Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Metarhizium anisopliae: Unlocking green solutions for sustainable pest management

DOI
https://doi.org/10.14719/pst.7598
Submitted
5 February 2025
Published
31-07-2025
Versions

Abstract

Metarhizium anisopliae (Metsch.), a naturally occurring entomopathogenic fungus, has emerged as a promising green bioinsecticide with significant potential for sustainable pest management. This review explores the multifaceted capabilities of M. anisopliae, highlighting its mechanisms of action, efficacy against diverse agricultural pests and advantages over conventional chemical insecticides. M. anisopliae infects insects through direct contact, penetrating the cuticle and proliferating within the host, leading to eventual death. This biocontrol agent demonstrates high specificity, targeting a wide range of insect pests while being safe for non-target organisms, including beneficial insects, humans and the environment. Additionally, the adaptability of M. anisopliae to various environmental conditions and its synergistic potential when integrated with other biological control agents and sustainable agricultural practices are examined. Its potential to contribute to sustainable agriculture by reducing reliance on chemical inputs, preserving biodiversity and mitigating the adverse effects of pesticide residues underscores the importance of further research and development in this field. This review underscores the need for continued exploration and innovation to fully harness the benefits of M. anisopliae in modern pest management systems.

References

  1. 1. Dhaliwal GS, Jindal V, Dhawan AK. Insect pest problems and crop losses: Changing trends. Indian J Ecol. 2007;37:1–7.
  2. 2. Whalon ME, Mota-Sanchez D, Hollingworth RM. Global pesticide resistance in arthropods. CABI Publishing; 2008.
  3. 3. Knols BG, Bukhari T, Farenhorst M. Entomopathogenic fungi as the next-generation control agents against malaria mosquitoes. Future Microbiol. 2010;5:339–41.
  4. 4. Peng ZY, Huang ST, Chen JT, Li N, Wei Y, Nawaz A, Deng SQ. An update of a green pesticide: Metarhizium anisopliae. All Life. 2022;15(1):1141–59.
  5. 5. Vivekanandhan P, Swathy K, Murugan AC, Krutmuang P. Insecticidal efficacy of Metarhizium anisopliae derived chemical constituents against disease-vector mosquitoes. J Fungi. 2022;8:300.
  6. 6. Zimmermann G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol. 2007;17(9):879–920.
  7. 7. Sharma S, Kooner R, Arora R. Insect pests and crop losses. In: Arora R, Sandhu S, editors. Breeding insect resistant crops for sustainable agriculture. Springer; 2017. https://doi.org/10.1007/978-981-10-6056-4_2
  8. 8. Lawler SP. Environmental safety review of methoprene and bacterially-derived pesticides commonly used for sustained mosquito control. Ecotoxicol Environ Saf. 2017;139:335–43. https://doi.org/10.1016/j.ecoenv.2016.12.038
  9. 9. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. Insect pathogens as biological control agents: Back to the future. J Invertebr Pathol. 2015;132:1–41. https://doi.org/10.1016/j.jip.2015.07.009
  10. 10. Rust MK, Lance W, Hemsarth H. Synergism of the IGRs methoprene and pyriproxyfen against larval cat fleas (Siphonaptera: Pulicidae). J Med Entomol. 2016;53:629–33. https://doi.org/10.1093/jme/tjw010
  11. 11. Wraight SP, Ramos ME. Effects of inoculation method on efficacy of wettable powder and oil dispersion formulations of Beauveria bassiana against Colorado potato beetle larvae under low-humidity conditions. Biocontrol Sci Technol. 2017;27:348–63.
  12. 12. Tunaz H, Uygun N. Insect growth regulators for insect pest control. Turk J Agric For. 2004;28:377–87.
  13. 13. Madhu SK, Shaukath AK, Vijayan VA. Efficacy of bioactive compounds from Curcuma aromatica against mosquito larvae. Acta Trop. 2010;113:7–11.
  14. 14. Rios MA, Garrido JI, Resquin RG, Arroyo MN, Arce L, Quesada ME. Destruxin A production by Metarhizium brunneum strains during transient endophytic colonization of Solanum tuberosum. Biocontrol Sci Technol. 2016;26:1574–85. https://doi.org/10.1080/09583157.2016.1223274
  15. 15. Lovett B, Leger RJS. The insect pathogens. Microbiol Spectr. 2017;5:2–5. https://doi.org/10.1128/microbiolspec.FUNK-0001-2016
  16. 16. Khan S, Guo L, Maimaiti Y, Mijit M, Qiu D. Entomopathogenic fungi as microbial biocontrol agent. Mol Plant Breed. 2012;3:63–79. https://doi.org/10.5376/mpb.2012.03.0007
  17. 17. Jaihan P, Sangdee K, Sangdee A. Selection of entomopathogenic fungus for biological control of chili anthracnose disease caused by Colletotrichum spp. Eur J Plant Pathol. 2016;146:551–64. https://doi.org/10.1007/s10658-016-0941-7
  18. 18. Araujo JP, Hughes DP. Diversity of entomopathogenic fungi: Which groups conquered the insect body? Adv Genet. 2016;94:1–39. https://doi.org/10.1016/bs.adgen.2016.01.001
  19. 19. Castro T, Mayerhofer J, Enkerli J. Persistence of Brazilian isolates of the entomopathogenic fungi Metarhizium anisopliae and M. robertsii in strawberry crop soil after soil drench application. Agric Ecosyst Environ. 2016;233:361–9. https://doi.org/10.1016/j.agee.2016.09.031
  20. 20. Mascarin GM, Jaronski ST. The production and uses of Beauveria bassiana as a microbial insecticide. World J Microbiol Biotechnol. 2016;32:177. https://doi.org/10.1007/s11274-016-2131-3
  21. 21. Litwin A, Nowak M, Rozalska S. Entomopathogenic fungi: Unconventional applications. Rev Environ Sci Bio/Technol. 2020;9:23–42. https://doi.org/10.1007/s11157-020-09525-1
  22. 22. Skinner M, Parker BL, Kim JS. Role of entomopathogenic fungi. In: Abrol DP, editor. Integrated pest management. Academic Press. 2014:169–91.
  23. 23. El Husseini MMM. Efficacy of the entomopathogenic fungus, Metarhizium anisopliae (Metsch.), against larvae of the cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae), under laboratory conditions. Egypt J Biol Pest Control. 2019;29:50. https://doi.org/10.1186/s41938-019-0156-2
  24. 24. PikKheng H, Bong CFJ, Jugah K, Rajan A. Evaluation of Metarhizium anisopliae var. anisopliae (Deuteromycotina: Hyphomycete) isolates and their effects on subterranean termite Coptotermes curvignathus (Isoptera: Rhinotermitidae). Am J Agric Biol Sci. 2009;4:289–97.
  25. 25. Rahimzadeh A, Rashid M, Sheikhi Garjan A, Naseri B. Laboratory evaluation of Metarhizium anisopliae (Metschnikoff) for controlling Amitermes vilis (Hagen) and Microcerotermes gabrielies (Weidner) (Isoptera: Termitidae). J Crop Prot. 2012;1:27–34.
  26. 26. Nyam VT, Bong CFJ, King JHP. Control of subterranean termite Coptotermes curvignathus (Isoptera: Rhinotermitidae) by entomopathogen Metarhizium anisopliae var. anisopliae cultured in liquid state fermentation. Am J Agric Biol Sci. 2015;10:35.
  27. 27. Wright MS, Cornelius ML. Mortality and repellent effects of microbial pathogens on Coptotermes formosanus (Isoptera: Rhinotermitidae). BMC Microbiol. 2012;12:1–7.
  28. 28. Hamzah AM, Mohsin A, Naeem M, Azam Khan M. Efficacy of Beauveria bassiana and Metarhizium anisopliae (Ascomycota: Hypocreales) against Bactrocera cucurbitae (Diptera: Tephritidae) under controlled and open-field conditions on bitter gourd. Egypt J Biol Pest Control. 2021;31:144.
  29. 29. Goswami A, Roy I, Sengupta S, Debnath N. Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films. 2010;519:1252–57. https://doi.org/10.1016/j.tsf.2010.08.079
  30. 30. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R. Nano biofungicides: Emerging trend in insect pest control. In: Advances and Applications through Fungal Nanobiotechnology. Springer. 2016:307–19.
  31. 31. Gong D, Sun L, Li X, Zhang W, Zhang D, Cai J. Micro/nanofabrication, assembly and actuation based on microorganisms: Recent advances and perspectives. Small Struct. 2023;2200356. https://doi.org/10.1002/sstr.202200356
  32. 32. Saif I, Sufyan M, Baboo I, Jabbar M, Shafiq A, Saif RN, Liaqat U, et al. Efficacy of Beauveria bassiana and Metarhizium anisopliae against wheat aphid. EuroBiotech J. 2024;8(1):23–31.
  33. 33. Tang J, Liu X, Ding Y, Jiang W, Xie J. Evaluation of Metarhizium anisopliae for rice planthopper control and its synergy with selected insecticides. Crop Prot. 2019;121:132–38. https://doi.org/10.1016/j.cropro.2019.04.002
  34. 34. Asi MR, Afzal M, Anwar SA, Bashir MH. Comparative efficacy of insecticides against sucking insect pests of cotton. Pakistan J Life Soc Sci. 2008;6:140–42.
  35. 35. Sharma A, Sharma S, Yadav PK. Entomopathogenic fungi and their relevance in sustainable agriculture: A review. Cogent Food Agric. 2023;9:2180857. https://doi.org/10.1080/23311932.2023.2180857
  36. 36. Tanzini M, Alves S, Setten A, Augusto N. Compatibilidad de agent estensoactivos con Beauveria bassiana, Metarhizium anisopliae. Manejo Integr Plagas. 2001;59:15–18.
  37. 37. Umaru FF, Simarani K. Efficacy of entomopathogenic fungal formulations against Elasmolomus pallens (Dallas) (Hemiptera: Rhyparochromidae) and their extracellular enzymatic activities. Toxins. 2022;4:584. https://doi.org/10.3390/toxins14090584
  38. 38. Xu J, Zhang K, Cuthbertson AG, Du C, Ali S. Toxicity and biological effects of Beauveria brongniartii Fe0 nanoparticles against Spodoptera litura (Fabricius). Insects. 2020;11:895. https://doi.org/10.3390/insects11120895
  39. 39. Yokesh Babu M, Janaki Devi V, Ramakritinan CM, Umarani R, Taredahalli N, Kumaraguru AK. Application of biosynthesized silver nanoparticles in agricultural and marine pest control. Curr Nanosci. 2014;10:374–81.
  40. 40. Sinha KK, Choudhary AK, Kumari P. Ecofriendly pest management for food security. In: Entomopathogenic fungi. Academic Press. 2016:475–505.
  41. 41. Sharma A, Sood K, Kaur J, Khatri M. Agrochemical loaded biocompatible chitosan nanoparticles for insect pest management. Biocatal Agric Biotechnol. 2019;18:101079. https://doi.org/10.1016/j.bcab.2019.101079
  42. 42. Sonali, Pathan NP. Bio-efficacy of biopesticides against aphid, Hyadaphis coriandri (Das) infesting fennel. Entomology student conclave, Assam Agricultural University. 2025:103.
  43. 43. Dodiya RD, Barad AH. Effectiveness of biopesticides against Spodoptera litura infesting groundnut under field condition. Pharma Innov J. 2022;SP-11(8):1601–5.
  44. 44. Beltran Pineda ME, Lizarazo Forero LM, Sierra YCA. Mycosynthesis of silver nanoparticles: A review. BioMetals. 2022;:1–32. https://doi.org/10.1007/s10534-022-00479-1
  45. 45. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res Pharm Sci. 2014;9:385.
  46. 46. Langewald J, Kooyman C. Green Muscle™, a fungal biopesticide for control of grasshoppers and locusts in Africa. In: Biological control: a global perspective. 2007:311–8. https://doi.org/10.1079/9781845932657.0311
  47. 47. Prabhu S, Poulose EK. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications and toxicity effects. Int Nano Lett. 2012;2:32. https://doi.org/10.1186/2228-5326-2-32
  48. 48. Bhattacharya D, Gupta R. Nanotechnology and potential of microorganisms. Crit Rev Biotechnol. 2005;25:199–201. https://doi.org/10.1080/07388550500361994
  49. 49. Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med. 2010;6:257–62. https://doi.org/10.1016/j.nano.2009.07.002
  50. 50. Freed S, Feng-Liang J, Naeem M, Shun-Xiang R, Hussian M. Toxicity of proteins secreted by entomopathogenic fungi against Plutella xylostella (Lepidoptera: Plutellidae). Int J Agric Biol. 2012;14:291–5.
  51. 51. Mukherjee A, Debnath P, Ghosh SK, Medda PK. Biological control of papaya aphid (Aphis gossypii Glover) using entomopathogenic fungi. Vegetos. 2020;33:1–10. https://doi.org/10.1007/s42535-019-00072-x
  52. 52. Sani I, Ismail SI, Abdullah S, Jalinas J, Jamian S, Saad N. A review of the biology and control of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with special reference to biological control using entomopathogenic fungi. Insects. 2020;11:619.
  53. 53. Filgueiras CC, Willett DS. The Lesser Chestnut Weevil (Curculio sayi): Damage and management with biological control using entomopathogenic fungi and entomopathogenic nematodes. Insects. 2022;13:1097. https://doi.org/10.3390/insects13121097
  54. 54. Donzelli BGG, Krasnoff SB. Molecular genetics of secondary chemistry in Metarhizium fungi. In: Lovett B, Leger RJS, editors. Advances in Genetics. Vol 94. Elsevier; 2016:365–436.
  55. 55. Gibson DM, Donzelli BG, Krasnoff SB, Keyhani NO. Discovering the secondary metabolite potential encoded within entomopathogenic fungi. Nat Prod Rep. 2014;31:1287–305. https://doi.org/10.1039/C4NP00054D
  56. 56. Pedrini N. The entomopathogenic fungus Beauveria bassiana shows its toxic side within insects: Expression of genes encoding secondary metabolites during pathogenesis. J Fungi. 2022;8:488. https://doi.org/10.3390/jof8050488
  57. 57. Zibaee A, Bandani AR, Talaei-Hassanlouei R, Malagoli D. Cellular immune reactions of the sunn pest, Eurygaster integriceps, to the entomopathogenic fungus, Beauveria bassiana and its secondary metabolites. J Insect Sci. 2011;11:138. https://doi.org/10.1673/031.011.13801
  58. 58. Vinayaga Moorthi P, Balasubramanian C, Selvarani S, Radha A. Efficacy of sub lethal concentration of entomopathogenic fungi on the feeding and reproduction of Spodoptera litura. Springerplus. 2015;4:681. https://doi.org/10.1186/s40064-015-1437-1
  59. 59. Pedrini N, Zhang S, Juarez MP, Keyhani NO. Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana. Microbiology. 2010;156:2549–57. https://doi.org/10.1099/mic.0.039735-0
  60. 60. Suzuki A, Kawakami K, Tamura S. Detection of destruxins in silkworm larvae infected with Metarhizium anisopliae. Agric Biol Chem. 1971;35:1641–3.
  61. 61. Eyal J, Mabud MA, Fischbein KL, Walter JF, Osborne LS, Landa Z. Assessment of Beauveria bassiana Nov. EO-1 strain, which produces a red pigment for microbial control. Appl Biochem Biotechnol. 1994;44:65–80. https://doi.org/10.1007/BF02921852
  62. 62. Sweet MJ, Chessher A, Singleton I. Metal-based nanoparticles; size, function and areas for advancement in applied microbiology. Adv Appl Microbiol. 2012;80:113–42.
  63. 63. Cassiano JA, Destefano RHR, Baracho MS, Naas IA, Salgado DD. Analysis of entomogenous fungus Metarhizium anisopliae to control Alphitobius diaperinus in poultry buildings. BJVRAS. 2008;45(5):348–53.
  64. 64. Ment D, Gindin G, Rot A, Soroker V, Glazer I, Barel S, Samish M. Novel technique for quantifying adhesion of Metarhizium anisopliae conidia to the tick cuticle. Appl Environ Microbiol. 2010;76:3521–28. https://doi.org/10.1128/aem.02596-09
  65. 65. Santi L, e Silva LAD, da Silva WOB, Correa APF, Rangel DEN, Carlini CR, Vainstein MH. Virulence of the entomopathogenic fungus Metarhizium anisopliae using soybean oil formulation for control of the cotton stainer bug, Dysdercus peruvianus. World J Microbiol Biotechnol. 2011;27(10):2297–303. https://doi.org/10.1007/s11274-011-0695-5
  66. 66. Zafar J, Shoukat RF, Zhang Y, Freed S, Xu X, Jin F. Metarhizium anisopliae challenges immunity and demography of Plutella xylostella. Insects. 2020;11(10):694. https://doi.org/10.3390/insects11100694
  67. 67. Oreste M, Bubici G, Poliseno M, Tarasco E. Effect of Beauveria bassiana and Metarhizium anisopliae on the Trialeurodes vaporariorum–Encarsia formosa system. J Pest Sci. 2016;89(1):153–60. https://doi.org/10.1007/s10340-015-0660-4
  68. 68. Li J, Xie J, Zeng D, Xia Y, Peng G. Effective control of Frankliniella occidentalis by Metarhizium anisopliae CQMa421 under field conditions. J Pest Sci. 2021;94(1):111–7.
  69. 69. Toledo-Hernandez RA, Toledo J, Sanchez D. Effect of Metarhizium anisopliae (Hypocreales: Clavicipitaceae) on food consumption and mortality in the Mexican fruit fly, Anastrepha ludens (Diptera: Tephritidae). Int J Trop Insect Sci. 2018;38(3):254–60.
  70. 70. Ashraf M, Farooq M, Shakeel M, Din N, Hussain S, Saeed N, Shakeel Q, Rajput NA. Influence of entomopathogenic fungus, Metarhizium anisopliae, alone and in combination with diatomaceous earth and thiamethoxam on mortality, progeny production, mycosis and sporulation of the stored grain insect pests. Environ Sci Pollut Res. 2017;24(36):28165–74.
  71. 71. Saeed N, Wakil W, Farooq M, Shakeel M, Arain MS, Shakeel Q. Evaluating the combination of Metarhizium anisopliae and an enhanced form of diatomaceous earth (Grain-Guard) for the environmentally friendly control of stored grain pests. Environ Monit Assess. 2020;192(4):210. https://doi.org/10.1007/s10661-020-8189-2
  72. 72. Athanassiou CG, Kavallieratos NG, Rumbos CI, Kontodimas DC. Influence of temperature and relative humidity on the insecticidal efficacy of Metarhizium anisopliae against larvae of Ephestia kuehniella (Lepidoptera: Pyralidae) on wheat. J Insect Sci. 2017;17(1). https://doi.org/10.1093/jisesa/iew107
  73. 73. Mkiga AM, Mohamed SA, du Plessis H, Khamis FM, Akutse KS, Ekesi S. Metarhizium anisopliae and Beauveria bassiana: pathogenicity, horizontal transmission and their effects on reproductive potential of Thaumatotibia leucotreta (Lepidoptera: Tortricidae). J Econ Entomol. 2020;113(2):660–8. https://doi.org/10.1093/jee/toz342
  74. 74. Acheampong MA, Hill MP, Moore SD, Coombes CA. UV sensitivity of Beauveria bassiana and Metarhizium anisopliae isolates under investigation as potential biological control agents in South African citrus orchards. Fungal Biol. 2020;124(5):304–10. https://doi.org/10.1016/j.funbio.2019.08.009
  75. 75. Opisa S, Du Plessis H, Akutse KS, Fiaboe KKM, Ekesi S. Horizontal transmission of Metarhizium anisopliae between Spoladea recurvalis (Lepidoptera: Crambidae) adults and compatibility of the fungus with the attractant phenylacetaldehyde. Microb Pathog. 2019;131:197–204. https://doi.org/10.1016/j.micpath.2019.04.010
  76. 76. Contreras J, Mendoza JE, Martinez-Aguirre MR, Garcia-Vidal L, Izquierdo J, Bielza P. Efficacy of entomopathogenic fungus Metarhizium anisopliae against Tuta absoluta (Lepidoptera: Gelechiidae). J Econ Entomol. 2014;107(1):121–4.
  77. 77. Rangel DEN, Bignayan HG, Golez HG, Keyser CA, Evans EW, Roberts DW. Virulence of the insect-pathogenic fungi Metarhizium spp. to Mormon crickets, Anabrus simplex (Orthoptera: Tettigoniidae). Bull Entomol Res. 2021;1–8. https://doi.org/10.1017/S0007485321000663
  78. 78. Liu Y, Cheng Y, Li H, Nong X, Luke B. Virulence of Metarhizium anisopliae against 3rd instar nymphs of Locusta migratoria manilensis under different temperatures. Chin J Biol Control. 2019;35(4):642–7.
  79. 79. Bilal H, Hassan SA, Khan IA. Isolation and efficacy of entomopathogenic fungus (Metarhizium anisopliae) for the control of Aedes albopictus Skuse larvae: suspected dengue vector in Pakistan. Asian Pac J Trop Biomed. 2012;2(4):298–300. https://doi.org/10.1016/S2221-1691(12)60026-4
  80. 80. Xia Y, Dean P, Judge AJ, Gillespie JP, Clarkson JM, Charnley AK. Acid phosphatases in the haemolymph of the desert locust, Schistocerca gregaria, infected with the entomopathogenic fungus Metarhizium anisopliae. J Insect Physiol. 2000;46(9):1249–57. https://doi.org/10.1016/s0022-1910(00)00045-7
  81. 81. Destefano RHR, Destefano SAL, Messias CL. Detection of Metarhizium anisopliae var. anisopliae within infected sugarcane borer Diatraea saccharalis (Lepidoptera: Pyralidae) using specific primers. Genet Mol Biol. 2004;27:245–52. https://doi.org/10.1590/S1415-47572004000200020
  82. 82. Hong M, Peng G, Keyhani NO, Xia Y. Application of the entomogenous fungus, Metarhizium anisopliae, for leafroller (Cnaphalocrocis medinalis) control and its effect on rice phyllosphere microbial diversity. Appl Microbiol Biotechnol. 2017;101:6793–807. https://doi.org/10.1007/s00253-017-8390-6
  83. 83. De Oliveira DGP, Lopes RB, Rezende JM, Delalibera I. Increased tolerance of Beauveria bassiana and Metarhizium anisopliae conidia to high temperature provided by oil-based formulations. J Invertebr Pathol. 2018;151:151–7.
  84. 84. Hussain M, Frentiu FD, Moreira LA, O’Neill SL, Asgari S. Wolbachia utilizes host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti. Proc Natl Acad Sci U S A. 2011;108:9250–5.
  85. 85. Thomas C, Nan-Yao S, Alain R. Inhibition of Metarhizium anisopliae in the alimentary tract of the eastern subterranean termite Reticulitermes flavipes. J Invertebr Pathol. 2009;101(2):130–6. https://doi.org/10.1016/j.jip.2009.04.005
  86. 86. Meissle M, Pilz C, Romeis J. Susceptibility of Diabrotica virgifera (Coleoptera: Chrysomelidae) to the entomopathogenic fungus Metarhizium anisopliae when feeding on Bacillus thuringiensis Cry3Bb1-expressing maize. Appl Environ Microbiol. 2009;75:12.
  87. 87. Guilger CM, Lima RD. Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol. 2019;7:287. https://doi.org/10.3389/fbioe.2019.00287
  88. 88. Hazaa M, Alm-Eldin M, Ibrahim AE, Elbarky N, Salama M, Sayed R, Sayed W. Biosynthesis of silver nanoparticles using Borago officinalis leaf extract, characterization and larvicidal activity against cotton leaf worm, Spodoptera littoralis (Boisd). Int J Trop Insect Sci. 2021;41:145–56. https://doi.org/10.1007/s42690-020-00187-8
  89. 89. Lin BX. Use of Beauveria bassiana against the sweet potato weevil. Acta Entomol Sin. 2016;6:539–40.

Downloads

Download data is not yet available.