Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Genetic frontiers in tomato breeding: Overcoming heat stress for sustainable yield

DOI
https://doi.org/10.14719/pst.7710
Submitted
12 February 2025
Published
26-04-2025
Versions

Abstract

Tomatoes (Solanum lycopersicum) are a vital global crop, valued for their nutrition and culinary uses. However, rising heatwaves from climate change threaten tomato production, making it critical to enhance heat tolerance for food security and sustainable agriculture. This review highlights strategies to improve tomato resilience to high temperatures. Traditional breeding focuses on traits like deeper roots, smaller leaves and thicker cuticles, which enhance heat tolerance, supported by Marker-Assisted Selection (MAS) to identify and incorporate heat-tolerant genes. Genetic engineering introduces genes like those for Heat Shock Proteins (HSPs), boosting plant resilience. Understanding physiological and biochemical responses to heat stress enables targeted measures, such as applying osmoprotectants and plant hormones, to mitigate damage. Agronomic practices, including adjusted planting schedules, shading, optimized irrigation and soil enhancement, create favorable conditions under heat stress. Precision agriculture technologies provide real-time monitoring, enabling timely interventions. Beneficial microorganisms like plant growth-promoting rhizobacteria and mycorrhizal fungi enhance nutrient uptake, water retention and overall plant health, further improving heat tolerance. A multidisciplinary approach combining traditional breeding, genetic engineering, physiological insights, agronomic methods and technological innovations is essential to develop heat-resilient tomato varieties. These integrated strategies ensure sustainable agricultural practices, enhance crop resilience and safeguard global food security in the face of climate change.

References

  1. Masson-Delmotte V, Zhai P, Portner H-O, Roberts D, Skea J, Shukla PR, et al. Global warming of 1.5 C. An IPCC Special report on the impacts of global warming. 2019;1:93-174.
  2. Porter JR, Semenov MA. Crop responses to climatic variation. Philosophical transactions of the royal society. Biological Sciences. 2005;360(1463):2021-35. https://doi.org/10.1098/rstb.2005.1752
  3. Saeed A, Hayat K, Khan AA, Iqbal S. Heat tolerance studies in tomato (Lycopersicon esculentum Mill.). International Journal of Agriculture and Biology. 2007;9(4):649-52.
  4. Dinar M, Rudich J. Effect of heat stress on assimilate partitioning in tomato. Annals of Botany. 1985;56(2):239-48. https://doi.org/10.1093/oxfordjournals.aob.a087008
  5. Dinar M, Rudich J. Effect of heat stress on assimilate metabolism in tomato flower buds. Annals of Botany. 1985;56(2):249-57. https://doi.org/10.1093/oxfordjournals.aob.a087009
  6. Sehgal A, Sita K, Siddique KH, Kumar R, Bhogireddy S, Varshney RK, et al. Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields and nutritional quality. Frontiers in Plant Science. 2018;9:1705. https://doi.org/10.3389/fpls.2018.01705
  7. Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B, Nguyen HT, et al. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany. 2020;71(13):3780-802. https://doi.org/10.1093/jxb/eraa034
  8. Haider S, Raza A, Iqbal J, Shaukat M, Mahmood T. Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: A brief appraisal. Molecular Biology Reports. 2022;49(6):5771-85. https://doi.org/10.1007/s11033-022-07190-x
  9. Boopathy LRA, Jacob-Tomas S, Alecki C, Vera M. Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges. Journal of Biological Chemistry. 2022;298(5). https://doi.org/10.1016/j.jbc.2022.101796
  10. Mondal S, Karmakar S, Panda D, Pramanik K, Bose B, Singhal RK. Crucial plant processes under heat stress and tolerance through heat shock proteins. Plant Stress. 2023:100227. https://doi.org/10.1016/j.stress.2023.100227
  11. Wen JunQin WJ, Jiang FangLing JF, Weng YiQun WY, Sun MinTao SM, Shi XiaoPu SX, Zhou YanZhao ZY, et al. Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. 2019. https://doi.org/10.1186/s12870-019-2008-3
  12. Xu J, Wolters-Arts M, Mariani C, Huber H, Rieu I. Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica. 2017;213:1-12. https://doi.org/10.1007/s10681-017-1949-6
  13. Siddiqui MN, Mostofa MG, Akter MM, Srivastava AK, Sayed MA, Hasan MS, et al. Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: Oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity. Chemosphere. 2017;187:385-94. https://doi.org/10.1016/j.chemosphere.2017.08.078
  14. Zhou R, Kjær KH, Rosenqvist E, Yu X, Wu Z, Ottosen CO. Physiological response to heat stress during seedling and anthesis stage in tomato genotypes differing in heat tolerance. Journal of Agronomy and Crop Science. 2017;203(1):68-80. https://doi.org/10.1111/jac.12166
  15. Ilík P, Špundová M, Šicner M, Melkovi?ová H, Ku?erová Z, Krch?ák P, et al. Estimating heat tolerance of plants by ion leakage: A new method based on gradual heating. New Phytologist. 2018;218(3):1278-87. https://doi.org/10.1111/nph.15097
  16. Jahan MS, Wang Y, Shu S, Zhong M, Chen Z, Wu J, et al. Exogenous salicylic acid increases the heat tolerance in Tomato (Solanum lycopersicum L) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Scientia Horticulturae. 2019;247:421-29. https://doi.org/10.1016/j.scienta.2018.12.047
  17. Xu J, Driedonks N, Rutten MJ, Vriezen WH, de Boer G-J, Rieu I. Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding. 2017;37:1-9. https://doi.org/10.1007/s11032-017-0664-2
  18. Giri A, Heckathorn S, Mishra S, Krause C. Heat stress decreases levels of nutrient-uptake and-assimilation proteins in tomato roots. Plants. 2017;6(1):6. https://doi.org/10.3390/plants6010006
  19. Tiwari S, Patel A, Singh M, Prasad SM. Regulation of temperature stress in plants. Plant life under changing environment: Elsevier. 2020:25-45. https://doi.org/10.1016/B978-0-12-818204-8.00002-3
  20. Meng X, Wang J-R, Wang G-D, Liang X-Q, Li X-D, Meng Q-W. An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato. Journal of Plant Physiology. 2015;175:1-8. https://doi.org/10.1016/j.jplph.2014.09.018
  21. Pan C, Ahammed GJ, Li X, Shi K. Elevated CO2 improves photosynthesis under high temperature by attenuating the functional limitations to energy fluxes, electron transport and redox homeostasis in tomato leaves. Frontiers in Plant Science. 2018;9:1739. https://doi.org/10.3389/fpls.2018.01739
  22. Zhou R, Yu X, Wen J, Jensen NB, Dos Santos TM, Wu Z, et al. Interactive effects of elevated CO2 concentration and combined heat and drought stress on tomato photosynthesis. BMC Plant Biology. 2020;20:1-12. https://doi.org/10.1186/s12870-020-02457-6
  23. Xu C, Yang Z, Yang S, Wang L, Wang M. High humidity alleviates photosynthetic inhibition and oxidative damage of tomato seedlings under heat stress. Photosynthetica. 2020;58(1). https://doi.org/10.32615/ps.2019.168
  24. Müller F, Xu J, Kristensen L, Wolters-Arts M, de Groot PF, Jansma SY, et al. High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS One. 2016;11(12):e0167614. https://doi.org/10.1371/journal.pone.0167614
  25. Alsamir M, Mahmood T, Trethowan R, Ahmad N. An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi Journal of Biological Sciences. 2021;28(3):1654-63. https://doi.org/10.1016/j.sjbs.2020.11.088
  26. Razzaq MK, Rauf S, Khurshid M, Iqbal S, Bhat JA, Farzand A, et al. Pollen viability an index of abiotic stresses tolerance and methods for the improved pollen viability. Pakistan Journal of Agricultural Research. 2019;32(4). https://doi.org/10.17582/journal.pjar/2019/32.4.609.624
  27. Liu Y, Feng Z, Zhu W, Liu J, Zhang Y. Genome-wide identification and characterization of cysteine-rich receptor-like protein kinase genes in tomato and their expression profile in response to heat stress. Diversity. 2021;13(6):258. https://doi.org/10.3390/d13060258
  28. Wang X, Xu N, Dong K, Li H, Shi S, Liu Z, et al. SlNCED1 affects pollen maturation in tomato by regulating the expression of anther-specific genes. Plant Growth Regulation. 2021;95:191-205. https://doi.org/10.1007/s10725-021-00732-6
  29. Hu J, Israeli A, Ori N, Sun T-p. The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato. The Plant Cell. 2018;30(8):1710-28. https://doi.org/10.1105/tpc.18.00363
  30. Mounet F, Moing A, Kowalczyk M, Rohrmann J, Petit J, Garcia V, et al. Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. Journal of Experimental Botany. 2012;63(13):4901-17. https://doi.org/10.1093/jxb/ers167
  31. Kai W, Fu Y, Wang J, Liang B, Li Q, Leng P. Functional analysis of SlNCED1 in pistil development and fruit set in tomato (Solanum lycopersicum L.). Scientific Reports. 2019;9(1):16943. https://doi.org/10.1038/s41598-019-52948-2
  32. Coluccio Leskow C, Conte M, Del Pozo T, Bermúdez L, Lira BS, Gramegna G, et al. The cytosolic invertase NI6 affects vegetative growth, flowering, fruit set and yield in tomato. Journal of Experimental Botany. 2021;72(7):2525-43. https://doi.org/10.1093/jxb/eraa594
  33. Gonzalo MJ, Li Y-C, Chen K-Y, Gil D, Montoro T, Nájera I, et al. Genetic control of reproductive traits in tomatoes under high temperature. Frontiers in Plant Science. 2020;11:326. https://doi.org/10.3389/fpls.2020.00326
  34. Bineau E, Diouf I, Carretero Y, Duboscq R, Bitton F, Djari A, et al. Genetic diversity of tomato response to heat stress at the QTL and transcriptome levels. The Plant Journal. 2021;107(4):1213-27. https://doi.org/10.1111/tpj.15379
  35. Matsuo S, Miyatake K, Endo M, Urashimo S, Kawanishi T, Negoro S, et al. Loss of function of the Pad-1 aminotransferase gene, which is involved in auxin homeostasis, induces parthenocarpy in Solanaceae plants. Proceedings of the National Academy of Sciences. 2020;117(23):12784-90. https://doi.org/10.1073/pnas.2001211117
  36. Berry S, Uddin MR. Effect of high temperature on fruit set in tomato cultivars and selected germplasm. HortScience. 1988;23(3):606-08. https://doi.org/10.21273/HORTSCI.23.3.606
  37. Naika S, de Jeude JvL, de Goffau M, Hilmi M. AD17E Cultivation of tomato: Agromisa Foundation. 2005.
  38. Abdul-Baki AA. Tolerance of tomato cultivars and selected germplasm to heat stress. 1991. https://doi.org/10.21273/JASHS.116.6.1113
  39. Mazzeo MF, Cacace G, Iovieno P, Massarelli I, Grillo S, Siciliano RA. Response mechanisms induced by exposure to high temperature in anthers from thermo-tolerant and thermo-sensitive tomato plants: A proteomic perspective. PloS One. 2018;13(7):e0201027. https://doi.org/10.1371/journal.pone.0201027
  40. Gholi-Tolouie S, Davari M, Sokhandan-Bashir N, Sedghi M. Influence of salicylic and jasmonic acids on the antioxidant systems of tomato (Solanum lycopersicum cv. Superchief) plants under biotic stresses. Iranian Journal of Plant Physiology. 2018;8(2):2345-51.
  41. Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends in Plant Science. 2010;15(2):89-97. https://doi.org/10.1016/j.tplants.2009.11.009
  42. Berberich T, Sagor G, Kusano T. Polyamines in plant stress response. Polyamines: A universal molecular nexus for growth, survival and specialized metabolism. 2015:155-68. https://doi.org/10.1007/978-4-431-55212-3_13
  43. Lee JH, Kasote DM, Jayaprakasha GK, Avila CA, Crosby KM, Patil BS. Effect of production system and inhibitory potential of aroma volatiles on polyphenol oxidase and peroxidase activity in tomatoes. Journal of the Science of Food and Agriculture. 2021;101(1):307-14. https://doi.org/10.1002/jsfa.10644
  44. Snyman M, Cronjé M. Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. Journal of Experimental Botany. 2008;59(8):2125-32. https://doi.org/10.1093/jxb/ern075
  45. Mohamed HI, El-Shazly HH, Badr A. Role of salicylic acid in biotic and abiotic stress tolerance in plants. Plant Phenolics in Sustainable Agriculture. 2020:533-54. https://doi.org/10.1007/978-981-15-4890-1_23
  46. Upchurch RG. Fatty acid unsaturation, mobilization and regulation in the response of plants to stress. Biotechnology Letters. 2008;30:967-77. https://doi.org/10.1007/s10529-008-9639-z
  47. Parrotta L, Aloisi I, Faleri C, Romi M, Del Duca S, Cai G. Chronic heat stress affects the photosynthetic apparatus of Solanum lycopersicum L. cv Micro-Tom. Plant Physiology and Biochemistry. 2020;154:463-75. https://doi.org/10.1016/j.plaphy.2020.06.047
  48. Biswas P, East AR, Brecht JK, Hewett EW, Heyes JA. Intermittent warming during low temperature storage reduces tomato chilling injury. Post harvest Biology and Technology. 2012;74:71-8. https://doi.org/10.1016/j.postharvbio.2012.07.002
  49. Bajji M, Kinet J-M, Lutts S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation. 2002;36:61-70. https://doi.org/10.1023/A:1014732714549
  50. Paupière MJ, van Haperen P, Rieu I, Visser RG, Tikunov YM, Bovy AG. Screening for pollen tolerance to high temperatures in tomato. Euphytica. 2017;213:1-8. https://doi.org/10.1007/s10681-017-1927-z
  51. Solankey S, Shirin Akhtar SA, Pallavi Neha PN, Meenakshi Kumari MK. Effect of high temperature stress on morpho-biochemical traits of tomato genotypes under polyhouse condition. 2017.
  52. Tiwari JK, Buckseth T, Zinta R, Bhatia N, Dalamu D, Naik S, et al. Germplasm, breeding and genomics in potato improvement of biotic and abiotic stresses tolerance. Frontiers in Plant Science. 2022;13:805671. https://doi.org/10.3389/fpls.2022.805671
  53. Cossani CM, Reynolds MP. Physiological traits for improving heat tolerance in wheat. Plant Physiology. 2012;160(4):1710-18. https://doi.org/10.1104/pp.112.207753
  54. Jha UC, Bohra A, Singh NP. Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding. 2014;133(6):679-701. https://doi.org/10.1111/pbr.12217
  55. Krishna R, Karkute SG, Ansari WA, Jaiswal DK, Verma JP, Singh M. Transgenic tomatoes for abiotic stress tolerance: status and way ahead. 3 Biotech. 2019;9:1-14. https://doi.org/10.1007/s13205-019-1665-0
  56. Mickelbart MV, Hasegawa PM, Bailey-Serres J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics. 2015;16(4):237-51. https://doi.org/10.1038/nrg3901
  57. Wen J, Jiang F, Weng Y, Sun M, Shi X, Zhou Y, et al. Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biology. 2019;19:1-17. https://doi.org/10.1186/s12870-019-2008-3
  58. Ruggieri V, Francese G, Sacco A, D’Alessandro A, Rigano MM, Parisi M, et al. An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biology. 2014;14:1-15. https://doi.org/10.1186/s12870-014-0337-9
  59. Osei MK, Danquah E, Danquah A, Blay E, Adu-Dapaah H. Hybridity testing of tomato F1 progenies derived from parents with varying fruit quality and shelf life using single nucleotide polymorphism (SNPs). Scientific African. 2020;8:e00267. https://doi.org/10.1016/j.sciaf.2020.e00267
  60. Olivieri F, Graci S, Francesca S, Rigano MM, Barone A. Accelerating the development of heat tolerant tomato hybrids through a multi-traits evaluation of parental lines combining phenotypic and genotypic analysis. Plants. 2021;10(10):2168. https://doi.org/10.3390/plants10102168
  61. Ruggieri V, Calafiore R, Schettini C, Rigano MM, Olivieri F, Frusciante L, et al. Exploiting genetic and genomic resources to enhance heat-tolerance in tomatoes. Agronomy. 2019;9(1):22. https://doi.org/10.3390/agronomy9010022
  62. Bessho-Uehara K, Furuta T, Masuda K, Yamada S, Angeles-Shim RB, Ashikari M, et al. Construction of rice chromosome segment substitution lines harboring Oryza barthii genome and evaluation of yield-related traits. Breeding Science. 2017;67(4):408-15. https://doi.org/10.1270/jsbbs.17022
  63. Ayenan MAT, Danquah A, Agre PA, Hanson P, Asante IK, Danquah EY. Genomic and phenotypic diversity of cultivated and wild tomatoes with varying levels of heat tolerance. Genes. 2021;12(4):503. https://doi.org/10.3390/genes12040503
  64. Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP, et al. Crucial cell signaling compounds crosstalk and integrative multi-omics techniques for salinity stress tolerance in plants. Frontiers in Plant Science. 2021;12:670369. https://doi.org/10.3389/fpls.2021.670369
  65. Chinnusamy V, Zhu J, Zhou T, Zhu J-K. Small RNAs: big role in abiotic stress tolerance of plants. Advances in molecular breeding toward drought and salt tolerant crops. 2007:223-60. https://doi.org/10.1007/978-1-4020-5578-2_10
  66. Li Y, Jiang F, Niu L, Wang G, Yin J, Song X, et al. Synergistic regulation at physiological, transcriptional and metabolic levels in tomato plants subjected to a combination of salt and heat stress. The Plant Journal. 2024;117(6):1656-75. https://doi.org/10.1111/tpj.16580
  67. Bineau E, Diouf I, Carretero Y, Duboscq R, Bitton F, Djari A, et al. Genetic diversity of tomato response to heat stress at the QTL and transcriptome levels. The Plant Journal. 2021;107(4):1213-27. https://doi.org/10.1111/tpj.15379
  68. Balyan S, Rao S, Jha S, Bansal C, Das JR, Mathur S. Characterization of novel regulators for heat stress tolerance in tomato from Indian subcontinent. Plant Biotechnology Journal. 2020;18(10):2118-32. https://doi.org/10.1111/pbi.13371
  69. Pan C, Yang D, Zhao X, Jiao C, Yan Y, Lamin?Samu AT, et al. Tomato stigma exsertion induced by high temperature is associated with the jasmonate signaling pathway. Plant Cell & Environment. 2019;42(4):1205-21. https://doi.org/10.1111/pce.13444
  70. Yin Y, Qin K, Song X, Zhang Q, Zhou Y, Xia X, et al. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant and Cell Physiology. 2018;59(11):2239-54. https://doi.org/10.1093/pcp/pcy146
  71. Debbarma J, Sarki YN, Saikia B, Boruah HPD, Singha DL, Chikkaputtaiah C. Ethylene response factor (ERF) family proteins in abiotic stresses and CRISPR–Cas9 genome editing of ERFs for multiple abiotic stress tolerance in crop plants: A review. Molecular Biotechnology. 2019;61(2):153-72. https://doi.org/10.1007/s12033-018-0144-x
  72. Tran MT, Son GH, Song YJ, Nguyen NT, Park S, Thach TV, et al. CRISPR-Cas9-based precise engineering of SlHyPRP1 protein towards multi-stress tolerance in tomato. Frontiers in Plant Science. 2023;14:1186932. https://doi.org/10.3389/fpls.2023.1186932
  73. Klap C, Yeshayahou E, Bolger AM, Arazi T, Gupta SK, Shabtai S, et al. Tomato facultative parthenocarpy results from Sl AGAMOUS?LIKE 6 loss of function. Plant Biotechnology Journal. 2017;15(5):634-47. https://doi.org/10.1111/pbi.12662
  74. Ding H, He J, Wu Y, Wu X, Ge C, Wang Y, et al. The tomato mitogen-activated protein kinase SlMPK1 is as a negative regulator of the high-temperature stress response. Plant Physiology. 2018;177(2):633-51. https://doi.org/10.1104/pp.18.00067
  75. Yu W, Wang L, Zhao R, Sheng J, Zhang S, Li R, et al. Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biology. 2019;19:1-3. https://doi.org/10.1186/s12870-019-1939-z
  76. Ayenan MAT, Danquah A, Hanson P, Ampomah-Dwamena C, Sodedji FAK, Asante IK, et al. Accelerating breeding for heat tolerance in tomato (Solanum lycopersicum L.): An integrated approach. Agronomy. 2019;9(11):720. https://doi.org/10.3390/agronomy9110720
  77. Aleem S, Sharif I, Amin E, Tahir M, Parveen N, Aslam R, et al. Heat tolerance in vegetables in the current genomic era: An overview. Plant Growth Regulation. 2020;92(3):497-516. https://doi.org/10.1007/s10725-020-00658-5
  78. Marko D, El-Shershaby A, Carriero F, Summerer S, Petrozza A, Iannacone R, et al. Identification and characterization of a thermotolerant TILLING allele of heat shock binding protein 1 in tomato. Genes. 2019;10(7):516. https://doi.org/10.3390/genes10070516
  79. Zhang T, Li Z, Li D, Li C, Wei D, Li S, et al. Comparative effects of glycine betaine on the thermotolerance in codA-and BADH-transgenic tomato plants under high temperature stress. Plant Cell Reports. 2020;39:1525-38. https://doi.org/10.1007/s00299-020-02581-5
  80. Yu W, Wang L, Zhao R, Sheng J, Zhang S, Li R, et al. Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biology. 2019;19:1-13. https://doi.org/10.1186/s12870-019-1939-z
  81. Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER, Vierling E. The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. The Plant Journal. 2007;49(1):115-27. https://doi.org/10.1111/j.1365-313X.2006.02940.x
  82. Kong F, Deng Y, Wang G, Wang J, Liang X, Meng Q. LeCDJ1, a chloroplast DnaJ protein, facilitates heat tolerance in transgenic tomatoes. Journal of Integrative Plant Biology. 2014;56(1):63-74. https://doi.org/10.1111/jipb.12119
  83. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell. 2006;18(5):1292-309. https://doi.org/10.1105/tpc.105.035881
  84. Xu T, Zhou H, Feng J, Guo M, Huang H, Yang P, et al. Involvement of HSP70 in BAG9-mediated thermotolerance in Solanum lycopersicum. Plant Physiology and Biochemistry. 2024;207:108353. https://doi.org/10.1016/j.plaphy.2024.108353
  85. Reddy AS, Ali GS, Celesnik H, Day IS. Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. The Plant Cell. 2011;23(6):2010-32. https://doi.org/10.1105/tpc.111.084988
  86. Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signaling & Behavior. 2011;6(10):1503-09. https://doi.org/10.4161/psb.6.10.17088
  87. Nautiyal PC, Shono M, Egawa Y. Enhanced thermotolerance of the vegetative part of MT-sHSP transgenic tomato line. Scientia Horticulturae. 2005;105(3):393-409. https://doi.org/10.1016/j.scienta.2005.02.001

Downloads

Download data is not yet available.