Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Analysis of seasonal variations and trends in rainfall patterns of the Aliyar sub-basin

DOI
https://doi.org/10.14719/pst.7888
Submitted
23 February 2025
Published
04-06-2025
Versions

Abstract

Climate change is a major issue around worldwide caused by anthropogenic activities, leading to changes in climatic parameters such as rainfall, temperature and other hydrometeorological events. Assessing regional rainfall pattern changes is essential for effective water management and agricultural planning. Rainfall data obtained from the India Meteorological Department (IMD) dataset was analysed to determine the annual and seasonal trends from 1981 to 2023. This study investigated the trends and change point analysis of rainfall data for 43 years in the Aliyar sub-basin. The analysis was carried out by using Mann-Kendall (MK), Modified Mann-Kendall (MMK), Innovative Trend Analysis (ITA) and Innovative Polygon Trend Analysis (IPTA) methods. Pettit’s test was used to assess the data homogeneity. The result showed that the mean annual rainfall of the sub-basin is 1421.65 mm, with a significant increase in rainfall pattern per year. Seasonal analysis revealed a consistent increasing trend across all seasons with the southwest monsoon season showing the major rainfall contribution in that region. A notable shift in the annual rainfall was observed in 2004, highlighting the impact of climate change. The findings give valuable insights into planning of water resource management practices and planting of short duration crops with rice-based cropping systems and controlled soil loss measures at the regional level and underscore the need for sustainable agriculture production by proper irrigation management strategies to alleviate the effects of climate change in the sub-basin.

References

  1. 1. Ampofo S, Annor T, Aryee JNA, Atiah WA, Amekudzi LK. Long-term spatio-temporal variability and change in rainfall over Ghana (1960-2015). Sci Afr. 2023; 19:01588. https://doi.org/10.1016/j.sciaf.2023.e01588
  2. 2. Wang R, Chen J, Chen X, Wang Y. Variability of precipitation extremes and dryness/wetness over the southeast coastal region of China, 1960-2014. Int J Climatology. 2017;37:5895. https://doi.org/10.1002/joc.5113
  3. 3. Deng S, Yang N, Li M, Cheng L, Chen Z, Chen Y, et al. Rainfall seasonality changes and its possible teleconnections with global climate events in China. Clim Dyn. 2019;53(5):3529-46. https://doi.org/10.1007/s00382-019-04722-3
  4. 4. IPCC. Climate Change 2021 - The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2021.
  5. 5. Singla C, Aggarwal R, Kaur S, Sharma R. Analysis of meteorological parameter changes using Mann-Kendall statistical tests in Indian Punjab. Mausam. 2023;74(1):207-13. https://doi.org/10.54302/mausam.v74i1.1440
  6. 6. Ferreira FLV, Rodrigues LN, da Silva DD. Influence of changes in land use and land cover and rainfall on the streamflow regime of a watershed located in the transitioning region of the Brazilian Biomes Atlantic Forest and Cerrado. Environ Monit Assess. 2021;193(1):16. https://doi.org/10.1007/s10661-020-08782-5.
  7. 7. Zin WZW, Jamaludin S, Deni SM, Jemain AA. Recent changes in extreme rainfall events in Peninsular Malaysia: 1971–2005. Theor Appl Climatol. 2010;99:303-14. https://doi.org/10.1007/s00704-009-0141-x
  8. 8. Cinco TA, de Guzman RG, Hilario FD, Wilson DM. Long-term trends and extremes in observed daily precipitation and near surface air temperature in the Philippines for the period 1951-2010. Atmos Res. 2014;145:12-26. https://doi.org/10.1016/j.atmosres.2014.03.025
  9. 9. Tsidu GM. Secular spring rainfall variability at local scale over Ethiopia: trend and associated dynamics. Theor Appl Climatol. 2017;130:91-106. https://doi.org/10.1007/s00704-016-1849-z
  10. 10. Trenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, et al. Global warming and changes in drought. Nat Clim Change. 2014;4(1):17-22. https://doi.org/10.1038/nclimate2067
  11. 11. El Kasri J, Lahmili A, Soussi H, Jaouda I, Bentaher M. Trend analysis of meteorological variables: rainfall and temperature. Civ Eng J (Iran). 2021;7(11):1868-79. https://doi.org/10.28991/cej-2021-03091765.
  12. 12. Chowdhury RK, Beecham S. Australian rainfall trends and their relation to the Southern Oscillation Index. Hydrol Process. 2009;24(4):504-14. https://doi.org/10.1002/hyp.7504.
  13. 13. Subash N, Sikka AK, Mohan HSR. An investigation into observational characteristics of rainfall and temperature in Central Northeast India-a historical perspective 1889-2008. Theor Appl Climatol. 2011;103:305-19. https://doi.org/10.1007/s00704-010-0299-2.
  14. 14. Jena PP, Chatterjee C, Pradhan G, Mishra A. Are recent frequent high floods in Mahanadi basin in eastern India due to increase in extreme rainfalls?. J Hydrol. 2014;517:847-62. https://doi.org/10.1016/j.jhydrol.2014.06.021.
  15. 15. Dwivedi S, Uma R, Kumar TL, Narayanan MS, Pokhrel S, Kripalani RH. New spatial and temporal indices of Indian summer monsoon rainfall. Theor Appl Climatol. 2019;135:979-90. https://doi.org/10.1007/s00704-018-2428-2
  16. 16. Krishnan A, Bhaskaran PK, Kumar P. Extreme wind-wave climate projections for the Indian Ocean under changing climate scenarios. Clim Dyn. 2022;59(3-4):649-69. https://doi.org/10.1007/s00382-022-06147-x
  17. 17. Machiwal D, Dayal D, Kumar S. Long-term rainfall trends and change points in hot and cold arid regions of India. Hydrol Sci J. 2017;62(7):1050-66. https://doi.org/10.1080/02626667.2017.1303705
  18. 18. Katzenberger A, Schewe J, Pongratz J, Levermann A. Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP6 models. Earth Syst Dyn. 2021;12(2):367-86. https://doi.org/10.5194/esd-12-367-2021
  19. 19. Pai DS, Rajeevan M, Sreejith OP, Mukhopadhyay B, Satbha NS. Development of a new high spatial resolution (0.25× 0.25) long period (1901-2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam. 2014;65(1):1-8. https://doi.org/10.54302/mausam.v65i1.851
  20. 20. De Luis M, Gonzalez-Hidalgo JC, Brunetti M, Longares LA. Precipitation concentration changes in Spain 1946–2005. Nat Hazards Earth Syst Sci. 2011;11(5):1259-65. https://doi.org/10.5194/nhess-11-1259-2011
  21. 21. Van Rooy MP. A rainfall anomaly index (RAI) independent of time and space. Notos. 1965;14:43-8.
  22. 22. Sen Z. Innovative trend analysis methodology. J Hydrol Eng. 2012;17(9):1042-46. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000556
  23. 23. Sen Z. Trend identification simulation and application. J Hydrol Eng. 2014;19(3):635-42. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000811
  24. 24. Ay M, Kisi O. Investigation of trend analysis of monthly total precipitation by an innovative method. Theor Appl Climatol. 2015;120(3-4):617-29. https://doi.org/10.1007/s00704-014-1198-8
  25. 25. Wu H, Qian H. Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. Int J Climatol. 2017;37(5):2582-92. https://doi.org/10.1002/joc.4866
  26. 26. Kumar U, Singh DK, Panday SC, Bisht JK, Kant L. Spatio-temporal trend and change detection of rainfall for Kosi River basin, Uttarakhand using long-term (115 years) gridded data. Arab J Geosci. 2023;16(3). https://doi.org/10.1007/s12517-023-11244-0
  27. 27. Karami H, Ghazvinian H, Dadrasajirlou Y. Application of statistical and geostatistical approaches in temporal and spatial estimations of rainfall. J Water Clim Change. 2023;14(5):1696-722. https://doi.org/10.2166/wcc.2023.034
  28. 28. Rajashekara S. Annual and seasonal variation of rainfall in urban landscapes of the Bengaluru region, India. Environ Anal Ecol Stud. 2019;5(3). https://doi.org/10.31031/eaes.2019.05.000615
  29. 29. Kokilavani S, Ramanathan SP, Dheebakaran GA, Sathyamoorthy NK, Arthirani B, Ramesh T, et al. Decadal study of changing frequency and intensity of rainfall for selected locations of Tamil Nadu. Curr World Environ. 2021;16(3). http://dx.doi.org/10.12944/CWE.16.3.20
  30. 30. Oliver JE. Monthly precipitation distribution: a comparative index. ProfGeogr. 1980;32(3):300-09. https://doi.org/10.1111/j.0033-0124.1980.00300.x
  31. 31. Mohamed MA, El Afandi GS, El-Mahdy ME. Impact of climate change on rainfall variability in the Blue Nile basin. Alex Eng J. 2022;61(4):3265-75. https://doi.org/10.1016/j.aej.2021.08.056
  32. 32. Attri SD, Tyagi A. Climate profile of India. Contribution to the Indian Network of Climate Change Assessment (National Communication-II), Ministry of Environment and Forests. India Meteorological Department. 2010.
  33. 33. Costa JA, Rodrigues GP. Space-time distribution of rainfall anomaly index (RAI) for the Salgado Basin, Ceará State-Brazil. Ciênc Nat. 2017;39(3):627-34. http://dx.doi.org/10.5902/2179460X26080
  34. 34. Singh S, Bhardwaj A, Singh A, Sam L, Shekhar M, Martín-Torres FJ, et al. Quantifying the congruence between air and land surface temperatures for various climatic and elevation zones of Western Himalaya. Remote Sens. 2019;11(24):2889. https://doi.org/10.3390/rs11242889
  35. 35. Loo YY, Billa L, Singh A. Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci Front. 2015;6(6):817-23. https://doi.org/10.1016/j.gsf.2014.02.009
  36. 36. Karthik VC, Vinay HT, Jagadeesh MS, Ragini HR, Prem G, Pavithra V. Analysis of rainfall trends and change point detection in Kodagu District, Karnataka. Int J Environ Climate Change. 2024;14(9):33-43. https://doi.org/10.9734/ijecc/2024/v14i94389
  37. 37. Vinay HT, Ghosh A, Ojha S, Poddar P, Basak P. Trend analysis of rainfall and detection of change point in Terai Zone of West Bengal. Int J Environ Climate Change. 2024;14(1):603-13. https://doi.org/10.9734/IJECC/2024/v14i13876
  38. 38. Zarenistanak M, Dhorde AG, Kripalani RH. Trend analysis and change point detection of annual and seasonal precipitation and temperature series over southwest Iran. J Earth Syst Sci. 2014;123(2):281-95.
  39. 39. Sangma ML, Reang H, Patle GT, Dabral PP. Variability and trend analysis of rainfall data of Shillong and Agartala stations of North East India. Int J Environ Climate Change. 2020;10(11):134-42. https://doi.org/10.9734/IJECC/2020/v10i1130273

Downloads

Download data is not yet available.