Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Phytoplankton dynamics and pollution impacts in the Sundarbans estuarine ecosystem

DOI
https://doi.org/10.14719/pst.5492
Submitted
3 October 2024
Published
23-05-2025
Versions

Abstract

Sundarbans belong exclusively to the largest mangrove ecosystem in the world. This work aims to track the spatiotemporal succession of phytoplankton relying upon microscopic study and hydrological parameters circumscribing five different locations of the Indian Sundarbans. Phytoplankton levels, the major contributors to aquatic productivity, should be kept under check to maintain a balanced ecosystem. Statistically validated environmental parameters and phytoplankton dissemination were thoroughly examined on a seasonal and spatial basis from April 2022 to February 2024. With regard to biomass, Bacillariophyceae exhibited prominence with maximum species richness (3.96), diversity (3.67) and assemblage observed during summer (4.7 × 103 ind/L). However, as winter commenced, the immense tourist load on 3 of our sampling stations, Gadkhali, Kumirmari and Dobanki, serving as the main tourist attraction spots, started facing pollution pressure attributable to garbage disposal, poor sanitation and littering from mechanized tourist vessels. This was further reflected in the phytoplankton community as a sudden surge in the Dinoflagellate population owing to blooms of Ceratium sp. (15.6 × 103 ind/L) was observed, indicating pollution pressure in the waterbodies, further validated by the increased heavy metal concentration (Lead, Cadmium and Chromium) and COD levels (47.34 ± 3.09 mg/l) during this season. A multidimensional scaling map further validated the similarity trend across these stations, pointing towards the implications of uncontrolled tourism as the probable cause. Therefore, it is essential to impose ecotourism practices keeping in mind the tourist carrying capacity of the ecosystem.

References

  1. 1. Choudhury AK, Bhadury P. Phytoplankton study from the Sundarbans ecoregion with an emphasis on cell biovolume estimates - A review. Indian J Mar Sci. 2014;43(10):1905‒13.
  2. 2. Manna S, Chaudhuri K, Bhattacharyya S, Bhattacharyya M. Dynamics of Sundarban estuarine ecosystem: Eutrophication induced threat to mangroves. Saline Systems. 2010;6:8. https://doi.org/10.1186/1746-1448-6-8
  3. 3. Basu S, Bhattacharyya S, Gogoi P, Dasgupta S, Das SK. Variations of surface water quality in selected tidal creeks of Sagar Island, Indian Sundarban ecoregion: a multivariate approach. Appl Water Sci. 2021;11:63. https://doi.org/10.
  4. 1007/s13201-021-01391-8
  5. 4. Danda AA. Sundarbans: Future imperfect climate adaptation report. WWF–India; 2010. p 1– 36. https://doi.org/10.18590/euscorpius.2010.vol2010.iss98.1
  6. 5. Sreelekshmi S, Nandan SB, Kaimal SV, Radhakrishnan CK, Suresh VR. Mangrove species diversity, stand structure and zonation pattern in relation to environmental factors—A case study at Sundarban delta, east coast of India. Reg Stud Mar Sci. 2020;1(35):101111. https://doi.org/10.1016/j.rsma.2020.101111
  7. 6. Mitra A, Banerjee K. Time series observation on phytoplankton dynamics in the coastal waters of the world heritage site of Indian Sundarban Mangrove Forest, NE Coast of Bay of Bengal. J Coast Zone Manag. 2018;21:1. https://doi.org/10.4172/2473-3350.1000456
  8. 7. Mullick R, Sinha S, Roy D. Role of phytoplankton in comprehending the vulnerabilities imposed due to Gangasagar festival. Intern J Ecol and Environ Sci. 2024;50:123–29. https://doi.org/10.55863/ijees.2024.3150
  9. 8. Mamun MM, Sarower MG, Ali MA, Rahman SMB, Huq KA. Abundance and distribution of plankton in the Sundarbans mangrove forest. J Innov Dev Strategy. 2009;3:43–54. https://doi.org/10.1111/j.1467-9515.2008.00646.x
  10. 9. Bjornstad JM, Dachevski AI. A dynamical systems approach to modeling plankton food web. Georgia Tech. 2005;1–19.
  11. 10. .Khanom S, Shah MAR, Chaudhary A. Towards ecotourism: issues of current tourism practices in the Sundarban mangrove forest, Bangladesh. Peace, Environ and Tourism Conf; 2011. 20–21.
  12. 11. Hilaluddin F, Yusoff FM, Natrah FMI, Lim PT. Disturbance of mangrove forests causes alterations in estuarine phytoplankton community structure in Malaysian Matang mangrove forests. Mar Environ Res. 2020;158:104935. https://doi.org/10.1016/j.marenvres.2020.104935
  13. 12. 2025 Environmental Law Alliance Worldwide. Threats to Mangroves. https://elaw.org/mangrovesthreats#:~:text=%E2%80%9CIn%20recent%20years%20the%20biggest,and%20improper%20disposal%20of%20wastes.
  14. 13. Mangrove threats and solutions. American Museum of Natural History. https://r.search.yahoo.com/_ylt=Awr1QTc Xg7Vn_QEAqDq7HAx.;_ylu=Y29sbwNzZzMEcG9zAzEEdnRpZAMEc2VjA3Ny/RV=2/RE=1741158423/RO=10/RU=https%3a%2f%2fwww.amnh.org%2fexplore%2fvideos%2fbiodiversity%2fmangroves%2fmangrove-threats/RK=2/RS=WZeN6guK5_smuh6ZKZHrPIXbh4Q-
  15. 14. Rice EW, Baird RB, Eaton AD, Clesceri LS. Standard methods for the examination of water and Wastewater, 21st edn. American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF), Washington, DC, USA; 2005
  16. 15. Parsons TR, Maita Y, Lalli GM. A manual of chemical and biological methods for seawater. Pergamon Press. 1984;173.
  17. 16. Strickland JDH, Parsons TR. A practical handbook of seawater analysis. Fisheries Research Board of Canada. 1972;167.
  18. 17. Estuary education resources. Catching Plankton. https://r.search.yahoo.com/_ylt=Awrx_Rd8g7VnJwIAFQC7HAx.;_ylu=Y29sbwNzZzMEcG9zAzIEdnRpZAMEc2VjA3Ny/RV=2/RE=1741158525/RO=10/RU=https%3a%2f%2fcoast.noaa.gov%2fdata%2festuaries%2fpdf%2fcatching-plankton-resources.pdf/RK=2/RS=Gw1Nj4ojIHnXhj2y.XEMkv5R55g-
  19. 18. Santra SC, Pal UC, Choudhury A. Marine phytoplankton of the mangrove delta region of West Bengal, India. J Mar Biol Ass India. 1991;33:292–307.
  20. 19. Woelkerling WJ, Kowal RR, Gough SB. Sedgwick-Rafter cell counts: a procedural analysis. Hydrobiologia. 1976;48:2. https://doi.org/10.1007/BF00040161
  21. 20. Shannon CE, Wiener W. The mathematical theory of communication. University of Illinois Press. 1949;125.
  22. 21. Margalef DR. Information theory in ecology. Gen Syst. 1958;3:36–71.
  23. 22. Pielou EC. Mathematical ecology. John Wiley and Sons. 1977;385.
  24. 23. Kudela lab biological oceanography. Phytoplankton identification. A look at the tiny drifters along the California coast. University of California, Santa Cruz.
  25. 24. Salimon AI, Philipp V, Sapozhnikov, Everaerts J, Kalinina OY, Besnard C, et al. A mini-Atlas of diatom frustule electron microscopy images at different magnifications. Materials Today: Proceed. 2020;33:1924–33. https://doi.org/10.1016/j.matpr.2020.05.602
  26. 25. Vorläufige E. Dr. A. Schmidt's Atlas der Diatomaceenkunde. Herausgegeben von Friedrich Hustedt, Bremen. 1921; 337.
  27. 26. Taylor J, Harding W, Archibald C. School of environmental sciences and development, KZN aquatic ecosystem. An illustrated guide to some common diatom species from South Africa. Water Research Commission. 2007; Report No.: TT 282/07.
  28. 27. Amorim CA, Moura AN. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure and ecosystem functioning. Sci Total Environ. 2021;758:143605. https://doi.org/10.1016/j.scitotenv.2020.
  29. 143605
  30. 28. Gogoi P, Sinha A, Sarkar SD, Chanu TN, Yadav AK, Koushlesh SK, et al. Seasonal influence of physicochemical parameters on phytoplankton diversity and assemblage pattern in Kailash Khal, a tropical wetland, Sundarbans, India. Appl Water Sci. 2019;9:156. https://doi.org/10.1007/s13201-019-1034-5
  31. 29. Chaudhuri K, Manna S, Sarma SK, Naskar P, Bhattacharyya S, Bhattacharyya M. Physicochemical and biological factors controlling water column metabolism in Sundarban estuary, India. Aquat Biosyst. 2012;8:26. https://doi.org/ 10.1186/2046-9063-8-26
  32. 30. Chaurasia M, Pandey GC. Study of physico-chemical characteristics of some water pond of Ayodhya-Faizabad. Indian J Environ Prot. 2007;27:1019–23.
  33. 31. Das D. Hydrogeochemical assessment of Groundwater in Sagar island region, South 24-Parganas, West Bengal, India. Int J Adv Sci. 2018;3:11.
  34. 32. Perumal NV, Rajkumar M, Perumal P, Rajasekar KT. Seasonal variations of plankton diversity in the Kaduviyar estuary, Nagapattinam, India. J Environ Biol. 2009;30:1035–46.
  35. 33. Dhanam S, Sathya A, Elyaraj B. Study of physico-chemical parameters and phytoplankton diversity of Ousteri lake in Puducherry. World Scientific News. 2016;54:153–64.
  36. 34. Verma PU, Purohit AR, Pate NJ. Pollution status of Chandlodia lake located in Ahmedabad Gujarat. Int J Eng Res Appl. 2012;2:1600–06.
  37. 35. Choudhury A, Bhadury P. Relationship between N:P:Si ratio and phytoplankton community composition in a tropical estuarine mangrove ecosystem. Biogeosci. 2015;12:2307–55. https://doi.org/10.5194/bgd-12-2307-2015
  38. 36. Saravanakumar A, Rajkumar M, Thivakaran GA, Serebiah J. Abundance and seasonal variations of phytoplankton in the creek waters of western mangrove of Kachchh-Gujarat. J Environ Biol. 2008;29:271–74.
  39. 37. Mandal S, Debnath M, Ray S, Ghosh PB, Roy M, Ray S. Dynamic modelling of dissolved oxygen in the creeks of Sagar Island, Hooghly–Matla estuarine system, West Bengal, India. Appl Math Model. 2012;36:5952–63. https://doi.org/10.1016/j.apm.2011.10.013
  40. 38. Wang Y, Liu Y, Chen X, Cui Z, Qu K, Wei Y. Exploring the key factors affecting the seasonal variation of phytoplankton in the coastal Yellow Sea. Front Mar Sci. 2022;9. https://doi.org/10.3389/fmars.2022.1076975
  41. 39. Hujare MS. Seasonal variations of phytoplankton in the freshwater tank of Talsande, Maharashtra. Nat Environ Pollut Technol. 2008;7:253–56.
  42. 40. Ghosh S, Barinova S, Keshri JP. Diversity and seasonal variation of phytoplankton community in the Santragachi lake, West Bengal, India. Qsci Connect. 2012;10. https://doi.org/10.5339/connect.2012.3
  43. 41. Huang Z, Pan B, Soininen J, Liu X, Hou Y, Liu X. Seasonal variation of phytoplankton community assembly processes in Tibetan plateau floodplain. Front Microbiol. 2023;14. https://doi.org/10.3389/fmicb.2023.1122838
  44. 42. Nixon S, Trent Z, Marcuello C, Lallana C. Europe’swater: An indicator-based assessment. European Environ Agency Topic Report 1; 2003.
  45. 43. Dale B. Dinoflagellate cysts as indicators of cultural eutrophication and industrial pollution in coastal sediments. Environ Micropaleontol Topics in Geobiol. 2000;15. https://doi.org/10.1007/978-1-4615-4167-7_14
  46. 44. Bhattacharya BD, Hwang JS, Sarkar SK, Rakhsit D, Murugan K, Tseng LC. Community structure of mesozooplankton in coastal waters of Sundarban mangrove wetland, India: a multivariate approach. J Mar Syst. 2015;141:112–21. https://doi.org/10.1016/j.jmarsys.2014.08.018
  47. 45. Rahaman SMB, Rahaman MS, Ghosh AK, Gain D, Biswas SK, Sarder L, et al. A spatial and seasonal pattern of water quality in the Sundarbans River systems of Bangladesh. J Coast Res. 2015;31:390‒97. https://doi.org/10.2112/
  48. jcoastres-D-13-00115.1
  49. 46. Mitra A, Zaman S, Bhattacharyya S. Heavy metal pollution in the lower Gangetic mangrove ecosystem. Community Environ Disaster Risk Manag. 2022;13:97–113. https://doi.org/10.1108/S2040-7262(2013)0000013011
  50. 47. Kartyayn. The rising pollution crisis in the Sundarbans: A call to action. Sundarbans increasing pollution. GoSharpener. 2024. https://gosharpener.com/blogs/446136/Sundarbans-increasing-pollution?lang=en_us
  51. 48. Bardhan S, Sarkar S. Carrying capacity studies for a nature-based tourism destination in the Indian Sundarbans. Intern J Adv Nat Sci and Engineer Res. 2023;8(1):23–27.
  52. 49. Life in the Sundarbans mangrove forest. Loss of Biodiversity. https://uddin.digital.conncoll.edu/sundarbans/
  53. global/loss-of-biodiversity/
  54. 50. Phytoplankton's algal blooms. NASA Earthdata. 2022. https://www.earthdata.nasa.gov/dashboard/stories/
  55. phytoplankton-algal-blooms
  56. 51. Hossain M, Saha C, Saha S, Islam HMN, Ahmed M, Ahmed T, et al. Is the Sundarbans of Bangladesh in a state of pollution? Open J For. 2024;14. https://doi.org/10.4236/ojf.2024.141002
  57. 52. Babu A, Varadharajan D, Vengadesh PN, Thilagavathi B, Manikandarajan T, Sampathkumar P, Balasubramanian T. Diversity of phytoplankton in different stations from Muthupettai, Southeast coast of India. J Mar Sci Res Dev. 2013;3:128. https://doi.org/10.4172/2155-9910.1000128
  58. 53. Mullick R, Sinha S, Roy D, Samanta D. A manifestation on the phytoplankton dynamics of Sundarbans ecoregion. New Visions in Biol Sci. 2022;9:111–23. https://doi.org/10.9734/bpi/nvbs/v9/3426E

Downloads

Download data is not yet available.