruet, J-M., Gallé, A., Galmés, J., ... Medrano, H. (2009). Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. Berlandieri × V. rupestris). Journal of Experimental Botany, 60, 2361-2377. http://dx.doi.org/10.1093/jxb/erp069 PMid:19351904

Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., & Santos, J. A. (2012). An overview of climate change impacts on European viticulture. Food and Energy Security, 1, 94-110. http://dx.doi.org/10.1002/fes3.14

Fregoni, M. (2005). Vitcoltura di qualità. Phytoline ed.

Galmés, J., Pou, A., Alsina, M., Tomàs, M., Medrano, H., & Flexas, J. (2007). Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta, 226, 671–681. http://dx.doi.org/10.1007/s00425-007-0515-1 PMid:17447082

Gambetta, G. A., Manuck, C. M., Drucker. S. T., Shaghasi, T., Fort, K., Matthews, M. A., ... McElrone, A. J. (2012). The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play? Journal of Experimental Botany, 63, 6445-6455. http://dx.doi.org/10.1093/jxb/ers312 PMid:23136166 PMCid:PMC3504504

Grant, R. S., & Matthews, M. A. (1996). The Influence of Phosphorus Availability, Scion, and Rootstock on Grapevine Shoot Growth, Leaf Area, and Petiole Phosphorus Concentration. American Journal of Enology and Viticulture, 47, 217-224.

Gregory, P. J., Atkinson, C. J., Bengough, A. G., Else, M. A., Fernández-Fernández, F., Harrison, R. J., & Schmidt, S. (2013). Contributions of roots and rootstocks to sustainable, intensified crop production. Journal of Experimental Botany, 64, 1209-1222. http://dx.doi.org/10.1093/jxb/ers385 PMid:23378378

Grimplet, J., Cramer, G. R., Dickerson, J. A., Mathiason, K., Van Hemert, J., & Fennell, A. Y. (2009a). VitisNet: "Omics" integration through grapevine molecular networks. PloS one, 4, e8365. PMid:20027228 PMCid:PMC2791446 http://dx.doi.org/10.1371/journal.pone.0008365

Grimplet, J., Wheatley, M. D., Jouira, H. B., Deluc, L. G., Cramer, G. R., & Cushman, J. C. (2009b). Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions. Proteomics, 9, 2503-2528. PMid:19343710 http://dx.doi.org/10.1002/pmic.200800158

Hamdan, A-JS., & Basheer-Salimia, R. (2010). Preliminary Compatibility between Some Table-Grapevine Scion and Phylloxera-Resistant Rootstock Cultivars. Jordan Journal of Agricultural Sciences 6, 1-10.

Hannah, L., Roehrdanz, P. R., Ikegami, M., Shepard, A. V., Shaw, M. R., Tabor, G., Zhi, L., ... Hijmans, R. J. (2013). Climate change, wine, and conservation. Proceedings of the National Academy of Sciences of the United States of America, 110, 6907-6912. http://dx.doi.org/10.1073/pnas.1210127110 PMid:23569231 PMCid:PMC3637704

Hochberg, U., Degu, A., Toubiana, D., Gendler, T., Nikoloski, Z., Rachmilevitch, S., & Fait. A. (2013). Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response. BMC Plant Biology, 13(1), 184. http://dx.doi.org/10.1186/1471-2229-13-184 PMid:24256338

Ismail, A., Riemann, M., & Nick, P. (2012). The jasmonate pathway mediates salt tolerance in grapevines. Journal of Experimental Botany 63, 2127-2139.

Ismail, A., Seo, M., Takebayashi, Y., Kamiya, Y., Eiche, E., & Nick, P. (2013). Salt adaptation requires efficient fine-tuning of jasmonate signalling. Protoplasma, 1-18.

Jiménez, S., Gogorcena, Y., Hévin, C., Rombolà, A. D., & Ollat, N. (2007). Nitrogen nutrition influences some biochemical responses to iron deficiency in tolerant and sensitive genotypes of Vitis. Plant and Soil, 290, 343-355. http://dx.doi.org/10.1007/s11104-006-9166-4

Kidman, C. M., Dry, P. R., McCarthy, M. G., & Collins, C. (2013). Reproductive performance of Cabernet Sauvignon and Merlot (Vitis vinifera L.) is affected when grafted to rootstocks. Australian Journal of Grape and Wine Research, 19, 409-421.

Komar, V., Vigne, E., Demangeat, G., Lemaire, O., & Fuchs, M. (2010). Comparative Performance of Virus-Infected Vitis vinifera cv. Savagnin rose Grafted onto Three Rootstocks. American Journal of Enology and Viticulture 61, 68-73.

Koundouras, S., Tsialtas, I. T., Zioziou, E., & Nikolaou, N. (2008). Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet–Sauvignon) under contrasting water status: Leaf physiological and structural responses. Agriculture, Ecosystems and Environment, 128, 86-96. http://dx.doi.org/10.1016/j.agee.2008.05.006

Koundouras, S., Hatzidimitriou, E., Karamolegkou, M., Dimopoulou, E., Kallithraka, S., Tsialtas, J. T., ... Kotseridis, Y. (2009). Irrigation and Rootstock Effects on the Phenolic Concentration and Aroma Potential of Vitis vinifera L. cv. Cabernet Sauvignon Grapes. Journal of Agricultural and Food Chemistry 57, 7805-7813.

Ksouri, R., M'rah, S., Gharsalli, M., & Lachaâl, M. (2006). Biochemical responses to true and bicarbonate-induced iron deficiency in grapevine genotypes. Journal of Plant Nutrition 29, 305–315. http://dx.doi.org/10.1080/01904160500476897

Lee, J-M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L., & Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127, 93-105. http://dx.doi.org/10.1016/j.scienta.2010.08.003

Marguerit, E., Brendel, O., Lebon, E., Van Leeuwen, C., & Ollat, N. (2012). Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. The New Phytologist, 194, 416-429. http://dx.doi.org/10.1111/j.1469-8137.2012.04059.x PMid:22335501

Meggio, F., Prinsi, B., Negri, A. S., Di Lorenzo, G. S., Lucchini, G., Pitacco, P., ... Espen, L (2014). Biochemical and physiological responses of two grapevine rootstock genotypes to drought and salt treatments. Australian Journal of Grape and Wine Research, 20, (2), 310–323. http://dx.doi.org/10.1111/ajgw.12071

Rodríguez-Celma, J., Lattanzio, G., Jiménez, S., Briat, J-F., Abadía, J., Abadía, A., ... López-Millán, A-F. (2013). Changes Induced by Fe Deficiency and Fe Resupply in the Root Protein Profile of a Peach-Almond Hybrid Rootstock. Journal of Proteome Research, 12, 1162-1172. http://dx.doi.org/10.1021/pr300763c PMid:23320467

Serra, I., Strever, A., Myburgh, P. A., & Deloire, A. (2014). Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Journal of Experimental Botany, 20, 1-14

Tsago, Y., Andargie, M., & Takele, A. (2014). In vitro selection of sorghum (Sorghum bicolor (L) Moench) for polyethylene glycol (PEG) induced drought stress. Plant Science Today, 1(2), 62-68. http://dx.doi.org/10.14719/pst.2014.1.2.14

Walker, R. R., Blackmore, D. H., Clingeleffer, P. R., & Correll, R. L. (2002). Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana).: 1. Yield and vigour inter-relationships. Australian Journal of Grape and Wine Research, 8, 3-14. http://dx.doi.org/10.1111/j.1755-0238.2002.tb00206.x

Walker, R. R., Blackmore, D. H., Clingeleffer, P. R., & Correll, R. L. (2004). Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana) 2. Ion concentrations in leaves and juice. Australian Journal of Grape and Wine Research, 10, 90-99. http://dx.doi.org/10.1111/j.1755-0238.2004.tb00011.x

Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10, 57-63. http://dx.doi.org/10.1038/nrg2484 PMid:19015660 PMCid:PMC2949280

Webb, L. B., Whetton, P. H., Bhend, J., Darbyshire, R., Briggs, P. R., & Barlow, E. W. R. (2012). Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nature Climate Change, 2, 259-264. http://dx.doi.org/10.1038/nclimate1417

Ziliotto, F., Corso, M., Rizzini, F. M., Rasori, A., Botton, A., & Bonghi, C. (2012). Grape berry ripening delay induced by a pre-veraison NAA treatment is paralleled by a shift in the expression pattern of auxin- and ethylene-related genes. BMC Plant Biology, 12, 185 http://dx.doi.org/10.1186/1471-2229-12-185 PMid:23046684 PMCid:PMC3564861.

Downloads

Published

03-07-2014

How to Cite

1.
Corso M, Bonghi C. Grapevine rootstock effects on abiotic stress tolerance. Plant Sci. Today [Internet]. 2014 Jul. 3 [cited 2024 Apr. 26];1(3):108-13. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/64

Issue

Section

Mini Reviews